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Traumatic brain injury (TBI) results when external physical forces impact the

head with sufficient intensity to cause damage to the brain. TBI can be mild,

moderate, or severe and may have long-term consequences including visual

difficulties, cognitive deficits, headache, pain, sleep disturbances, and post-

traumatic epilepsy. Disruption of the normal functioning of the brain leads to a

cascade of effects with molecular and anatomical changes, persistent neuronal

hyperexcitation, neuroinflammation, and neuronal loss. Destructive processes

that occur at the cellular and molecular level lead to inflammation, oxidative

stress, calcium dysregulation, and apoptosis. Vascular damage, ischemia and loss

of blood brain barrier integrity contribute to destruction of brain tissue. This

review focuses on the cellular damage incited during TBI and the frequently life-

altering lasting effects of this destruction on vision, cognition, balance, and sleep.

The wide range of visual complaints associated with TBI are addressed and repair

processes where there is potential for intervention and neuronal preservation

are highlighted.

KEYWORDS

traumatic brain injury, light sensitivity, contrast sensitivity, neuroinflammation, visual
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1. Introduction

Traumatic brain injury (TBI) continues to be a major health concern in the United States
and worldwide; often carrying long-term consequences that diminish quality of life and cause
persistent cognitive impairment (Stocchetti and Zanier, 2016; Dewan et al., 2018). TBI can be
mild, moderate or severe with about 80% of cases categorized as mild (Temkin et al., 2022).
However, even mild TBI (mTBI) can lead to debilitating symptoms (McMahon et al., 2014;
Ganti et al., 2019). It is misleading to assume that when the physical force applied to the head
is weak, the consequences will be less. Some patients suffer substantially and for prolonged
periods following mTBI, often with complaints of headache, dizziness, and memory issues
(Prince and Bruhns, 2017; Hoffer and Balaban, 2019; Lu et al., 2020). Manifestations of
TBI come on in phases, with a cascade of neurometabolic changes that affect the brain in
complex and heterogeneous ways over a timespan ranging from days to years. Many TBI
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patients live with cognitive loss, behavioral problems, headaches
and visual disturbances that interfere with their ability to work,
socialize and fully participate in everyday life. This review will
discuss our current knowledge of the functional and molecular
deficits that result from TBI with an emphasis on the resulting
impairments that affect the ability to carry out activities of daily
living. Issues that link deficits in performance of key activities
to visual sequelae involving focus, eyestrain, fatigue, and blurring
will be highlighted. Beyond visual issues, cellular and molecular
signaling pathways incited by TBI with resulting oxidative stress,
inflammation, apoptosis, and autophagy are summarized in
Figure 1 and discussed in detail below. Potential interventions to
prevent or repair damage to the brain by limiting inflammation and
facilitating neural regeneration are described.

2. Cellular response to traumatic
brain injury

2.1. Excitotoxicity

A crucial feature of TBI is the acute phase, in which
there is an immediate intractable excessive release of excitatory
neurotransmitters that results from the stretching and tearing of
brain tissue (Prins et al., 2013). This physical disruption leads to
a cascade of pathological events called excitotoxicity (Hoffe and
Holahan, 2022). The primary excitatory neurotransmitter released
from presynaptic nerve terminals after an impact to cerebral
tissues is glutamate (Chamoun et al., 2010; Thapa et al., 2021). In
humans, up to a 50-fold increase in glutamate levels have been
found, especially in patients with focal parenchymal contusions
(Bullock et al., 1995; Bullock et al., 1998). The accumulation of
glutamate in the synaptic cleft leads to repeated stimulation and
overactivation of N-Methyl-d-aspartate receptors (NMDAr) and
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors
(AMPAr) on the post-synaptic membrane (Lozano et al., 2015).
With NMDAr activation, sodium channels also open and neurons
swell (Wang et al., 2016). Glutamate shifts AMPAr toward a
subtype that is more permeable to calcium ions (Spaethling et al.,
2008). The opening of calcium channels and excess entry of
intracellular calcium ions incites a destructive cascade. A multitude
of catabolic enzymes are released, including phospholipases that
destroy cell and mitochondrial membranes, proteases that interfere
with cytoskeletal organization, and endonucleases that precipitate
DNA fragmentation. This culminates in apoptosis and necrosis and
cell death (Wang et al., 2016).

The presence of excessive glutamate post-TBI is primarily
due to failure of glutamate re-uptake (Tasker, 2012; Baracaldo-
Santamaría et al., 2022). Synaptic glutamate is removed by
excitatory amino acid transporters (EAATs) that are expressed
predominantly in astrocytes (Rothstein et al., 1996). Evidence
has demonstrated a 40% decline in the expression of astrocytic
sodium-dependent glutamate transporters GLAST (EAAT1) and
GLT-1 (EAAT2) within 24 h following TBI, leading to a significant
decrease in the resorption of glutamate (Rao et al., 1998;
van Landeghem et al., 2006). Modulating effects of glutamate
excitotoxicity has been explored as a mechanism for minimizing
damage in TBI. However, pharmacologic antagonism of NMDA

receptors has serious side effects including hallucinations, agitation,
nausea (Morris et al., 1999; Ikonomidou and Turski, 2002).

Sowers et al. demonstrated excess glutamate oxidation in
defined areas of injured hemispheres of rodents using matrix-
assisted laser desorption ionization (MALDI)-imaging studies
and metabolomics (Sowers et al., 2021). Glutamate is largely
metabolized to glutamine in astrocytes. However, if oxidized,
glutamate generates α-ketoglutarate, which yields ATP via the
tricarboxylic acid (TCA) cycle. Sowers proposed that under
conditions of great excess, glutamate oxidation may serve as a
defense mechanism against glutamate excitotoxicity post- head
injury and postulates that this mechanism may be leveraged to
obtain better outcomes in TBI patients.

2.2. Mitochondrial damage

The massive accumulation of intracellular free calcium
incited by depolarization promotes the activation of kinases and
downstream enzymes capable of degrading phospholipids of the
mitochondrial membrane (Jastroch et al., 2010). Although the
mitochondria have protective calcium-buffering mechanisms in
place, eventually the influx of calcium exceeds the buffering
capacity and excess calcium ion accumulation in the mitochondria
causes uncoupling of the electron transport chain located in the
inner mitochondrial membrane (Duchen, 2012). This eliminates
the concentration gradient between the mitochondrial matrix and
the mitochondrial intermembrane space and reduces the capacity
of the organelle to produce ATP (Bayir et al., 2005; McGovern
and Barreto, 2021). The reduction of membrane potential via
chemical uncoupling may serve as a defense against calcium
overload by inhibiting uptake of calcium ions and serve a
neuroprotective function in TBI, but loss of the gradient leads
to permeabilization of the internal mitochondrial membrane as
mitochondrial permeability transition pores open and ions and
fluid flood the mitochondria. Eventually damage to the membrane
becomes irreversible and bioenergetic collapse leads to cell death
(Pandya et al., 2007).

