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Healthy lifestyles and wellbeing
reduce neuroinflammation and
prevent neurodegenerative and
psychiatric disorders
Elodie Kip and Louise C. Parr-Brownlie*

Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, Brain Research
New Zealand, University of Otago, Dunedin, New Zealand

Since the mid-20th century, Western societies have considered productivity and

economic outcomes are more important than focusing on people’s health and

wellbeing. This focus has created lifestyles with high stress levels, associated

with overconsumption of unhealthy foods and little exercise, which negatively

affect people’s lives, and subsequently lead to the development of pathologies,

including neurodegenerative and psychiatric disorders. Prioritizing a healthy lifestyle

to maintain wellbeing may slow the onset or reduce the severity of pathologies.

It is a win-win for everyone; for societies and for individuals. A balanced lifestyle

is increasingly being adopted globally, with many doctors encouraging meditation

and prescribing non-pharmaceutical interventions to treat depression. In psychiatric

and neurodegenerative disorders, the inflammatory response system of the brain

(neuroinflammation) is activated. Many risks factors are now known to be linked

to neuroinflammation such as stress, pollution, and a high saturated and trans

fat diet. On the other hand, many studies have linked healthy habits and anti-

inflammatory products with lower levels of neuroinflammation and a reduced risk

of neurodegenerative and psychiatric disorders. Sharing risk and protective factors is

critical so that individuals can make informed choices that promote positive aging

throughout their lifespan. Most strategies to manage neurodegenerative diseases

are palliative because neurodegeneration has been progressing silently for decades

before symptoms appear. Here, we focus on preventing neurodegenerative diseases

by adopting an integrated “healthy” lifestyle approach. This review summarizes the

role of neuroinflammation on risk and protective factors of neurodegenerative and

psychiatric disorders.
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1. Introduction

Globally, the human lifespan is longer than it has been historically. Given that the risk of
neurological disease increases dramatically with age, the incidence of these conditions has seen
a similar increase. As a result, neurological disorders affect millions of people worldwide and
collectively are the second leading cause of death (9 million) and a primary cause of disability
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resulting in a substantial global health and socioeconomic burden
(GBD 2016 Neurology Collaborators, 2019). The Global Burden of
Disease Study reported that the prevalence of dementia, stroke, and
parkinsonism increased two to three times between 1990 to 2016
due to the aging population (GBD 2016 Neurology Collaborators,
2019). The Global Burden of Disease Study also showed that the two
most common neurodegenerative diseases in 2016 were dementia
and Parkinson’s disease (PD) (GBD 2016 Neurology Collaborators,
2019), affecting 43.8 and 6.1 million people worldwide, respectively
(GBD 2016 Dementia Collaborators, 2019) (GBD 2016 Parkinson’s
disease Collaborators, 2018). These statistics highlight the urgent
need to elucidate the causes of neurological and neurodegenerative
diseases, and how they can be prevented and treated more effectively.

For neurological disorders, brain, spinal cord and peripheral
nerve functions are altered, plus their associated movement, sensory,
or memory functions. Neurodegenerative diseases are a subset
of neurological diseases in which neurons in the brain, spinal
cord, or peripheral nervous system are progressively damaged or
die, thereby altering function. Psychiatric conditions are brain
disorders in which regions that control emotions, mood, identity,
consciousness and thinking are altered (Baker et al., 2002; David
and Nicholson, 2015), causing depression, schizophrenia, bipolar
disorder, anxiety disorders, neurodevelopmental disorders (autism,
attention deficit hyperactivity disorder), addictive disorders, and
stress-related disorders. While neurological, neurodegenerative, and
psychiatric disorders are categorized separately, an individual may
present with symptoms across categories, e.g., neurodegenerative
disease symptoms may present with psychiatric symptoms (David
and Nicholson, 2015). Moreover, sometimes psychiatric disorders
might occur after being initiated by a neurological disorder, or
the other way around, showing the interconnection between these
conditions. The etiologies of neurological, neurodegenerative, and
psychiatric diseases are complex, poorly understood, but often
include genetic and environmental factors. Including all neurological
disorders would be too extensive for this review, therefore, we focus
on neurodegenerative disorders and some psychiatric conditions.

Neurodegenerative disorders are irreversible due to the poor
capacity for neurons to undergo mitosis to regenerate, and can be
age-related. The mechanisms of neurodegenerative diseases involve
multiple common pathologies like accumulation of misfolded
proteins, impaired cell organelle function, and neuroinflammation
(Katsnelson et al., 2016). In older people, innate and adaptive
immune responses are impaired, leading to chronic low-grade
inflammation that is hypothesized to accelerate biological
aging; a process dubbed “inflammaging” (Magrone et al., 2020).
Neuroinflammation in the central nervous system (CNS) occurs in
neurodegenerative diseases, and also underlies psychiatric diseases
such as depression and schizophrenia (Nettis and Pariante, 2020;
Murphy et al., 2021; Troubat et al., 2021). Neuroinflammation
is linked to perturbations of the peripheral immune system. An
important strategy to avoid neuronal damage and subsequent
development of neurodegenerative and psychiatric disorders is to
moderate peripheral and neuroinflammation, i.e., decrease risk
factors and/or increase protective factors, for example, by consuming
a healthy diet and exercising regularly throughout the lifespan. Once
symptoms have presented, treatments involve relieving physical
and psychiatric symptoms, and it is often too late to reverse the
underlying causes of the disease. This highlights the critical need for
future research to focus on early pathophysiology mechanisms to
prevent or minimize irreversible damage.

The objective of this review is to examine new approaches
to manage neurodegenerative and psychiatric disorders that
work by reducing or preventing neuroinflammation. First,
neurodegenerative diseases and their multifactorial etiology are
discussed. Second, we describe the role of neuroinflammation in
neurodegenerative and psychiatric disorders and discuss common
mechanisms. Third, we discuss risk and protective factors involved
in neuroinflammation. Overall, we highlight the importance of
preventing neuroinflammation-related pathologies that underlie
neurodegenerative and psychiatric disorders, which are increasingly
prevalent world-wide.

2. Neurodegenerative diseases have
multifactorial etiology

Neurodegeneration is the term to describe early and progressive
loss of specific neurons, and altered associated functions, within
the CNS and periphery (Subramaniam, 2019). Neuronal death can
cause Alzheimer’s disease (AD), PD, Huntington’s disease (HD),
and amyotrophic lateral sclerosis (ALS), which pose substantial
health, wellbeing and treatment challenges because once the
neurodegeneration has started, progression can only be slowed but
not suppressed or reversed (Fu et al., 2018). Figure 1 shows examples
of neuronal death linked to diseases: degeneration of neurons in the
entorhinal cortex layer II (ECII) and hippocampus layer CA1, plus
also frontal, parietal and temporal lobes of the cortex (Mukhin et al.,
2017) impair memory in AD (Van Hoesen et al., 1991); degeneration
of dopaminergic neurons in the substantia nigra pars compacta
(SNpc) impairs (slow) movements and causes rigidity and tremors in
PD (Hughes et al., 1992); loss of GABAergic spiny projection neurons
(also known as medium spiny neurons) and cholinergic neurons in
the striatum, and glutamatergic pyramidal (principal) neurons across
the whole cerebral cortex are associated with involuntary movements
in HD (Rikani et al., 2014; Blumenstock and Dudanova, 2020); and
loss of motor neurons in the motor cortex, brainstem, or spinal cord
that control skeletal muscles underlie ALS.