The uncoupling of the electron transport chain also places
oxidative stress on cells via free electrons that are easily trapped by
oxygen. The subsequent buildup of reactive oxygen species (ROS)
further intensifies the degradation of mitochondrial membrane
phospholipids such as cardiolipin that are essential to maintain the
selectivity and permeability of the inner mitochondrial membrane
(Bayir et al., 2007; McGovern and Barreto, 2021). Furthermore,
membrane degradation stimulates the cytosolic translocation of
Cytochrome C, one of the mitochondria-dependent mechanisms
for the activation of apoptosis or programmed cell death. Once
in the cytosol, cytochrome C activates caspase proteins and other
apoptotic proteins, eventually leading to apoptotic cell death
(Kagan et al., 2005; Kumar, 2007; Chao et al., 2019).

2.3. Oxidative stress

Oxidative stress, defined as the imbalance of ROS and
antioxidants, plays a crucial role in causing secondary damage
post TBI (Birben et al., 2012). ROS levels in the brain rise
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precipitously following injury and may remain elevated for days
afterward (Hall et al., 1993). Oxygen-derived free radicals known
to place oxidative stress on the brain include hydrogen peroxide,
superoxide anions, hydroxyl, and peroxyl radicals (Lewén et al.,
2000; Hakiminia et al., 2022). These radicals can irreversibly
oxidize macromolecules and injure cells. The brain parenchyma
is especially vulnerable to oxidative damage due to its high
oxidative metabolic activity, relatively low antioxidant capacity,
and inadequate repair mechanisms (Shohami et al., 1997; Cernak
et al., 2000; Ismail et al., 2020). In TBI, ROS are generated
via mitochondrial leakage, the arachidonic acid cascade, and
catecholamine oxidation (Hall et al., 1992; Marklund et al., 2001;
Ismail et al., 2020). Neutrophils, which infiltrate the brain after
TBI, are an important source of ROS and produce these molecules
primarily by enzyme activity of nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase (NOX)2 (Liu et al., 2018; Kim et al.,
2022). NOX are a family of multi-subunit transmembrane enzymes
that reduce molecular oxygen into ROS and catalyze formation
of the superoxide anion (Bedard and Krause, 2007). NOX2 is
the primary producer of ROS in brain tissue and thus plays a
crucial role in the development of secondary injury after TBI (Choi
et al., 2012). Zhang et al. (2012) demonstrated NOX activation
in microglia significantly contributed to neuronal damage within
24–48 h post TBI and further raised ROS production. Oxidative
damage can manifest as lipid peroxidation of neuronal, glial, and
vascular cell membranes as well as myelin (Zhang et al., 2012;
Daradkeh et al., 2021). Consequently, NOX inhibition has become
a therapeutic target of investigation as a means to reduce oxidative
damage in TBI and has met with some success in murine models
(Angeloni et al., 2015; Chandran et al., 2018; Wang et al., 2022).
The severity of injury in TBI can be correlated with the degree of
ROS-related tissue damage and mitochondrial dysfunction (Tavazzi
et al., 2005; Lee et al., 2021).

Arachidonic acid, normally stored in phospholipid membranes
within cells, is released from membranes under hypoxic and
inflammatory conditions and can then form neurotoxic
metabolites. When arachidonic acid in the brain undergoes
peroxidation and further reactions, it can generate a lipid
hydroperoxide and an alkyl radical and ultimately neurotoxic
aldehydes (carbonyls) (Yang et al., 2019).

Catecholamine are vulnerable to oxidation because they
have a highly reactive quinonoid nucleus. Aberrant oxidation
converts catecholamine molecules into quinones that may generate
superoxide-free radicals that act as oxidizing agents, damaging
neurons (Wang et al., 2021).

2.4. Neuroinflammation

Neuroinflammation inducing secondary damage to the
brain is heralded by the release of proinflammatory cytokines,
chemokines and inflammatory mediators (Ziebell and Morganti-
Kossmann, 2010). The resulting inflammatory environment
stimulates resident microglia and astrocytes while activated brain
endothelial cells cause blood brain barrier (BBB) permeabilization
which brings about infiltration of peripheral leukocytes (Acosta
et al., 2013; Hernandez-Ontiveros et al., 2013; Liu et al., 2022).
Inflammatory mediators are released by these leukocytes,

specifically macrophages, neutrophils and lymphocytes, and play a
crucial role in neuronal death (Mele et al., 2021). Activated resident
microglia further attract immune cells into the injured areas of the
brain. Microglial processes represent a first-line defense barrier
between healthy and injured areas of the brain (Davalos et al., 2005;
Haynes et al., 2006). When activated, microglia release oxidative
metabolites such as nitric oxide, ROS, and pro-inflammatory
cytokines such as TNF-α, interleukin (IL)-1β, and interferon
(IFN)-γ (Lozano et al., 2015). ROS and cytokines then perpetuate
the cycle by contributing to brain tissue damage (Kalra et al., 2022).
Additionally, chronic complement dysregulation post-injury also
plays a critical role in promoting neuroinflammation and neuronal
cell death (Dong et al., 2023). Parry and colleagues found that
formation of a specific component of the complement system,
soluble membrane attack complex C5b-9 (sC5b-9), was elevated
in TBI and may be involved in secondary injury and death of
neurons (Parry et al., 2020). Toutonji et al. (2021) characterized
the expression of 59 complement genes at different time points
post-TBI and demonstrated an upregulated gene expression across
most complement activation and effector pathways. The study
found continued upregulation of C2, C3, and C4 expression up to
2 years following injury. Treatment using the targeted complement
inhibitor, CR2-Crry, was also shown to significantly ameliorate
TBI-induced transcriptomic changes at all time points after injury.

2.5. Cell death

Secondary damage after head trauma ultimately leads to
neuronal cell death. Dying neural cells can exhibit either an
apoptotic or a necrotic morphology (Raghupathi, 2004; Akamatsu
and Hanafy, 2020). Caspases, cysteine proteases activated by
proteolytic cleavage, are principal mediators of apoptotic cell
death. Excitotoxicity, increased influx of intracellular calcium,
as well as the production of free radicals brings about opening
of mitochondrial permeability transition pores which leads to
cytochrome C release into the cytosol (Bredesen, 2008; Akamatsu
and Hanafy, 2020). The cytochrome C forms a complex with
apoptotic protease activating factor-1, which then recruits and
cleaves inactive procaspase-9 to activate caspase-9, which initiates
the apoptotic cascade and activates caspase-3. Caspase-9 and
caspase-3 are the key effector enzymes in neuronal apoptosis
(Van Opdenbosch and Lamkanfi, 2019). The process that
precedes cytochrome C release is thought to involve Bcl-2 family
proteins that regulate the permeability of the outer mitochondrial
membrane. TBI disturbs the balance between pro-apoptotic BAX,
which forms pores in the outer mitochondrial membrane, and
anti-apoptotic B cell lymphoma 2 (BCL-2), a pro-survival protein
that binds to BAX (Wennersten et al., 2003; Stoica and Faden,
2010; Deng et al., 2020). Numerous natural and artificial caspase
inhibitors have been identified and developed with the intention
for therapeutic use in reducing neuronal cell death post TBI (Dhani
et al., 2021; Feng et al., 2022; Unnisa et al., 2022).

3. The pupil and TBI

Pupils respond to three types of stimuli: they constrict in
response to light falling on the retinal photoreceptors via the
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FIGURE 1

Cascade of cellular events driven by traumatic brain injury (TBI). TBI incites a series of responses that include excitotoxicity, mitochondrial damage,
oxidative stress, neuroinflammation, and cell death. Key mediators in each pathological event is identified. Excess glutamate causes overactivation of
N-Methyl-d-aspartate receptors (NMDAr) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAr) which induces neuronal
overexcitation and swelling. Mitochondrial damage follows as a result of excess influx of intracellular calcium and uncoupling of the electron
transport chain. The precipitous rise of reactive oxygen species and the brain parenchyma’s relatively low antioxidant capacity promotes oxidative
stress. Neuroinflammation induces secondary damage via the release of proinflammatory cytokines, chemokines, and inflammatory mediators and
ultimately leads to cell death.

pupillary light reflex (PLR), constrict to bring near objects into
focus via the accommodation reflex, and dilate in response to
increased arousal triggered by strong emotions (Bradley et al.,
2008; Mathôt, 2018; Bouffard, 2019; Figure 2). When one eye is
exposed to illumination, the pupil of the other eye will constrict in
a consensual response. The PLR is involved in both convergence
and accommodation, with the parasympathetic system driving
constriction through the sphincter pupillae muscles of the iris
and the sympathetic system driving dilation through the dilator
pupillae muscles of the iris. Dilation is mediated by activity in the
locus coeruleus, hypothalamus, and superior colliculus (Mathôt,
2018). It should be noted that both constriction and dilation occur
depending on the stimuli and there is a maximum amount the
pupil can change. For example, dimming the light falling on the
retina causes dilation of the pupils until the pupil diameter reaches
maximum opening.

The pupils can be an accessible and reliable indicator of
the neural integrity of the visual system (Joshi and Gold, 2020).
However, impaired pupillary responses can occur without damage
to the neural integrity of the visual system as exemplified by arousal,
which can trigger a pupillary response independent of the visual
system (Bradley et al., 2008; Tapper et al., 2021). The PLR is more
than just a reflex as it is influenced significantly by central brain
function (Carrick et al., 2021). Patients who present with TBI
commonly have associated pupillary abnormalities (Helmy et al.,
2012). Patients with mTBI may present with pupillary responsivity
that is significantly delayed, slowed, and reduced compared to
the normal population (Ciuffreda et al., 2017; Thiagarajan and
Ciuffreda, 2022). The value of quantitative pupillometry as a non-
invasive method for assessing TBI is still being explored, but is not
established (Master et al., 2020; Traylor et al., 2021).

In cases of severe head trauma, acute pupillary dilation is a
neurological emergency. Pupillary dilation is hypothesized to be the
consequence of uncal herniation causing mechanical compression
of the oculomotor nerve and resulting in brain stem compromise

(Ritter et al., 1999; Manley and Larson, 2002). Non-reacting pupils
are associated with a poor prognosis (Marmarou et al., 2007). An
isolated third cranial nerve palsy can cause anisocoria (uneven
pupil size) and can be an ominous sign in the TBI patient.
Third nerve palsy can be associated with expanding mass lesions
such as extradural and subdural hematomas (Uberti et al., 2021).
Anisocoria, especially with exposure to bright light, was shown
to correspond to TBI severity in an analysis of prospectively
collected registry data on 118 patients with blunt head trauma
(Nyancho et al., 2021). An isolated third nerve palsy can also be
seen in minor head trauma (Kim and Chang, 2013). The third
nerve, also known as the oculomotor nerve, plays an essential
role in oculomotor function (Condos et al., 2022). Damage to the
third nerve causes efferent impairment of pupillary constriction
and thus the pupil will become dilated and poorly responsive to
light. As the third nerve has an important role in extraocular
movements, in patients with third nerve palsy the eye appears
down and turned outward on the ipsilateral side. The third
nerve is also important in lid elevation via the levator muscle.
Significant lid droopiness or ptosis can be a clear sign of third nerve
damage (Nagendran et al., 2019).

Many believe that the afferent pupillary defect must be assessed
in the TBI patient (Broadway, 2012). In head trauma there is
often ocular trauma which can damage the optic nerve of the
ipsilateral eye (Qiu et al., 2022). Trauma is not always evident and
the decrease in vision may not be profound. The afferent pupillary
defect generally does not cause anisocoria and can be a subtle but
important finding. Testing for an afferent pupillary deficit involves
the swinging flashlight test (Broadway, 2012). The pupil normally
constricts to bright light and then redilates when light stimulus
is removed. This happens to both pupils as this is a consensual
or bilateral phenomenon. In the presence of an afferent pupillary
defect, the pupil will paradoxically dilate on the involved side
because of a decrease in afferent light input to the optic nerve on
that side (Kennedy et al., 2013). Patients with an afferent pupillary
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defect need a thorough neuro-ophthalmologic evaluation as well as
neuroimaging.

In addition to optic nerve damage, local trauma to the
eye can damage the efferent loop to pupillary movement and
can compromise the sphincter muscles responsible for pupillary
constriction. The pupil may no longer be round if damage
is asymmetric. Muscle damage can lead to traumatic pupillary
dilation (traumatic mydriasis on the ipsilateral side) (Thuma et al.,
2022).

Abnormal pupils are often observed in TBI patients with
elevated intracranial pressure (Jahns et al., 2019). An early
examination is crucial in assessing the TBI with its associated
signs and decompressive craniectomy can control the refractory
intracranial hypertension. In certain cases of TBI, lasting bilateral
mydriasis and an absence of the PLR may be seen. Absence of PLR
is generally associated with brainstem damage and a poor prognosis
(Chaudhuri et al., 2009; Helmy et al., 2012). There is currently
no effective treatment, but surgical craniectomy may be attempted
(Athanasiou et al., 2017).