A hallmark of neurodegenerative diseases is the formation of
misfolded protein aggregates, which seem to trigger neuronal death.
For example, accumulation of amyloid beta peptide and/or tau
is associated with AD (Van Hoesen et al., 1991), α-synuclein (α-
syn) with PD, Huntingtin (HTT) protein aggregates occur in HD
and superoxide dismutase 1 protein aggregates (SOD1) with ALS
(Sweeney et al., 2017). Moreover, several common pathophysiological
mechanisms are found early in the disease course and also lead to
cell death including mitochondrial dysfunction, lysosomal depletion,
impaired RNA homeostasis, altered glial function, and increased
neuroinflammation.

Aging, genetics, the environment, and the interaction of these
factors play a role in disease onset and progression. A detailed
description of the vast number of genetic factors and their impact
on aging is beyond the scope of this review, but there are some
common facts across neurological diseases. With aging, neurons in
all regions of the nervous system are affected, such as diminished
pyramidal neuronal populations in CA1 layer in the hippocampus,
principal neurons of ECII, spiny projection neurons in the striatum
and dopaminergic neurons in the SNpc (Mattson and Magnus, 2006;
Hou et al., 2019). These changes underlie the age-related decline of
sensory, motor, and cognitive functions.
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FIGURE 1

Selective sites of neuronal death in some neurodegenerative diseases. Pyramidal neurons in the entorhinal cortex layer II and hippocampus layer CA1 in
Alzheimer’s disease (AD), dopaminergic neurons in the substantia nigra pars compacta in Parkinson’s disease (PD), GABAergic spiny projection and
cholinergic neurons in the striatum, and pyramidal neurons in the cortex in Huntington’s disease (HD), and motor neurons in the motor cortex, brainstem
or spinal cord in amyotrophic lateral sclerosis (ALS).

Genetic factors are also central to neurodegeneration etiology.
Examples of hereditary genes and their corresponding disease
are: HTT gene in HD, amyloid precursor protein (APP),
presenilin (PSEN1, PSEN2), apolipoprotein E (APOE) genes in
AD, chromosome 9 open reading frame 72 (C9org72), SOD1, and
TAR DNA binding protein (TARDBP) genes in ALS (Pihlstrom et al.,
2017). Genes involved with PD are parkin 2 (PARK2 or PRKN),
gene encoding α-syn (SNCA or PARK1), leucin-rich repeat kinase 2
(LRRK2 or PARK8), glucocerebrosidase (GBA or PARK18), PTEN
induced putative kinase 1 (PINK1 or PARK6), protein deglycase DJ-1
(or PARK7), and PARK-vacuolar protein sorting ortholog 35 (VSP35
or PARK17) (Klein and Westenberger, 2012).

Environmental and lifestyle factors that are known to promote
neurodegeneration are exposure to pesticides, heavy metals, air
pollution, a diet high in saturated fat, chronic stress, gut
inflammation, and virus infections (Brown et al., 2005; Kip and
Parr-Brownlie, 2022). By better understanding how the interplay of
age, genetics, and exposure to environmental and lifestyle factors
alters protein formation, triggers neurodegeneration, and promotes
neuroinflammation, alongside the development of tools to diagnose
diseases at prodromal stages, we can develop novel approaches to
prevent, stop, or slow disease progression.

3. Neuroinflammation plays a role in
neurodegenerative and psychiatric
diseases

In the past, neurological disorders have focused on neuronal
dysfunction and degeneration, but this has been replaced in recent
years with a more nuanced perspective, including involvement of glia,
immune cells, and inflammatory processes in the pathology.

The immune response is the natural defense system of the
body. When too robust, it can damage surrounding tissues and

cause autoimmune pathologies, especially within the brain where
neuronal regeneration is poor. Leukocytes are largely absent from the
healthy CNS parenchyma and are mostly located in the meninges
and choroid plexus (Korin et al., 2017), unlike microglia and
astrocytes, which are resident scavenger immune cells of the brain.
The innate immune system rapidly and non-specifically eliminates
pathogens and foreign molecules or organisms using inflammation.
In the periphery, the innate immune system includes neutrophils,
monocytes/macrophages, dendritic cells and natural killer cells,
while in the brain this function is fulfilled and initiated only by
resident microglia and astrocytes (Crotti and Ransohoff, 2016). When
microglia and astrocytes are activated by stress, trauma, pathology,
or infection, they secrete reactive oxygen species (ROS), pro-
inflammatory cytokines, and chemokines facilitating recruitment of
myeloid and lymphoid cells into the brain (Ransohoff and Brown,
2012). Microglial and astrocyte activation also induces recruitment
of adaptive immune cells specific to the pathological agent, such
as B and T lymphocytes, because adaptive immunity cannot be
initiated directly in the brain. The CNS can also respond to peripheral
inflammatory stimuli and initiate a local inflammatory state in the
brain (Figure 2). Cytokines such as interleukin-1 (IL-1) circulating
in the blood or lining blood vessels can signal the inflammatory
state to neurons via substances such as nitric oxide (NO), which is
synthetized from the inducible isoform of the nitric oxide synthase
(iNOS) and cyclooxygenase (COX-2) in endothelial cells lining
blood vessels. Therefore, inflammatory signals can be transmitted
from the blood to neurons without IL-1β crossing the blood
brain barrier (BBB) (Licinio and Wong, 1997). Then, bidirectional
communication between the brain and systemic immune system
eliminates pathogens, foreign molecules, and organisms (Ransohoff
and Brown, 2012).

When optimal communication between the brain and systemic
immune system fails to occur at the appropriate time, inflammatory
mediators accumulate in the CNS in a process known as
neuroinflammation and can trigger brain damage. Damaged neurons
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FIGURE 2

A schematic diagram showing the bidirectional communication between central and systemic immune system responses that cause neuroinflammation.
Resident immune cells in the brain, microglia and astrocytes, act as scavengers to rapidly react to a pathological event. Immune cells in the periphery
communicate with microglia and astrocytes through cytokines and chemokines. Foreign/pathological substances or antigens are drained from the CNS
to peripheral lymph nodes where they are processed and presented to adaptive cells by antigen presenting cells. Peripheral innate and adaptive cells
react to these signals and antigen presentation and cross the blood brain barrier to help eliminate the pathological event. They are also responsible of
neuronal damage by inducing neuroinflammation. APC, antigen-presenting cell; ATP, adenosine triphosphate; CD4 T cell, lymphocyte T helper
expressing CD4 (cluster of differentiation 4) glycoprotein; CD8 T cell, cytotoxic T cell expressing CD8; COX-2, cyclooxygenase-2; CXCL10, C-X-C motif
chemokine ligand 10; DC, dendritic cell; IL, interleukin; iNOS, inducible nitric oxide synthase; Mφ, macrophage; MMP3, matrix metalloproteinase-3; Nφ,
neutrophil; NK, natural killer; Th cell, lymphocyte T helper; TNF, tumor necrosis factor.

release cytosolic factors that will cause further microglial and
astrocyte activation, which will exacerbate neuroinflammation and
neuronal damage (Figure 2). This becomes a vicious cycle, and
when this occurs chronically contributes to the development
and maintenance of chronic pain, neuropsychiatric disorders like
schizophrenia and depression, and neurodegenerative diseases (Wee
Yong, 2010; Fusco et al., 2017; Figure 3). Neuroinflammation occurs
and is a key element in neurodegenerative diseases such as PD, AD,
HD, ALS, and multiple sclerosis (MS), and has been well described
by Suescun et al. (2019). Stopping neuroinflammation early, and
before it amplifies and becomes chronic, will be key to preventing
many neurodegenerative diseases (Kip and Parr-Brownlie, 2022).
Furthermore, peripheral inflammation needs to be controlled. In
response to peripheral inflammation, neuroinflammation is activated
and can trigger psychiatric disorders like depression and anxiety
in otherwise healthy people. These diseases were largely thought
to be based on dysregulation of neurotransmitter systems, but
neuroinflammation is now believed to be a key element. Depression is
one of the most common and costly of all neuropsychiatric disorders,
and is also associated with an increased risk for diseases that
have an immunological basis such as asthma, rheumatoid arthritis,
chronic pain, systemic infections, autoimmune diseases, cancer, and
neurodegenerative diseases (Dantzer et al., 2008; Harkness et al.,