4. TBI and contrast sensitivity

Contrast sensitivity, an important characteristic of the visual
system, refers to the ability to discriminate between shapes and
objects when they do not differ much in brightness or color in
comparison to the background and their border may be indistinct
(Owsley, 2003; Richman et al., 2013). Eye care professionals
commonly use the Snellen eye chart to assess monocular and
binocular visual acuity by having the patient identify letters in dark
black on a white background on a well-lit screen (Sloan, 1951;
Ricci et al., 1998; Tsui and Patel, 2020). However, because these
eye charts only measure high-contrast sensitivity, many patients
may have excellent visual acuity but present with issues in vision
on a day-to-day basis. Contrast sensitivity can be applied to detect
aspects of visual quality change beyond acuity and perimetry
that relate to driving, facial recognition and various of tasks
of daily living (West et al., 2002; Ginsburg, 2003; Swan et al.,
2019). Although these tasks involve multiple complex processes,
measuring medium and low-contrast sensitivity can be useful, as it
may uncover visual defects not seen on a regular eye exam (Boutet
et al., 2015). The gold standard for measuring contrast sensitivity
involves assessing contrast sensitivity as a function of spatial
frequency (contrast sensitivity function), which is time-consuming
and complex. Practical clinical measurement may employ pre-
printed grating charts, contrast sensitivity letter charts such as the
Pelli-Robson or Rabin chart, and computer-based determination
of contrast sensitivity thresholds (Elliott et al., 1990; Rabin, 1994;
Richman et al., 2015). Paper charts are wall-mounted and require
external illumination. They are still widely used, inexpensive and
show good reproducibility (Patel et al., 2009).

Traumatic brain injury has been shown to reduce contrast
sensitivity (Alnawmasi et al., 2019; Honig et al., 2021). However,
it is important to characterize the type of contrast sensitivity
impacted; TBI patients have increased sensitivity to first-order
motion stimuli, but have decreased sensitivity to contrast-defined
and orientation-defined second-order stimuli (Spiegel et al., 2016).
First-order stimuli are simply delineated from their backgrounds

FIGURE 2

Pupillary reflexes. The diameter of the pupil changes in response to
specific conditions such as variations in object distance and level of
illumination. The accommodation reflex, an adjustment for near
vision, results in pupillary constriction, and inward rotation of the
eyes as an object draws nearer. Dim lighting elicits pupillary dilation
as does emotional arousal. Increased brightness of lighting causes
pupillary constriction and the effect is both direct (affecting the eye
exposed to the light) and consensual with constriction of the pupil
in the eye opposite to the light-stimulated eye.

according to how much the object is illuminated, while second-
order stimuli are recognized by the differences in their contrast
or texture (Baker and Mareschal, 2001; Lu and Sperling, 2001). By
utilizing a motion direction discrimination task, Piponnier et al.
(2016) demonstrated that reaction times for second-order stimuli
were slower than first-order stimuli in patients who had suffered
TBI. Evaluation of contrast sensitivity in TBI patients in addition
to testing their visual acuities can lead to more accurate assessment
of functional vision. Through more complete visual examination,
decreased contrast sensitivity in TBI patients can be detected
and managed (Barnett and Singman, 2015). In treating contrast
sensitivity deficits, some have advocated utilizing tinted lenses to
increase contrast sensitivity, specifically under glare conditions (Lee
et al., 2002; Lacherez et al., 2013).

5. Flashing lights after TBI

Flashing lights, or photopsia, is a common visual disturbance
symptom characterized by seeing brief, flash-like stars in front of
the eyes (Virdee and Mollan, 2020). The causes can be numerous
and the etiology needs to be investigated. Patients who present
with mTBI commonly have associated photopsia (Ciuffreda et al.,
2021). In cases of head trauma, seeing stars is generally a transient
event resulting from spontaneous firing of neurons in the occipital
lobe upon impact and the interpretation of these random electrical
impulses as stars by the brain (Moser et al., 2005; Chen et al., 2019).

The crucial clinical question is to ascertain whether the
reported phenomena is unilateral or bilateral. Unilateral photopsia
(flashing white lights in one eye only) usually originates within
the eyeball. Photopsia experienced as flashing lights in both eyes
simultaneously is usually central in etiology and represents activity
in the brain (Virdee and Mollan, 2020). This is a key clinical
distinction and may not be obvious to the patient. Colored lights
are almost always of central etiology.
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Unilateral photopsia requires a thorough ophthalmologic
history and examination. Flashing lights can be accompanied
by symptoms of floaters (dark spots in field of vision). This is
most commonly caused by a posterior vitreous detachment (Byer,
1994; Verhoekx et al., 2021). The vitreous has attachments to the
retina and retraction of these attachments can come about due
to forces generated during TBI. This stimulates the retinal cells
and is perceived as flashing lights. Tiny particles of debris and
sometimes blood can be distributed as a result of this activity and
can be perceived as floaters. Usually this vitreous separation is an
innocuous event and does not damage the retina. Floaters often
become asymptomatic after a few months. However, if there is
sufficient traction upon the retina during this separation, a retinal
tear can occur. This is a more serious event and can subsequently
develop into a retinal detachment where the retina is torn loose
from the choroid.

Retinal tears associated with head trauma may present as
photopsia (Sornalingam et al., 2018). It is particularly important
to assess for retinal tears and retinal detachment when evaluating
head trauma because these are emergencies that require prompt
intervention (Amos, 1999; Ibrar et al., 2021). Symptoms may be
overlooked and attributed to the concussed state (Bedgood et al.,
2015). The retina, an extension of the central nervous system
(CNS), converts light signals into nerve impulses (Behar-Cohen
et al., 2020). Retinal detachment can result in permanent visual
loss and thus early examination is critical as tears can be treated
to prevent detachment.

Visual snow syndrome (VSS), a rare condition characterized
by the appearance of pixelated flickering dots in one plane in
front of and throughout a visual field, may be incited by mTBI
(Ciuffreda et al., 2021; Hang et al., 2021; Mehta et al., 2021; Werner
and Gustafson, 2022). The pathophysiology of VSS is not well-
understood, there is no effective treatment and it tends to persist
over time (Fraser, 2022).

Bilateral flashing lights is a more complex phenomenon. Visual
information is bifurcated at the optic chiasm as it enters the brain,
so information is no longer segregated by origin from the left or
right eye. This phenomenon going on in the left side of the brain
impacts the right visual field and phenomenon going on in the right
side of the brain impact the left visual field. Migraine auras are the
most common cause of bilateral flashing lights or patterns of lights
confined to one hemifield, but, as mentioned earlier, the impact
from a TBI event can lead to brief, transient “seeing stars” due to
pressure on the occipital lobe.