2019). Animal studies, postmortem analysis and epidemiological
studies have documented that CNS immune system dysregulation
is linked to depression, anxiety, cognitive dysfunction, and sleep
impairment. Inflammation induces several symptoms of depression
in individuals, such as fatigue, anorexia, pain and sleep disorders,
depressed mood, anxiety, and irritability (Dantzer et al., 2008; Miller
et al., 2009; Slavich and Irwin, 2014). Moreover, pro-inflammatory
cytokines such as IL-1β and IL-6 are increased in the serum of
patients with depression and interferon gamma (IFN-γ) is increased
in bipolar disorder. Drugs that target neuroinflammation, such as
COX-2 inhibitors, are also now considered treatments for psychiatric
diseases (Lucas et al., 2006).

Imaging microglial activation in vivo using position emission
tomography (PET) has been a valuable tool to determine the
location of neuroinflammation in neurological and psychiatric
disorders in patients. The main imaging target for PET studies
is the 18 kDa translocator protein (TSPO), which is expressed
by activated microglia, and individual TSPO PET tracers have
limitations and advantages (Sridharan et al., 2017; Werry et al., 2019).
Figure 3 shows PET-identified neuroinflammation sites in some
neurodegenerative and psychiatric disorders. Neuroinflammation
sites usually correspond to the site of neuronal death, confirming
neuroinflammatory mechanisms in these pathologies.
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FIGURE 3

Neuroinflammation is a hallmark of neurodegenerative and psychiatric disorders. Neuroinflammation was identified by positron emission tomography
(PET) scans in patients. Presence of activated microglia (colored cells) in: Huntington’s disease (Lois et al., 2018); Parkinson’s disease (Gerhard et al.,
2006); multiple sclerosis (Datta et al., 2017); amyotrophic lateral sclerosis (Alshikho et al., 2018); Alzheimer’s disease (Cagnin et al., 2007; Valotassiou
et al., 2018); depression (Setiawan et al., 2015), schizophrenia (Doorduin et al., 2009; Marques et al., 2017); and bipolar disorder (Haarman et al., 2014).

Aging is also associated with increased neuroinflammatory
processes. Indeed, increased basal levels of pro-inflammatory
cytokines such as IL-6, inflammasome activation and reduced levels
of anti-inflammatory cytokines such as IL-10 are observed with
age, a phenomenon called “inflammaging” (Ye and Johnson, 1999;
Cribbs et al., 2012; Magrone et al., 2020). Therefore, it is logical
that neuroinflammation is linked to age-related neurodegenerative
diseases such as AD and PD because the majority of cases
occur in people over 50 years of age. Many scientists believe
that neurodegenerative diseases are only linked to abnormal
aging processes, however, neuroinflammation during early stages
of life is also linked to later life neurodegenerative diseases
(Eikelenboom et al., 2010; Stokholm et al., 2017). Therefore,
preventing or minimizing neuroinflammation throughout all stages
of life may proactively and cumulatively reduce the risk of developing
neurodegenerative and psychiatric disorders, improve general health,
and reduce the individual and society cost of managing these diseases
(Kip and Parr-Brownlie, 2022).

4. Risk and protective factors for
neuroinflammation in
neurodegenerative and psychiatric
diseases

There are many factors that can exacerbate or prevent
neuroinflammation, thereby increasing or decreasing the risk for
PD as described in our recent review (Kip and Parr-Brownlie,
2022), but also neurodegenerative and psychiatric diseases in general

(Figure 4). The most common modifiable risk and protective factors
are detailed below.

4.1. Physical activity

A lot of people spend much of their time at work and home
on computers, engaging via smart phones and other devices, and
watching TV. A sedentary lifestyle and physical inactivity are
identified by the World Health Organization (WHO) as the fourth
leading risk factor for global mortality. A sedentary lifestyle increases
the risk of cardiovascular disease, diabetes and cancer and their
associated risk factors such as high blood pressure, raised plasma
glucose levels and being overweight (Dietz, 1996; Hu, 2003; Lavie
et al., 2019). In contrast, extremely intense exercise can cause
overtraining syndrome with a variety of symptoms, both physical
and psychological. It also suppresses the immune system, and can
cause adverse cardiovascular effects and exercise addiction, which is
an unhealthy compulsion to exercise (Nieman, 2000; World Health
Organization, 2010; Freimuth et al., 2011; O’Keefe et al., 2012).

Moderate exercise is defined as exercises that get the heart
rate 50–60% higher than its resting rate. Moderate exercise reduces
sedentary-induced side effects (Jakicic and Davis, 2011; Lavie et al.,
2015; Stout et al., 2017). Immediately after exercise, many positive
outcomes are observed such as lower blood pressure, less stress and
anxiety, better sleep and improved mood. This shows that moderate
exercise influences most functions in the body, including the CNS,
where it improves brain function on acute and chronic timescales,
induces release of neurotransmitters, neurotrophic factors, and
stimulates neurogenesis (Deslandes et al., 2009) and neuroplasticity
(Cassilhas et al., 2016).
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FIGURE 4

Risk and protective factors for neuroinflammation and their contributions to positive aging or the development of neurodegenerative and psychiatric
disorders.

Current evidence supports the disease-altering potential of
exercise through modification of neuroimmune responses in
major depressive disorders, schizophrenia, AD, and PD, which
is well described by Spielman et al. (2016). Physical activity
inhibits inflammation by suppressing microglial activation and
inducing an anti-inflammatory state. In more detail, physical
activity in animal models and humans increases anti-inflammatory
factors [anti-inflammatory cytokines, cluster of differentiation
200 and its receptor (CD200-CD200R), triggering receptor
expression on myeloid cells 2 (TREM2), heat-shock proteins
(HSP), metabolic factors, brain-derived neurotrophic factors,
anti-oxidants, stimulating the glymphatic system] and decreases
pro-inflammatory factors [pro-inflammatory cytokines IL-1β and
TNF-α, and chemokines chemokine (C-C motif) ligand 2 (CCL2)

and C-X-C motif chemokine ligand 10 (CXCL10), and toll-like
receptor signaling pathway] (Mee-Inta et al., 2019). Physical activity
in AD animal models decreases cellular and cognitive impairment
by modulating neuroinflammation (Kelly, 2018; Liu et al., 2020).
Outcomes were also observed in animal models of PD by decreasing
pro-inflammatory factors and microglial activation, decreasing
dopaminergic cell loss; thereby reducing akinesia, and improving
motor coordination (Tillerson et al., 2003; Tajiri et al., 2010; Sung
et al., 2012; Real et al., 2017). In HD animal models, exercise reduced
striatal neuron loss, improved motor coordination and delayed
cognitive decline (Pang et al., 2006; Harrison et al., 2013). In MS
animal models, exercise decreased pro-inflammatory cytokines and
increased anti-inflammatory cytokines, and also attenuated the
clinical score (Bernardes et al., 2013; Zaychik et al., 2021).
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Exercise is also good for overall mental health by improving
memory, cognition, sleep, and mood, and decreasing psychiatric
symptoms like depression, stress, anxiety, and mood disorders. Here,
its affects are thought to be due to the production of neurotrophic
factors, neurotransmitters, hormones, and growth of new CNS
blood vessels, and by reducing neuroinflammation (Mahalakshmi
et al., 2020). A study with college students showed that moderate-
intensity exercise reduced symptoms of stress and depression while
reducing levels of TNF-α (Paolucci et al., 2018). In this regard, the
COVID-19 pandemic induced isolation and quarantine requirements
contributed to the increased prevalence of psychiatric disorders such
as anxiety and depression, and exercise is a valuable tool to combat it
(Hu et al., 2020).

Finally, physical activity can also improve the composition of
the gut microbiome, decreasing peripheral and central inflammation,
like microglial activation in the CNS (Abraham et al., 2019; Gubert
et al., 2020). Evidence shows that there is a reciprocal link between
a reduction of peripheral inflammation and neuroinflammation.
This explains the combined impact of a healthy diet and moderate
exercise to prevent peripheral inflammation, neuroinflammation,
neurodegenerative, and psychiatric disorders.

4.2. The gut-brain axis

Although there is anatomical separation, recent evidence
indicates that neuroinflammation in the brain might originate in
the intestine through communication between the enteric and CNS,
which is called the gut-brain axis. Dietary intake determines the
composition of the gut microbiota. Therefore, the precise content
of the food eaten may affect brain health more directly than
previously thought.

Gut microbiota dysbiosis is linked to diseases within the entire
body (Petersen and Round, 2014; Novakovic et al., 2020; Sencio
et al., 2021). The levels and balance of dietary elements such as
fat, carbohydrate, gluten, alcohol, vitamins, and food allergens have
a role in determining gut microbiota composition and whether
inflammation is triggered in the gut. In the CNS, gut dysbiosis
is associated with impaired mood, anxiety, depression, pain and
impaired cognition and directly linked to neuroinflammation (Cryan
and Dinan, 2012). Furthermore, chronic intestinal inflammation
has been linked to neuroinflammation, and development of
neurodegenerative diseases (Houser and Tansey, 2017) and bipolar
disorder (Muneer, 2016).

Several dietary components, when eaten in excess, have been
linked to gut inflammation and neuroinflammation. Western diets
that are high in red meat, saturated and trans fats, refined sugars
and carbohydrate intake are linked to gut inflammation and a
change in microbiota composition (Agus et al., 2016). In contrast,
other nutritional components (unsaturated, polyunsaturated, and
monounsaturated fat) and dietary habits such as ketogenic and
Mediterranean diets, and intermittent fasting, are neuroprotective
and anti-inflammatory. Adherence to some anti-inflammatory
promoting diets can be challenging over long periods. Therefore,
instead of suppressing components from the diet, balancing
anti-inflammatory foods and habits may be critical to reduce
neuroinflammation.

In the past, fats were considered bad for health, but now their
health effects are nuanced depending on the type of fat. High
consumption of some fats increases the risk of heart disease and

diabetes (Siri-Tarino et al., 2010; Schlesinger et al., 2019), whereas
other fats are needed in our diet and have a lower cardiovascular risk
profile. Dietary fats differ in their chemical structure, and therefore,
the extent that they trigger inflammation and neuroinflammation.
Saturated and trans fats have the maximum number of hydrogen
atoms bound to carbon atoms and are solid at room temperature.
They are considered the least healthy fat, and are found in many
foods, such as red meat, butter, palm and coconut oils, milk,
cheese, ice cream, French fries and crackers (Kris-Etherton et al.,
2012; de Souza et al., 2015). Unsaturated fats have fewer hydrogen
atoms bound to carbon atoms, mono-unsaturated fats have one
unsaturated bond, whereas polyunsaturated fats have many. Mono
and polyunsaturated fats are healthy and found in vegetables, nuts,
fish (mono); avocado, olive and canola oil, almonds (unsaturated);
walnut, sunflower oil, salmon, tuna (poly). There are two types of
polyunsaturated fats - omega-3 and omega-6 fatty acids. Omega-3
fatty acids are found in oily fish, nuts, flaxseeds and leafy vegetables,
and are considered the healthiest fat because they may reduce
inflammation (Murphy et al., 2021; Saini et al., 2021).

A common impact of excessive consumption of unhealthy fats
and foods is an increase in neuroinflammation. A high fat diet
(HFD) that contains a lot of saturated and trans fats, promotes
pro-inflammatory changes in the small intestine, and activates the
toll-like receptor 4 (TLR4), iNOS, COX-2, and nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-κB) (Kim et al., 2012).
Subsequently, a HFD induces oxidative stress, neuroinflammation,
tau hyperphosphorylation and neuron degeneration (Anstey et al.,
2011), plus microglial activation (Kim et al., 2019). In animal models,
a HFD induces cognitive decline similar to the symptoms of AD, and
amyloid accumulation on artery walls in the brain (Lin et al., 2016).

Another nutrient that can trigger inflammation is gluten. People,
even non-celiac, can be sensitive to gluten and gluten intolerance and
sensitivity are often unrecognized and under-diagnosed. Daulatzai
(2015) reported that non-celiac gluten sensitivity can trigger gut
dysbiosis, dysregulating the gut-brain axis by increasing intestinal
permeability, entry of bacteria, bacterial toxins, and toxic digestive
metabolites into the bloodstream, increasing neuroinflammation
and BBB permeability, and subsequently increase the risk for an
individual to develop dementia. PD, AD, depression, anxiety, and
schizophrenia are also believed to be linked to gluten intake,
especially in celiac patients (Levinta et al., 2018; Mohan et al., 2020).
However, data are limited and further research is needed (Philip and
White, 2022).

Epidemiological and animal studies have revealed the
broad underlying role that neuroinflammation may have in
neurodegenerative disorders, regardless of the initiating trigger
or events. For example, metabolic disorders, such as obesity,
activate neuroinflammation and are correlated to neurodegenerative
disorders (Maric et al., 2014; Procaccini et al., 2016; Mazon
et al., 2017), and bariatric surgery treatment reduces low grade
inflammation (Rao, 2012; Stolberg et al., 2018). When placed in the
context that there is a worldwide epidemic of obesity, it remains
critical to eat healthy foods that reduce inflammation and avoid
foods that negatively change the composition of gut microbiota and
trigger inflammation, such as a HFD.

Anti-inflammatory dietary components are found in many foods
and plants, and they are well described in a recent review (Rekatsina
et al., 2020). Naturally occurring common anti-inflammatories are
found in pomegranates, medicinal plants, vitamin D, vitamin C,
a Mediterranean diet and extra-virgin olive oil, flavonoids found
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in fruits, curcumin, resveratrol, aged garlic extract, walnuts, marine
carotenoid astaxanthin found in seafood, omega-3 fatty acids,
caffeine, and manuka honey (Almasaudi et al., 2017). Ingestion of
these foods reduce chronic inflammation and neuroinflammation
(Rekatsina et al., 2020; Di Majo et al., 2022; Itsiopoulos et al.,
2022). These (neuro)inflammation reducing foods could be part of
the prevention and treatment of neurodegenerative and psychiatric
disorders, however, clinical studies are needed. A specific dietary
example is salvianolic acid B (sal B), which is extracted from
salvia miltiorrhiza bunge, a popular Chinese herb. Sal B abolishes
neuroinflammatory responses in the hippocampus in a rat model of
chronic mild stress-induced depression by inhibiting NOD-, LRR-,
and pyrin domain-containing protein 3 (NLRP3) inflammasome
activation (Huang et al., 2019). Sal B also reduces MS severity
by impairing Th1 and Th17 responses, limiting astrogliosis and
infiltration of inflammatory cells into the CNS in a MS animal
model (Dong et al., 2016). Sal B has anti-inflammatory effects in a
model of traumatic brain injury–brain edema and motor deficits were
reduced by inhibiting neutrophil infiltration, microglia activation,
and pro-inflammatory cytokine production (Chen et al., 2011).