6. Visual and mental fatigue after TBI

6.1. Visual fatigue and light sensitivity

Traumatic brain injury can result in visual disturbances and
discomfort of which the most common are blurred vision, double
vision, light sensitivity, and visual fatigue (Greenwald et al.,
2012; Armstrong, 2018). Approximately 50–70% of TBI patients
have visual difficulties (Ciuffreda et al., 2007; Greenwald et al.,
2012; Berthold-Lindstedt et al., 2017). Photosensitivity is seen
in about 50% of mTBI patients and some relief may be given
with tinted lenses (Truong et al., 2014). Light sensitivity can be

assessed clinically under varying light sources and intensities or
by patient self-reporting and validated questionnaires, but there is
no established objective test for this somewhat subjective symptom
(Truong and Ciuffreda, 2016). The etiology of light sensitivity after
TBI is complex and has been postulated to involve damage to
intrinsically photosensitive retinal ganglion cells (ipRGC) (Mostafa
et al., 2021). These specialized cells are involved in circadian rhythm
and other non-image associated functions and can be activated
intrinsically via the photopigment melanopsin without input from
rods or cones. In a mouse model, increases in melanopsin after TBI
accompanied light aversion (Honig et al., 2019).

Oculomotor dysfunction is very common after TBI, with
estimates of frequency of occurrence between 60 and 85%
(Ciuffreda et al., 2007). Oculomotor dysfunction, attributed to
damage to efferent pathways, is due to effects on cranial nerves,
nerves controlling eye movements and vestibular pathology
(Thiagarajan et al., 2014). When control of the position and
movement of the eyes is impaired, there can be a delay in shifting
focus between close and far fields, trouble with keeping focus on
a close object, vergence-related abnormalities, and difficulties with
tracking moving objects (Poltavski and Biberdorf, 2014; Kontos
et al., 2017; Reneker et al., 2018). The consequences of oculomotor
dysfunction may cause a person to skip lines when reading,
perceive movement of print when reading, and experience eye
strain (Capó-Aponte et al., 2017; Kapoor and Ciuffreda, 2002).
Individuals with mTBI show complications in functional task
abilities when engaging in reading comprehension. In reading
tasks, those with mTBI exhibit more fixation time when reading
words with lower frequencies. Overall, mTBI patients may display
weaker functioning in reading in terms of accuracy, time of fixation,
and a lower number of blinks (Ratiu et al., 2022). Sustained reading
becomes very difficult and eyestrain is common. Convergence
insufficiency with hampered ability to focus on a near target
makes reading an arduous task. The need for ocular muscles to
compensate for injury-induced diminished responsiveness leads to
eyestrain and eye muscle fatigue. Headache may ensue (Ciuffreda
et al., 2007). Patients with vergence problems may attain some relief
with specially designed eyeglasses containing prism lenses and may
be prescribed specific eye exercises (Aletaha et al., 2018).

6.2. Mental fatigue

In addition to visual fatigue, mental fatigue and feeling tired
with low mental energy are common after TBI and can interfere
with everyday living and fulfilling job responsibilities (Cantor et al.,
2008; Johansson et al., 2009). It has been postulated that mental
fatigue occurs because the injured brain is not working efficiently
and has to expend extra energy to perform tasks that previously
did not deplete reserves (Kohl et al., 2009). The brain becomes
overloaded at low threshold and recovery is slowed compared
to pre-trauma. When performing working memory tasks, the
traumatized brain exhibits increased activity progressively over
time in bilateral dorsolateral prefrontal cortex and the inferior
parietal brain regions as a compensatory mechanism to meet
demand and that this results in fatigue (Dettwiler et al., 2014;
Sun et al., 2014). Trauma-induced changes in regional cerebral
blood flow (rCBF) may help to explain fatigue symptoms. Magnetic
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resonance imaging studies show that self-assessment of perceived
fatigue during a psychomotor vigilance task correlates to changes
in rCBF (Möller et al., 2017). The rCBF differed in mTBI patients
compared to healthy controls during the task in multiple brain
regions including the left thalamus and superior frontal gyri, right
precuneus and insula, and left/right medial frontal gyri and anterior
cingulate cortex. During the task, the mTBI patients exhibited
fatigue as slowing of performance over time. A correlation was
found between self-perceived fatigue after a psychomotor vigilance
task and high rCBF in the left medial frontal and anterior
cingulate gyri. In a study by Ramage et al. (2019), pattern of
functional connectivity, reflecting communication between brain
regions, differed between control and mTBI subjects performing a
behavioral task with heightened connectivity across all effort levels
for the TBI subjects. This may reflect inefficiency of the activity of
the neural network that leads to fatigue.

6.3. The intersection of mental fatigue
and visual fatigue

Although the causes of the experience of mental exhaustion
are not known, a correlation has been found between number
of visual symptoms and self-reported feelings of mental fatigue
(Berthold Lindstedt et al., 2019). The connection between visual
processing and mental fatigue after TBI crystallizes in the work of
Prak et al. (2021) in which a correlation was seen between self-
reported fatigue and increased activation of the bilateral visual
cortices in areas associated with motion perception, attention, and
oculomotor pursuit.

Insomnia is a common symptom after TBI that may contribute
to both eye fatigue and mental fatigue (Jain et al., 2014; Ouellet
et al., 2015). Not surprisingly, there is a positive association between
sleep disruption and fatigue in TBI patients (Englander et al., 2010;
Cantor et al., 2012). The pattern of sleep disruption in TBI is
heterogeneous and difficult to characterize (Raikes et al., 2019). In
order to explore sleep characteristics of mTBI patients, Arbour et al.
(2015) evaluated 34 mTBI subjects and 29 age-matched controls
using polysomnographic recording at a sleep laboratory and found
little difference in non-rapid eye movement (NREM) sleep patterns.
They did find the mTBI group had increased beta power in the
occipital derivation compared to the control group in all sleep
cycles, which may result from injury to the brain as well as anxiety
and pain. The eyes may be affected by insufficient sleep, leading
to ocular discomfort, dry eyes, and itching (Kawashima et al.,
2016; Li et al., 2018). Sleep disorders may make reading, driving,
and viewing computer screens more difficult and uncomfortable
(Engle-Friedman et al., 2018; Gibbings et al., 2022).

Chronic post-traumatic headaches are a reoccurring issue for
TBI patients that can augment both visual and mental fatigue (Faux
and Sheedy, 2008; Voormolen et al., 2019; Ashina et al., 2020).
The headaches may resemble a tension headache or have migraine-
like qualities and may be accompanied by nausea, vomiting, and
photophobia (Ashina et al., 2019). Nearly every type of headache
listed by the International Headache Society can be linked to vision
disorders after TBI (Dwyer, 2018; Quaid and Singman, 2022).
Again, reading or looking at a computer screen becomes more
challenging when headache is present. Eye fatigue and mental

fatigue overlap in their ability to compromise quality of life after
TBI, and both are exacerbated by disrupted sleep and headaches.