Recently, intermittent fasting (IF) and ketogenic diets (KD) have
been shown to positively impact gut microbiota and increase people’s
health and wellbeing. IF is a practice associated with weight loss
and calorie restriction where individuals refrain from eating for
extended periods of the day, e.g., 16 h per day (16:8 ratio). In
addition to facilitating weight loss, IF has been shown to increase
lifespan, reduce free radicals, attenuate age-related diseases and
reduce cognitive and motor function decline (Mattson, 2005; Mattson
and Wan, 2005; Masoro, 2006; Gudden et al., 2021). IF stimulates
adaptive immune responses in rats, which suppress LPS-induced
neuroinflammation in young and old animals. These results support
the idea that IF could reduce the risk of neuroinflammation at any
point in the life span, and cumulatively could significantly reduce the
risk of neurodegenerative diseases linked to inflammatory responses
(Vasconcelos et al., 2015). IF also decreases plasma inflammatory
factors such as cortisol, IL-6 and TNF-α in a mouse model of stress,
which was hypothesized to ameliorate cognitive function (Shojaie
et al., 2017). In a MS animal model, IF reduced inflammation,
increased bacteria richness in the gut and ameliorated the clinical
course of the disease, which has also been shown in MS patients
(Cignarella et al., 2018). Similarly, in a mouse model of PD, IF
attenuated dopaminergic neuron loss by upregulating neurotrophic
factors and decreasing neuroinflammation (Ojha et al., 2023).

A ketogenic diet (KD) is a high fat, low carbohydrate diet with
adequate levels of protein that shifts the body from glucose to fat
metabolism. As a consequence, the liver converts fats into ketones,
which can serve as a major energy source for the brain. A KD for
12 days and 8 weeks improved the quality of life and daily function in
patients with AD (Phillips et al., 2021) and PD (Phillips et al., 2018),
respectively, and helped patients living with severe epilepsy (Fan
et al., 2019). Emerging evidence shows that a KD induces systemic
and neuroprotective anti-inflammatory effects. In rodent models
of neurodegenerative and neuro-inflammatory disorders, a KD can
reduce expression of pro-inflammatory cytokines and microglial
activation (Ruskin et al., 2009; Yang and Cheng, 2010; Youm et al.,
2015) probably by activating the peroxisome proliferator-activated
receptor α which inhibits NF-κB, leading to the downregulation of
COX2 and iNOS (Cullingford, 2004), and/or by directly inhibiting
the NLRP3 inflammasome (Youm et al., 2015). A KD is thought to
improve psychiatric diseases such as mood disorders (Brietzke et al.,

2018) and depression (Włodarczyk and Cubała, 2019) through anti-
inflammatory affects. However, large scale studies and clinical trials
are required to fully assess the impact of KD on the treatment or
management of neurodegenerative and psychiatric disorders (Jensen
et al., 2020), and if there are other mechanisms of introducing
ketonemia.

The gut-brain axis likely plays a key role in the development
and progression of brain disorders. Other dietary compounds that
maintain healthy microbiota and inflammation levels in the gut will
also be important such as caffeine, probiotics and prebiotics (Frank
et al., 2019), and could also be used as prevention and treatment
strategies. Nevertheless, food quality and quantity can be used to
optimize health and wellbeing throughout the lifespan.

4.3. Alcohol consumption

Chronic alcohol consumption alters the gut microbiome, causes
mucosal damage due to increased permeability to endotoxins,
and causes systemic inflammation by activating monocytes and
macrophages to secrete TNF-α and other pro-inflammatory
cytokines (Bode and Bode, 2005; Amin et al., 2009). Systemic
inflammation is a precursor of neuroinflammation, therefore,
chronic alcohol consumption is also linked to the development of
neurodegeneration (Qin et al., 2008; Qin and Crews, 2012; Kamal
et al., 2020).

Recent epidemiological studies show that compared to people
who abstain from alcohol consumption, light-moderate alcohol
consumption in any form (i.e., wine, beer, or spirits) can be beneficial
for health (Kamal et al., 2020). Moderate drinking is defined as
a maximum of two standard drinks daily for women, and three
for men. Several studies report that low alcohol consumption can
promote anti-inflammatory and cytoprotective processes by reducing
C-reactive protein (CRP) levels, and plasma markers of inflammation
and pro-inflammatory cytokines such as IL-6 (Albert et al., 2003;
Vasanthi et al., 2012; Justice et al., 2018). On top of that, case-
control and cohort studies show moderate alcohol consumption can
lower the risk of dementia (Ruitenberg et al., 2002; Mukamal et al.,
2003; Pilleron et al., 2015; Sabia et al., 2018; Radford et al., 2019).
Polyphenolic components of red wine, such as resveratrol, reduce
toxicity in an animal model of PD through their antioxidant and anti-
inflammatory properties. This reinforces the importance of moderate
alcohol consumption as part of a balanced lifestyle for health.

4.4. Mental health and wellbeing

Stress is a state of the body and mind that occurs when an
alerting, demanding, or threatening event occurs. The stress response
is adaptive and can be behavioral, psychological, or physiological
and is designed to promote survival. Chronic or unpredictable
stressors are deleterious and contribute to several neurodegenerative
and psychiatric diseases. In contrast, short predictable stressors can
be beneficial for cognition and emotion. Clinical and experimental
studies have shown that deleterious stress negatively impacts the
immune function in adults (Dhabhar, 2014; Seiler et al., 2020). Stress
has been linked to the development of inflammatory diseases such
as inflammatory bowel disorder (Brzozowski et al., 2016; Sun et al.,
2019), and neurons can release inflammatory molecules in response
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to stress and induce neuroinflammation (Black, 2002). It is also
not surprising that stress has been linked, and may trigger, several
psychiatric disorders such as posttraumatic stress disorder, anxiety
disorders, depression and schizophrenia, and also the evolution of
neurodegenerative diseases (McLeod et al., 2001; Bottaccioli et al.,
2019).

Moreover, the fetal basis of adult disease hypothesis introduced
the concept that adult health and behavior are programmed
in utero and shaped throughout life by exposure to new and
previously experienced stressors via epigenetic mechanisms (Barker
et al., 1993; Calkins and Devaskar, 2011; Argyraki et al., 2019).
Epigenetic mechanisms are changes in DNA methylation and
histone modification, which do not modify the genetic code but
modulate transcription and translation, reinforcing or inhibiting
some genes, and regulate when and where corresponding proteins
are expressed (Lejarraga, 2019). These genes alter programming,
thereby modifying responses following stimulation of metabolic
and hormone regulators. Changes in gene expression may affect
metabolic responses throughout life. For example, prenatal exposure
may contribute to health problems that arise later in life such as
obesity, diabetes, cardiovascular disease, cancer, and PD. Epigenetic
changes persist even when the original triggering conditions are
no longer present (Ho and Tang, 2007; Lejarraga, 2019). In line
with this, juvenile and early life stresses have been linked to
long term meta-plasticity-like effects on inflammatory responses
in adulthood, and this memory may increase susceptibility to
neurodegenerative diseases in adult life (Shtoots et al., 2018). This
enhanced inflammatory response to stressors is called behavioral
meta-plasticity. These findings mean that early life stress can produce
long lasting changes in the immune response and increased pro-
inflammatory cytokine and chemokine expression, and increased
recruitment of innate immune cells (Carpenter et al., 2010;
Lopes et al., 2012). Furthermore, stress in utero can increase
the susceptibility for excessive neuroinflammation, anxiety and
neurodegeneration in adulthood (Desplats et al., 2019), which has
been observed in both animal models and humans (Jawahar et al.,
2015; Van den Bergh et al., 2017; Frasch et al., 2018). Finally, the
association between childhood trauma and plasma inflammatory
biomarkers have been observed among 1,037 members of the
Dunedin Multidisciplinary Health and Development Study through a
longitudinal prospective study (Danese et al., 2007). Study members
have been followed for 45 years since they were born in 1972–1973
in Dunedin, New Zealand (Poulton et al., 2015). This study showed
that cumulative experience to childhood maltreatment was associated
with significantly elevated inflammation in adult life, with increased
CRP and fibrinogen levels and leukocyte count (Danese et al., 2007).
Other studies have subsequently tested this association, which is
confirmed by meta-analysis reviews (Coelho et al., 2014; Baumeister
et al., 2016). In this context, it would be advantageous to reduce or
eliminate deleterious stress from our lives and raise public awareness
of the effect early life stress, maltreatment, and bullying has on mental
health and wellbeing throughout the lifespan.