7. TBI and falls in older persons

For older persons, the rate of fall-induced TBIs is almost twice
that of younger persons (Haring et al., 2015). Ground-level falls
are the most common cause of injury in the geriatric population
and the prevalence of fall-related TBI is steadily increasing (Harvey
and Close, 2012; Korhonen et al., 2013; McGuire et al., 2017;
Miyoshi et al., 2020). In the United States in 2013, TBI accounted
for over 434,000 (2,232.2 per 100,000 population) emergency
department visits, hospitalizations, and deaths in persons aged 75
and older (Thompson et al., 2006). TBI in older adults is a major
cause of morbidity and mortality and a significant health and
socioeconomic problem (Bailey et al., 2022). Over 60% of TBI cases
in older individuals are due to unintentional falls, which become
more likely as people age due to muscle weakness, balance issues,
deteriorating vision, and effects of some widely used medications
(Gale et al., 2016).

Balance problems are another major issue faced by our
aging population. In fact, roughly one in five elderly persons
experience problems related to dizziness or balance annually (Lin
and Bhattacharyya, 2012). Certain medications may increase the
likelihood of falls among the elderly (Gillespie et al., 2012; Hopewell
et al., 2018). Hart et al. (2022) found that the dose of CNS-
active medications, which include antidepressants, opioids, and
benzodiazepines, was not reduced appreciably following a fall-
related injury in older adults. This suggests that adjustment in
CNS-active medications is not being utilized adequately to modify
fall risk. Furthermore, Evans et al. (2011) conducted a study to
gain a better understanding of the impact of multiple medication
utilization by trauma patients 45 years and older. The study
demonstrated that over 40% of the trauma patients were receiving
five medications or more at the time of injury. As such, the patients
were at a greater risk for complications, lower functional outcomes,
and longer hospitalizations. Consequently, decreasing concurrent
medication use may be beneficial for trauma patients and should be
investigated further (Evans et al., 2011).

Traumatic brain injury in geriatric patients can have a
compounding effect on vision in persons who may already have
diabetic retinopathy, glaucoma, macular degeneration, cataracts,
and other conditions (Reed-Jones et al., 2013; Ehrlich et al., 2019;
Teo et al., 2021). Depending on location and severity, TBI can
lead to damage to the optic nerve, optic tract, and occipital lobe.
These injuries can manifest as blurred vision, double vision, and/or
decreased peripheral vision (Sen, 2017). In order to avoid obstacles,
older persons need to safely navigate their environment and, when
visual input is insufficient, may require behavioral or assistive
technology (Patla, 1997; Marigold and Patla, 2008; Slade et al.,
2021). Visual impairments in the elderly are a major contributing
factor in falls (Coleman et al., 2007; Freeman et al., 2007).

Falls may, of course, result in hospitalization without impacting
the head or causing TBI, but falls are the most common cause
of TBI in older adults (Fu et al., 2017; Hofmann et al., 2021).
Intracranial hemorrhage can occur as a consequence of TBI and
is one of the more serious potential complications associated with
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falls (de Wit et al., 2020a). Falling on level-ground is the most
common cause of intracranial bleeding. de Wit et al. (2020b) found
that 1 in 20 seniors who presented to the emergency department
after a ground-level fall are diagnosed with intracranial bleeding.
As such, patients taking anticoagulants are at an increased risk of
intracranial hemorrhage and should be monitored appropriately.
The major increase in TBI-related hospitalizations is driven by falls
in the elderly and these falls are leading to a significant increase
in diagnosed intracranial hemorrhages (Harvey and Close, 2012;
Nederpelt et al., 2022).

Traumatic brain injury can lead to the development of cerebral
microbleeds (CMB), small hemosiderin deposits that come from
bleeding of injured small arteries, cerebral arterioles, or capillaries
(Lee et al., 2018). CMB are associated with gait and balance issues
as well as progressive cognitive decline (Altmann-Schneider et al.,
2011; Yates et al., 2014; Yakushiji, 2015; Ungvari et al., 2017; Irimia
et al., 2018). CMB are associated with slower processing speed,
defective attention and executive function, and they have been
linked to promoting major depressive episodes (Niogi et al., 2008;
Wang et al., 2014; Akoudad et al., 2016). Aging has been shown
to exacerbate microvascular fragility and promote the formation
of CMB (Toth et al., 2021). The prevalence of CMB increases with
advancing age and approaches 20% by age 65 (Vernooij et al., 2008;
Altmann-Schneider et al., 2011; Ungvari et al., 2017; Irimia et al.,
2018). As TBI can affect the elderly population disproportionately,
it is important to monitor older persons in order to prevent any
adverse effects resulting from CMB.

Traumatic brain injury in older persons is associated with
poorer functional outcomes, higher risk of mobility restriction,
permanent disability, and loss of independence (LeBlanc et al.,
2006; Gardner et al., 2018; Gavrila Laic et al., 2021; Tyler et al.,
2022). While the reasons for poorer outcomes are not fully
known, the high incidence of comorbidities that accompany
aging may contribute (Winter et al., 2022). Another factor may
be the higher proportion of older persons using warfarin or
other anticoagulants that increase risk of brain bleed with head
trauma, leading to poorer outcomes (Zeeshan et al., 2018; Giner
et al., 2022). Mortality is also extremely common following a
TBI amongst this aging population (Susman et al., 2002; Sylliaas
et al., 2009). Prevention of falls in older persons may involve
multiple initiatives designed to minimize risk and improve stability,
including balance and strength training, securing appropriate
footwear, minimizing polypharmacy, appropriate vision aids, and
environmental modifications (Moncada and Mire, 2017).

8. TBI and seizures

Patients who present with moderate to severe TBI often have
associated seizures (Fordington and Manford, 2020). Seizures that
occur immediately (within 24 h of trauma) are not considered
“epileptic” and are attributed to the impact itself (Agrawal et al.,
2006). Epilepsy developing after an acute brain insult is referred
to as post-traumatic epilepsy (PTE) (Verellen and Cavazos, 2010;
Anwer et al., 2021). In evaluating any patient presenting with
a seizure of unclear etiology, history of head injury is crucial
information. Seizure activity can worsen the consequences of
TBI by depriving the brain of oxygen and causing release of
inflammatory mediators. The seizure itself can act like a second

brain injury (Mazzeo and Gupta, 2018). In mTBI, seizures are less
common, but if a seizure occurs in the emergency room, or shortly
after discharge, this can be a warning sign that important findings of
significant intracranial injury may have been missed (Vaniyapong
et al., 2020).

Traumatic brain injury is a key cause of PTE, a condition in
which recurrent, unprovoked chronic seizures occur 2 weeks or
more after the TBI event (Campbell et al., 2014). PTE is a common
form of acquired epilepsy representing 5% of all cases of epilepsy
(Fordington and Manford, 2020). It is estimated that between 3 and
5% of moderate TBI cases and between 25 and 50% of severe TBI
cases go on to have PTE (Agrawal et al., 2006).

Epileptogenesis, the process through which changes occurring
in the brain lead to seizures, is hypothesized to begin at the
moment of the trauma itself, even though the latent period before
epilepsy develops can last weeks, months or even years after the
inciting injury (Benardo, 2003). Seizures tend to persist over time
(Annegers et al., 1998; Steinmetz et al., 2013). The seizures originate
in perilesional cortical and mesiotemporal regions (Englander
et al., 2014; Perucca et al., 2019; Tubi et al., 2019). Although the
pathways that lead from brain injury to seizure are not completely
understood at the molecular level, PTE is thought to result from
neuroinflammation, oxidative stress and neuronal loss (Li L. et al.,
2021; Reddy et al., 2022). Predictors for likelihood of developing
PTE include the presence of intracranial bleeding and more severe
TBI (Englander et al., 2003; Pease et al., 2022).

There is currently no treatment to prevent onset of PTE,
but it is imperative to evaluate patients for seizure activity
immediately post-TBI as antiepileptic drugs can be given to manage
associated symptoms (Englander et al., 2014; Reddy et al., 2022). An
electroencephalogram (EEG) should be used when evaluating TBI
patients because up to 25% of these patients may have sub-clinical
seizure activity on EEG (Ronne-Engstrom and Winkler, 2006; Chen
and Koubeissi, 2019). While drug treatment is generally effective
in seizure control, some PTE patients are medication-resistant and
difficult to manage (Gupta et al., 2014; Gugger et al., 2022).

Traumatic brain injury can also lead to psychogenic non-
epileptic seizures (PNES) (Barry et al., 1998; Hingray et al., 2016).
PNES resemble epileptic seizures in their symptoms, but are not
caused by abnormal electrical discharges in the brain (Auxéméry
et al., 2011). Rather, they are a type of non-epileptic seizure linked
to underlying psychosocial stressors (LaFrance and Devinsky, 2002;
Popkirov et al., 2018). PNES can co-occur in patients with epilepsy
and can be a diagnostic challenge (El-Naggar et al., 2017). The
misdiagnosis of PNES leads to ineffective treatments and poor
patient outcomes (Barry et al., 1998; Gorenflo et al., 2022). Carefully
working through the differential diagnosis with consideration of
PNES after TBI will lead to appropriate treatment, which, for PNES
generally consists of psychotherapy and psychopharmacological
approaches (Carlson and Nicholson, 2017; Lopez and LaFrance,
2022).

9. Brain repair after TBI

As we described in Section “2. Cellular response to traumatic
brain injury,” following TBI there is cell death and inflammation
and the brain reacts in numerous ways that may be harmful or
helpful. Many cell types participate in the process of healing and
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resolution. Support cells such as astroglia and microglia play an
important role in determining recovery outcomes. This section
discusses the post-TBI repair process at the cellular level.

9.1. Reactive astrogliosis

Astrocytes, the most abundant glial cell type within the CNS,
are essential in maintaining CNS physiological homeostasis. This
cell type maintains the integrity of the BBB, supports neuronal
function, scavenges free radicals, and regulates extracellular
glutamate (Cheng et al., 2019). In response to TBI and other CNS
insults, astrocytes undergo a series of morphological and functional
adaptations referred to as reactive astrogliosis. Astrogliosis is often
referred to as a scar-forming process that occurs around a lesion
marked by cell hypertrophy and proliferation and changes in gene
expression (Cheng et al., 2019; Sofroniew, 2020; Li J. et al., 2021;
Ayazi et al., 2022). Reactive astrocytes proliferate rapidly, densely
packing and enclosing the injured area. They secrete inflammatory
mediators and neurotrophic factors, and increase expression of
intermediate filaments such as glial fibrillary acidic protein (GFAP)
and vimentin (Herrmann et al., 2008; Karve et al., 2016; Gill et al.,
2018; Hemati-Gourabi et al., 2022). Although this process can
perpetuate detrimental CNS injuries through neuroinflammation
and ROS generation, reactive astrogliosis can limit damage by
forming a physical barrier that protects surrounding healthy
tissue while also eliciting reparative effects through promotion
of neurogenesis and synaptogenesis (Sheng et al., 2013; Liddelow
and Barres, 2017; Adams and Gallo, 2018; Moulson et al., 2021).
Thus, depending on the surrounding environment, the state of
astrogliosis can manifest as either a neuroprotective or neurotoxic
phenotype (Liddelow et al., 2017).

Some potential mechanisms of astrocyte-induced
neuroprotection in TBI have been proposed (Song et al., 2002;
Bylicky et al., 2018). Astrocytes produce the neurotrophic and
mitogenic calcium binding protein S100β, which enhances
neurogenesis within the hippocampus. Serum level of S100β is a
well-established biomarker and predictor of CT abnormalities for
early mTBI (Kahouadji et al., 2020). In male rats, hippocampal
infusion of S100β following TBI improved cognitive functional
recovery (Hayakata et al., 2004; Kleindienst et al., 2005). These
effects are mediated by the facilitation of neuronal differentiation,
proliferation, and survival of hippocampal progenitor cells (Hinkle
et al., 1997; Kleindienst et al., 2013; Baecker et al., 2020; Zhou et al.,
2020). Heme oxygenase induced by astrocytes after TBI catalyzes
heme to carbon monoxide (CO), ferrous iron, and biliverdin.
Choi (2018) demonstrated that low concentrations of CO promote
neurogenesis, synaptic plasticity, and angiogenesis (Jung et al.,
2020).

Studies are being done to find ways to manipulate astrocytes
to control their reactivity and shift emphasis toward healing. In a
mouse model of TBI, Wu et al. (2023) found that brain derived
neurotrophic factor (BDNF) secretion by an activated astrocyte
network could form a gradient to guide neuroblasts to the site
of injury where they could potentially differentiate and facilitate
repair.

Mature astrocytes can regress to an immature phenotype and
show stem cell characteristics which could indicate a possible

role in neuronal regeneration (Seri et al., 2001; Matsubara et al.,
2021). Further, exosomes derived from healthy cultured primary
rat astrocytes can protect against cognitive dysfunction, oxidative
stress, and apoptosis in a rat model, pointing toward a possible
therapeutic approach to attenuating TBI injury (Zhang et al., 2021).