An association between loneliness and inflammation has been
found and is currently of great interest due to the impact of
the COVID-19 pandemic on social isolation. In animal models,
chronic stress followed by social isolation promotes depression by
increasing microglia and astrocyte activity and reduced hippocampal
neurogenesis in mice (Du Preez et al., 2021). More clinical and
participatory action research needs to examine the impact of social
isolation on neuroinflammation and the development of psychiatric

and neurodegenerative diseases. Epidemiological studies obtained
during or in the first 2 years after the COVID-19 pandemic will add
information to this field.

Mental health and wellbeing can be improved by individuals
being aware of, and responding effectively, during periods of
high stress. Increasingly, evidence supports the use of mindfulness
meditation, and yoga, which are commonly used to manage
wellbeing, and these practices decrease inflammation (Twal et al.,
2016; Pascoe et al., 2017). For example, a recent meta-analysis study
mentioned that breathing, meditation, yoga, and Tai Chi practice
downregulated pro-inflammatory genes and NF-κB pathway (Buric
et al., 2017).

Mindfulness is a way of paying attention to the present state,
which originated in the eastern meditation practices in Buddhism
and has been described as “paying attention in a particular way,
on purpose, in the present moment and non-judgmentally” (Kabat-
Zinn, 2009). Mindfulness meditation is an intrinsic capacity of the
human mind and has only recently been highlighted because it can
improve human health and wellbeing. Meditation seems to reduce
blood cortisol, CRP, TNF-α, IL-6, and the transcription factor NF-
κB activity across all meditation practices, acutely (measured 5–
20 min after a 20 min meditation/yoga session) and chronically
(3 or 4 months post-practice) (Kiecolt-Glaser et al., 2014; Creswell
et al., 2016; Twal et al., 2016). A review of randomized control trials
examining the effect of mindfulness on the immune system observed
reduced transcription of NF-κB and CRP levels and increases in cell-
mediated defenses (CD4+ T cell count and activity) and telomerase
activity (Black and Slavich, 2016). The increased telomerase activity
protects the ends of chromosomes from DNA damage and plays a
central protective role in cell fate and aging, therefore, is linked to a
longer and healthier life. However, this study needs to be replicated
to understand the mechanisms linking mindfulness meditation and
its positive effects on immunity and disease prevention. Finally, the
stress-induced increase in neuroinflammation is reduced during and
after mindfulness meditation (Pascoe et al., 2017).

Several recent studies provide evidence that yoga reduces
the harmful effects of stress and inflammaging. Yoga for
12 weeks slowed cellular aging and increased anti-inflammatory
cytokines, and diminished pro-inflammatory cytokines and cortisol
levels (Tolahunase et al., 2017), with participants feeling less
depressed and anxious (Cahn et al., 2017). A systematic review
of randomized controlled trials mentioned that yoga decreases
pro-inflammatory cytokines IL-1β, TNF-α, and IL-6 and should be
part a complementary intervention for people at risk of diseases
with an immunological component (Falkenberg et al., 2018). The
length of individual sessions varied from 30 to 90 min; daily–once
per week; and yoga was practiced for 1–6 months, with most studies
including a 8–12 week yoga program. Ideally, yoga should be
practised regularly throughout life to produce a consistent decrease
in pro-inflammatory cytokines (Lurie, 2018; Magan and Yadav,
2020). These studies show that yoga may reduce neuroinflammation
and the risk of neurodegenerative and psychiatric disorders in people
living with chronic stress.

4.5. Quality of the air we breathe and
spending time in natural environments

Most people live in an urban society with artificial environments
containing moderate levels of pollution. Pollution is composed of
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particulate matter, ozone (O3), carbon monoxide (CO), sulfur dioxide
(SO2), nitrogen oxide (NO), and lead (Pb). These pollutants are
stated to be hazardous to human health by the Environmental
Protection Agency and are the most prevalent environmental risk
factors linked to increased inflammation (Craig et al., 2008). These
pollutants have also been linked to increased neuroinflammation
and related neurodegenerative diseases such as PD and AD in
humans and animal models (Levesque et al., 2011a,b; Jankowska-
Kieltyka et al., 2021). Analysis of brain tissues from people living
in highly polluted areas shows increased levels of pro-inflammatory
markers such as IL-1β and COX2, and BBB damage (Calderon-
Garciduenas et al., 2008). Microglia are also chronically activated by
either pro-inflammatory stimuli or in response to neuronal damage.
There are three mechanisms underlying these effects (Block and
Calderón-Garcidueñas, 2009). First, components of air pollution
may directly activate microglia. Second, pro-inflammatory cytokines
from the peripheral systemic inflammatory response can trigger
neuroinflammation. Third, particles or cytokines derived from the
periphery may damage neurons, which in turn activate microglia. For
example, a study showed that chronic exposure to particulate matter
in Mexico City increased oxidative stress, neuroinflammation, and
innate and adaptive immune responses in children’s brains leading to
pathologies similar to those observed in PD and AD (Fonken et al.,
2011). In support of this, inhalation exposure to air pollutants found
in traffic triggers increased activity of matrix metalloproteinases
(MMP) and degradation of tight junction proteins in mouse brain
vasculature resulting in increased BBB permeability and an increase
in neuroinflammation (Oppenheim et al., 2013).

Conversely, populations with higher greenspace exposure are
more likely to have good overall health (Lee and Maheswaran,
2011; White et al., 2019). Studies show that walking or exercise in
nature improves cognition and mood in people with major depressive
disorder (Berman et al., 2012) and also increased self-esteem (Barton
and Pretty, 2010). Moreover, being in nature reduces stress, decreases
exposure to pollution and increases sleep duration–factors known
to reduce neuroinflammation (see Sections “4.4. Mental health and
wellbeing,” “4.5. Quality of the air we breathe and spending time
in natural environments,” and “4.7. Importance of quality sleep”).
Studies in countries with dense populations show that spending time
in natural environments such as a forest, reduced levels of cortisol,
increased levels of protective immune function (levels of NK cell
activity) and reduced pro-inflammatory cytokines such as IL-6 and
TNF-α (Miyazaki et al., 2011; Mao et al., 2012) by decreasing stress
responses (e.g., reducing heart rate and blood pressure) and favoring
a relaxed state. Spending time outside, in forests, parks, mountains
and oceans should be part of a healthy lifestyle and is sometimes
recommended by doctors. In fact, in Scotland, medical doctors are
now prescribing time spent in natural environments as treatments
(Carrell, 2018; Koselka et al., 2019). However, green spaces need to be
accessible for everyone. Therefore, city designs need to include safe
green spaces so that all residents can maintain positive health.