9.2. Microglial activation

Microglial cells are innate immune cells of the CNS that
promote repair through diverse mechanisms (Lyu et al., 2021).
A dichotomous classification has been adopted to characterize
microglia polarization into either a classically activated (M1) or
an alternatively activated (M2) phenotype (Orihuela et al., 2016).
M1 microglia lead to neuronal damage and brain dysfunction
through pro-inflammatory factors, such as IL-1β, IL-6, and TNF-
α. In contrast, M2 microglia are reparative in nature and reduce
toxic cellular debris through phagocytosis, release neurotrophic
factors, and resolve cerebral inflammation (Hu et al., 2015;
Chai M. et al., 2022). Anti-inflammatory M2 microglia secrete
neuroprotective cytokines, chemokines, and neurotrophic factors
that contribute to BBB protection, remyelination, neurogenesis,
angiogenesis, and axon regeneration (Yang et al., 2015; Ronaldson
and Davis, 2020; Lyu et al., 2021). Microglia play a role in
rapid closure of the BBB via chemotaxis of microglial processes
after brain injury, a process mediated by the purinergic receptor
P2YG protein–coupled 12 (P2RY12) (Lou et al., 2016; Császár
et al., 2022). Choi et al. (2017) demonstrated M2 microglia-
conditioned media induced by IL-4 increased the proliferation
and differentiation of neural stem progenitor cells (NSPCs) in the
ipsilateral subventricular zone of ex vivo ischemic brain sections.
M2 microglia promote axonal regeneration through the secretion
of protective molecules, such as arginase 1 (an enzyme that
contributes to extracellular matrix deposition in wound healing)
and BDNF (Louveau et al., 2015). Similarly, the anti- inflammatory
phenotype may improve angiogenesis after brain injury through
production of neuroprotective vascular endothelial growth factor
(VEGF) and IL-8 (Medina et al., 2011). Unfortunately, anti-
inflammatory treatments, including steroids, have not shown
efficacy in improving TBI outcomes (Begemann et al., 2020).

9.3. Neuroinflammation

Neuroinflammation can often result in the uncontrolled release
of toxic cytokines, proteases, glutamate, and free radicals. These
effects are deleterious in nature to the injured CNS (Wee Yong,
2010; Simon et al., 2017). However neuroinflammation is not
always synonymous with poor CNS outcomes (Bollaerts et al.,
2017). T lymphocytes are a subset of inflammatory cells that
have been found to facilitate axonal regeneration (Hauben et al.,
2000). Ishii et al. (2012) demonstrated that the adoptive transfer
of CD4+ T helper Th1, but not Th2 or Th17 cells, 4 days
after traumatic spinal cord injury was associated with regrowth
of the corticospinal tract and serotonergic fibers promoting
locomotor and tactile recovery. Leukocytes and microglia are
notable producers of neurotrophic factors, including oncomodulin,
osteopontin, platelet-derived growth factor (PDGF), epidermal
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growth factor (EGF), fibroblast growth factor-2 (FGF-2), ciliary
neurotrophic factor (CNTF), activin-A, glial-derived growth factor
(GDNF), endothelin-2, insulin-like growth factor-1 (IGF-1), BDNF
and neurotrophin-3 (Sousa-Victor et al., 2018). Many of these
neurotrophic factors have been shown to be beneficial for the
proliferation and differentiation of oligodendrocyte progenitor cells
and for neurogenesis (Woodruff et al., 2004; Yuen et al., 2013; Yong
et al., 2019).

While care of TBI patients is largely supportive, there is a
growing understanding of the reparative process initiated within
the CNS after injury. The ability of the brain to recover from injury
is limited, but as new experimental data is acquired, targets for
intervention to facilitate repair and regeneration may be identified
and explored (Jin et al., 2022; Prabhakar et al., 2022).

9.4. Stem cells

The use of stem cells for neural regeneration and restoration
after TBI is an exciting cutting-edge area of exploration. The
neurogenic regenerative capacity of endogenous neural progenitor
cells has been reported in brain injury models in animal and
in human studies (Macas et al., 2006; Sun, 2016). In the adult
brain, endogenous neural stem cells are primarily localized to the
subventricular zone of the lateral ventricles and the subgranular
zone of the hippocampal dentate gyrus (Gage et al., 1998; Adugna
et al., 2022). Recent studies targeting approaches to enhance
the proliferation of these endogenous neural stem cells after
TBI have demonstrated promising results. Chai Y. et al. (2022)
showed in a rat brain injury model that transplanting an aligned
fibrin hydrogel scaffold into the injury site promoted effective
migration, differentiation, and maturation of endogenous neural
stem cells, resulting in neurological functional recovery. This highly
biomimetic scaffold mimics the parallel oriented structure of radial
glia in the embryonic brain, a cell type that guides the directed
migration of neurons in response to brain injury.

Transplantation of exogenous stem cells is also being
investigated as a way to overcome the limited regenerative
capabilities of the brain after TBI (Dekmak et al., 2018).
Exogenous stem cell transplantation has been shown to accelerate
immature neuronal development and increase endogenous cellular
proliferation in damaged brain regions (Tajiri et al., 2013; Ngwenya
et al., 2018; Adugna et al., 2022). Mesenchymal stromal cells
(MSC) are multipotent stem cells with self-renewal and multi-
differentiation abilities. Recent studies have demonstrated that
exogenous MSC have the potential to treat TBI via their anti-
inflammatory and antiapoptotic properties (Ferreira et al., 2018). In
a rat model, MSC can also form a biobridge facilitating migration
of endogenous neurogenic cells to the injured site (Tajiri et al.,
2013). In the context of TBI, the secretome of MSC has the capacity
to enhance endogenous neurogenesis (Liu et al., 2020; Badner
and Cummings, 2022). Porcine and rodent models show that
extracellular vesicles released by MSC can promote endogenous
angiogenesis and neurogenesis, reduce inflammation, and facilitate
cognitive and sensorimotor recovery after TBI (Abedi et al.,
2022; Bambakidis et al., 2022). This highlights the significance
of the trophic support these cells provide during exogenous
application (Spees et al., 2016; Liu et al., 2020). Animal models

have demonstrated reduced pro-inflammatory cytokine expression
levels of IL-6, IL-1α, and IFN- γ after MSC transplantation via
intraventricular infusion (Huang et al., 2019). Administration of
autologous bone marrow MSCs (BM–MSCs) to patients during
the subacute phase of TBI also resulted in improved neurological
function in 40% of patients (Tian et al., 2013).

The therapeutic application of neural stem cell treatment,
whether via manipulation of endogenous neural stem cells or
implantation of exogenous neural stem cells, has notable potential
to foster functional recovery in those manifesting TBI-related
disability. However, further studies are needed to evaluate the safety
and efficacy of stem cell transplantation in TBI in humans (Schepici
et al., 2020).

10. Conclusion

Traumatic brain injury affects multiple aspects of neurologic
and cognitive function, while also causing substantial pain and
discomfort. The effects may be long-lasting and poorly responsive
to treatment attempts. The intimate link between brain and eye
leads to many manifestations of TBI that disturb vision, perception,
and ability to perform essential everyday tasks such as reading,
typing, driving, and navigating within the environment. Headaches,
fatigue and eyestrain compound these problems. Although healing
after TBI is difficult, intensive rehabilitation and interdisciplinary
treatment including cognitive-behavioral therapy can improve
overall functional outcomes (Vanderploeg et al., 2019; Alashram
et al., 2022). Rescue or reprogramming of brain cells may be
possible in the future, but the leap from animal models to humans
is a large one and, at this time, there is no intervention with proven
effectiveness to offer persons with TBI (Xu et al., 2022). Enhancing
neural regeneration using stem cells is promising and is an area of
active investigation.
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