4.6. Exposure to pesticides

Pesticides are widely used in the agricultural industry as well as in
houses and offices to control weeds and insect manifestations. Serious
health concerns have been raised about occupational exposure to
pesticides and from residues found in/on food and drinking water.
Pesticides last a long time and are degraded slowly. Occupational

exposure in agricultural, pesticide and extermination industries can
be high, whereas home exposure through eating food and drinking
water is variable. Harmful effects depend on the toxicity of the
pesticide, preventative measures taken during its application, dose,
and persistence of pesticide residues in the environment and ongoing
exposure (Damalas and Eleftherohorinos, 2011).

Accumulating experimental and epidemiological evidence shows
that the pathogenesis of many chronic neurodegenerative (PD, AD,
MS, HD, and ALS) and psychiatric (depression, anxiety, cognitive
impairment, and autism) disorders are exacerbated by pesticide
exposure (Dhaini, 2009; Parrón et al., 2011; Vinceti et al., 2017; Arab
and Mostafalou, 2022). Exposure to pesticides can trigger damaging
immune system effects and induce neurotoxicity (Costa et al., 2013;
Chen et al., 2014; Fenga et al., 2014; Mokarizadeh et al., 2015). Much
research has been conducted on this topic and here we discuss a few
examples. For a more detailed explanation of the neurotoxic effects
of pesticides, epidemiological studies and neurotoxicity mechanisms,
see recent reviews (Xiao et al., 2021; Arab and Mostafalou, 2022;
Vellingiri et al., 2022).

Epidemiological cohort and case-control studies have correlated
an increased risk for PD to develop with pesticide exposure among
greenspace workers, farmers, and horticulturists (Hertzman et al.,
1994; Tüchsen and Astrup Jensen, 2000; Kenborg et al., 2012).
Many epidemiological studies have also linked pesticide exposure to
increased risk of developing AD (Gauthier et al., 2001; Tyas et al.,
2001; Hayden et al., 2010; Parrón et al., 2011; Agarwal et al., 2020;
Li et al., 2021) by inducing oxidative stress, neuronal damage and
neurobehavioral alterations. Pesticide exposure also increases the risk
of developing MS (Parrón et al., 2011; Graves et al., 2017), ALS
(Morahan and Pamphlett, 2006; Andrew et al., 2017; Povedano et al.,
2018) and autism when exposure occurs during the prenatal period
(Brown et al., 2018).

Inflammation is a common mechanism of pesticide-induced
neurotoxicity. In rodents, exposure to the pesticides paraquat
and rotenone cause behavioral impairments, increase ROS and
the pro-inflammatory cytokine TNF-α in the substantia nigra,
and these neuroinflammation changes lead to the degeneration
of the nigrostriatal dopaminergic system and parkinsonian motor
symptoms (Sherer et al., 2003; Hutson et al., 2011; Mitra et al.,
2011). Therefore, paraquat and rotenone have been used to
model PD in many animal studies (Uversky, 2004; Nisticò et al.,
2011). Similarly in animal models of AD, paraquat, chlorpyrifos,
and dichlorodiphenyldichloroethylene increase production of ROS,
causing neuronal death and degeneration (Tang, 2020). In a striatal
neuron model of HD, the pesticide chlorpyrifos induces oxidative
stress by production of ROS and neurotoxicity (Dominah et al., 2017).
ROS induced by pesticides can trigger NLRP3 inflammasome in
microglia leading to the production of IL-1β, exacerbating neuronal
death and function (Moloudizargari et al., 2019), which is one
mechanism linking pesticides and neuroinflammation. Rotenone
induces transcriptional changes in vitro similar to those observed
in patients with autism such as free radical production and disrupts
microtubules in neurons (Pearson et al., 2016). Moreover, rotenone
activates microglia and astrocytes and increases pro-inflammatory
cytokine production, which attach to cytokine receptors and initiate
neurotoxic intracellular mechanisms and generation of iNOS and
oxidative stress, damaging neurons. Finally, pesticides have also been
shown to increase gut inflammation and alter the composition of
the gut microbiome, which induces neuroinflammation through the
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gut-brain axis (see Section “4.2. The gut-brain axis”) and is linked to
neurological diseases (Chiu et al., 2020).

Experimental and epidemiological evidence shows a link between
pesticide exposure and the increased incidence of developing
neurodegenerative and psychiatric diseases, with neuroinflammation
being an important common mechanism inducing neurotoxicity.
Agriculturalists and health experts understand the risks of pesticide
exposure and many people are advocating for greater controls and
reduced use of pesticides. This is an important first step. However,
because health effects for most people are cumulative over a lifetime,
it will take several decades before a population-based reduced risk of
neurodegenerative and psychiatric disorders will be evident.

4.7. Importance of quality sleep

People living with neurodegenerative diseases, such as AD, PD,
and MS, as well as psychiatric disorders such as depression and
anxiety, experience sleep disorders. These conditions can induce a
sleep disorder, but the genesis may also be that a sleep disorder
contributes to brain disorders. Previous studies show that poor
sleep simulates peripheral immunity by increasing circulating pro-
inflammatory cytokine levels, increasing inflammatory signaling
pathways and increasing innate immunity (Marshall and Born, 2002;
Opp and Krueger, 2015; Qazi and Farraye, 2018). Sleep loss and
disrupted sleep have been shown to induce acute (Irwin et al.,
2010) and chronic inflammation (Hurtado-Alvarado et al., 2016).
For example, insufficient sleep quantity facilitates and/or exacerbates
pain in healthy volunteers through elevation of circulating IL-6
(Haack et al., 2007). Interestingly, 64 h of sleep deprivation increased
leukocyte and natural killer cell function, which was reversed by
sleep, suggesting that sleeping has the potential to reverse adverse
effects of inflammation (Dinges et al., 1994). Recently, sleep disorders
have been considered a causal part of neuroinflammation found in
neurodegenerative and psychiatric disorders. Reduced sleep has been
associated with increased secretion of pro-inflammatory cytokines
such as TNF-α in the blood (Vgontzas et al., 2004; Irwin, 2015),
with microglia activation playing a key role (Wisor et al., 2011;
Nadjar et al., 2017). Short term (6 h) sleep deprivation causes a
significant increase in B cells in the brain and elevates expression of
the migration-related C-X-C chemokine receptor type 5 (CXCR5) on
B cells and its ligand CXCL13 in the meninges in mouse brains (Korin
et al., 2020). B cells have cytokine-producing states and are antigen
presenting cells, in addition to their antibody production function
(Tarlinton, 2019). Therefore, the neuroinflammation that occurs due
to reduced sleep quality with neurodegenerative and psychiatric
disorders exacerbates these conditions (Ahnaou and Drinkenburg,
2021).

4.8. Cannabinoids

Preparations of the cannabis plant Cannabis sativa have been
used for thousands of years by different cultures for many purposes,
including medicinal properties. Its sedative and psychotropic effects
mean the plant is used as a recreational drug throughout the
world. Cannabinoids have been studied for their therapeutic
properties in neuroinflammatory diseases. However, legal systems
have categorized drugs as being socially acceptable (alcohol

and nicotine) or unacceptable (cannabis and others), which has
slowed research examining the anti-inflammatory properties of
cannabinoids. Cannabidiol, the main non-psychotropic component,
exerts anti-inflammatory effects by inhibiting the synthesis and
release of pro-inflammatory molecules, like cytokines, NO and glial
fibrillary acidic protein from activated astroglia (Esposito et al.,
2007) through the peroxisome proliferator-activated receptor gamma
(PPARγ) (Esposito et al., 2011). This is associated with inhibition
of p38 mitogen-activated protein kinase (MAPK) and regulation
of NF-κB, which controls transcription of pro-inflammatory factors
(Esposito et al., 2006). Moreover, controlling these pro-inflammatory
molecules regulates microglia migration, which is involved in
neuroinflammation, preventing recruitment of microglia to lesion
sites (Walter et al., 2003). Cannabinoids act directly on cannabinoid
type 1 and type 2 (CB1 and CB2) receptors, transient receptor
potential cation channel subfamily V member 1 (TRPV1) largely
distributed within the CNS. A recent review shows that cannabinoid
binding to CB1, CB2, and TRPV1 is neuroprotective, decreases TNF-
α (CB1 and 2) and IL-12 (CB1), inhibits chemokine production by
astrocytes (CB2), and reduces proliferation (CB2), migration (CB2)
and activates (TRVP1) microglia (Antonazzo et al., 2019). These
findings are promising as an agent for delaying the progression of
neurodegenerative diseases such as HD and PD. However, clinical
trials are needed to examine the efficacy of cannabinoids to treat
neurodegenerative and psychiatric disorders.

4.9. Effect of tobacco smoking

Tobacco smoking is a worldwide epidemic, a significant cause
of death and morbidity (Sopori, 2002), and directly induces
cardiovascular diseases, lung cancer and chronic obstructive
pulmonary disease. In the context of (neuro)inflammation, smoking’s
effects are complex and can be protective, as well as detrimental,
depending on the disease. In MS, smoking enhances inflammatory
responses resulting in an increased risk of developing the disease
(Alrouji et al., 2019). Smoking is also a risk factor for dementia and
past exposure induces neuroinflammation and aggravates cognitive
impairment via NLRP3 and eukaryotic translation initiation factor
2A pathways in animal models (Meng et al., 2020). However,
tobacco smokers have a reduced incidence or delayed onset of PD
(Thacker et al., 2007; Ritz et al., 2014), and acute smoking suppresses
inflammatory cytokines and has also been considered protective
for neuroinflammation in PD. Smoke contains numerous chemicals
that could be responsible for protective effects. Unless the exact
protective product from tobacco is removed from its constituents
and administered in a safer way, tobacco smoking should be avoided
because it increases the risks for other diseases.

4.10. Exposure to metals

Metals, such as iron (Fe), copper (Cu), manganese (Mn)
and chromium (Cr) are essential for normal cell metabolism
when kept at homeostatic levels. To achieve this, complex
mechanisms regulate intracellular and extracellular concentrations
of these metals. When this process is dysregulated, it is called
dyshomeostasis of essential metals, and this leads to increased
oxidative stress, production of ROS, activates microglia and
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overproduction of the pro-inflammatory cytokines IL-1β and TNF-
α, leading to neuroinflammation. On the other hand, the presence
of non-essential heavy metals such as lead (Pb), aluminum (Al),
cadmium (Cd), and mercury (Hg) have direct neurotoxic effects on
the brain and are not readily detoxified by immune mechanisms,
activate glia and increase production of pro-inflammatory cytokines
leading to a chronic inflammatory state. For example, including
aluminum in drinking water promotes neuroinflammation in
experimental models (Campbell et al., 2004; Becaria et al., 2006).

Both essential and non-essential metals induce neuroinflammation,
contributing to neurodegenerative and psychiatric disorder
pathology (Mason et al., 2014). For both PD and AD, dysregulated
metal brain homeostasis (Fe, Cu, and Zn) may be part of the
disease pathogenesis through neuroinflammation (Perry et al.,
2003; Das et al., 2021; Nakagawa and Yamada, 2022). In MS,
excessive neuroinflammation may increase Fe deposition (Williams
et al., 2012). In AD, both Pb and Hg induce glia reactivity and
neuroinflammation, and have been linked to the disease (Monnet-
Tschudi et al., 2006; Siblerud et al., 2019), and extracellular
amyloid-beta plaques contain excessive essential metals Cu, Fe, and
Zn and induce neuroinflammation. Several epidemiological studies
have linked chronic metal exposure (Hg, Pb, Mn, Cu, Fe, Al, bismuth,
titanium, and Zn) to the risk of developing PD (Gorell et al., 1997,
1999; Miller et al., 2003; Lucchini et al., 2007; Raj et al., 2021).

Avoiding heavy metal exposure is a prevention strategy that
reduces the neuroinflammation often underlying neurodegenerative
and psychiatric disorders. When prevention is not feasible, metal
chelators could be used to minimize diseases outcomes.

5. Conclusion

Neuroinflammation is an important parameter underlying
neurodegenerative and psychiatric disorders, therefore, management
is critical for developing strategies to treat them. Drugs
targeting neuroinflammation are on the market, but other drugs,
lifestyle changes and natural anti-inflammatory compounds
produce promising results. A comprehensive, recent review has
summarized neuroinflammatory treatment strategies for PD (Kip
and Parr-Brownlie, 2022). Effective prevention or delayed onset
of neurodegenerative or psychiatric disorders requires having
biomarkers to know when and where in the CNS neuroinflammation
is occurring. Furthermore, to prevent side effects, drugs may need to
be targeted to particular brain regions and cell types. Such therapies
are likely decades away.

Some interventions are available now if specific biomarkers are
available. Therefore, these strategies could be implemented early to
prevent or delay the onset of disease. Interventions may need to
be applied during specific periods (e.g., prenatally), throughout the
lifespan and/or when neurodegenerative or psychiatric diseases are
likely to appear, e.g., late teens for schizophrenia or mid-life for
PD and AD. Given that there are no drugs that currently halt or
reverse most neurodegenerative diseases, prevention and/or acting
early is a valid strategy. Balance is key. Some solutions need to be
solved at the population level, i.e., reducing pollution and climate
change; population-based strategies to modify such factors could
potentially result in fewer cases of inflammatory-related diseases. At
system levels, recategorizing drugs by medicinal effects could enable
greater modulation of neuroinflammation and inflammation-related

diseases. Other solutions are primarily under individual control.
Dietary strategies, ongoing moderate physical activity, moderate
alcohol consumption, reducing stress and spending time outdoors
in natural environments, adopting meditative/mindfulness strategies,
and having enough quality sleep should be encouraged. Here,
effective public health policies may have a role at the population
level, e.g., removing taxes on fresh fruits and vegetables and quality
protein sources so they are affordable. While this review focused on
neurodegenerative and psychiatric disorders, neuroinflammation is
present in neurological disorders and similar strategies could also
produce positively outcomes.

For many individuals, translating knowledge into behavioral
changes and sustaining that for life is a barrier, constituting a large
research field and many commercial products designed to help the
process. However, maintaining a healthy lifestyle in a busy Western
work environment is difficult due to accumulating effects of stress,
anxiety, depression and chronic lack of sleep. Physical and mental
wellbeing is pivotal. In this context, wellbeing should be a focus
of daily life and prioritized by doctors, employers, politicians, and
people in positions of influence. One strategy that could be adopted
is a reduced working week, which increases work productivity overall
and restores a better work-life balance (Ivancevich, 1974; Foster et al.,
1979; Haar et al., 2014; Kossek et al., 2014; Kamerâde et al., 2019;
Laker and Roulet, 2019). However, employers are slow to adopt this
strategy.

Lifestyle factors can be harnessed to reduce the population
risk of neurodegenerative and psychiatric disorders by modulating
neuroinflammation. As more research is produced, the benefits
of lifestyle interventions may be accurately quantified for some
disorders. Finally, for this knowledge to have impact, be adopted and
translated to refine treatment regimes, the mechanisms need to be
shared with clinicians and people living with these disorders.
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