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Introduction: Environmental perturbations during critical periods can have

pervasive, organizational effects on neurodevelopment. To date, the literature

examining the long-term impact of early life adversity has largely investigated

structural and functional imaging data outcomes independently. However,

emerging research points to a relationship between functional connectivity and

the brain’s underlying structural architecture. For instance, functional connectivity

can be mediated by the presence of direct or indirect anatomical pathways. Such

evidence warrants the use of structural and functional imaging in tandem to

study network maturation. Accordingly, this study examines the impact of poor

maternal mental health and socioeconomic context during the perinatal period

on network connectivity in middle childhood using an anatomically weighted

functional connectivity (awFC) approach. awFC is a statistical model that identifies

neural networks by incorporating information from both structural and functional

imaging data.

Methods: Resting-state fMRI and DTI scans were acquired from children aged

7–9 years old.

Results: Our results indicate that maternal adversity during the perinatal period

can affect offspring’s resting-state network connectivity during middle childhood.

Specifically, in comparison to controls, children of mothers who had poor

perinatal maternal mental health and/or low socioeconomic status exhibited

greater awFC in the ventral attention network.

Discussion: These group differences were discussed in terms of the role

this network plays in attention processing and maturational changes that

may accompany the consolidation of a more adult-like functional cortical
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organization. Furthermore, our results suggest that there is value in using an awFC

approach as it may be more sensitive in highlighting connectivity differences in

developmental networks associated with higher-order cognitive and emotional

processing, as compared to stand-alone FC or SC analyses.

KEYWORDS

middle childhood, perinatal adversity, resting-state network (RSN), functional
connectivity (FC), structural connectivity (SC), neurodevelopment

1. Introduction

Resting-state fMRI is a neuroimaging technique that has been
used to map functional brain networks comprised of cortical and
subcortical regions (Lee et al., 2013) when an individual is at
rest. A measure of functional connectivity (FC) can be derived
from rsfMRI. FC refers to the temporal correlation between brain
activity in spatially distinct regions. It is commonly assumed that
regions belong to the same network if their functional activity is
correlated. During middle childhood, resting state networks (RSNs)
have not reached full maturity and are continually undergoing
constant changes (i.e., reorganization, strengthening/weaking of
connections, segregation/integration) (Fair et al., 2009; Rosenberg
et al., 2020). Network maturation reflects functional specialization
as neural assemblies and regions that make up functional cortical
subunits become increasingly domain-specific and there is a shift
from engaging diffuse regions to more focal brain activation
patterns (Casey et al., 2005; Durston et al., 2006). Thus as
development proceeds there is a shift from more diffuse less
functionally specialized regions assembled in short-range circuits
to more functionally specialized focal regions that are more
broadly distributed. This configuration is particularly important for
complex, “higher-order” cognitive capacities because it provides for
the synchronization of processing across functionally specialized
regions that are distal to one another (Reijneveld et al., 2007;
van Meel et al., 2012). Increases in cortico-cortical connectivity as
opposed to strong and abundant subcortico-cortical connectivity
are also observed (Supekar et al., 2009). However, temporally
correlated activity does not provide an indication of direct
anatomical connections between brain regions.

To examine structural connectivity (SC), DTI is an MRI
technique that identifies white matter pathways, non-invasively
(Fernandez-Miranda et al., 2012). Structural connectivity refers to
the presence of physical white matter pathways that connect brain
regions and can be measured using DTI metrics such as fractional

Abbreviations: ADHD, attention deficit hyperactivity disorder; awFC,
anatomically weighted functional connectivity; DAN, dorsal attention
network; DMN, default mode network; DTI, diffusion tensor imaging;
FA, fractional anisotropy; FATCAT, Functional And Tractographic Analysis
Toolbox; FC, functional connectivity; fMRI, functional magnetic resonance
imaging; FPN, frontoparietal network; LIM, limbic network; MRI, magnetic
resonance imaging; OFC, orbitofrontal cortex; OFG, orbitofrontal gyrus;
PFC, prefrontal cortex; ROI, region of interest; Rs-fMRI, resting state
functional magnetic resonance imaging; RSN, resting state network; SC,
structural connectivity; SES, socioeconomic status; VAN, ventral attention
network; WM, white matter.

anisotropy (FA). Across childhood and adolescence cortical white
matter increases linearly, and reflects changes in myelination
during this period (Sowell et al., 2003). As the children in our cohort
are now in middle childhood, we are presented with a unique
opportunity to study how brain changes in structure and function
relate to the acquisition of emergent developmental capacities.

Evidently, FC and SC capture distinct but interrelated
properties of the brain-network connectome (Suárez et al., 2020).
Importantly, the trajectory of functional connectivity within brain
networks may be mediated by ongoing structural developmental
processes (i.e., myelination, pruning, etc.) (Jolles et al., 2011;
Huang et al., 2015). However, there is an imperfect correspondence
between structural and functional connectivity (Damoiseaux and
Greicius, 2009; Suárez et al., 2020). While strong SC is predictive of
strong resting-state FC between regions, the reverse inference is not
as reliable (Damoiseaux and Greicius, 2009; Honey et al., 2009). As
such, neither functional nor structural techniques alone can reveal
a complete picture of brain maturation (Park and Friston, 2013),
thereby warranting the study of how functional and structural
connectivity interact during development. Previous research has
suggested that a multimodal approach, combining parameters of
DTI-based structural connectivity and fMRI-based resting-state
functional connectivity to study development would make more
effective use of information in MR scans as opposed to performing
each technique independently (Straathof et al., 2020).

Accordingly, in this study we employ a novel, multimodal
imaging approach that examines functional and structural
connectivity concurrently. Our pipeline uses a neuroimaging
toolbox in combination with a mathematically dense approach for
fusing fMRI and DTI metrics into a single combined measure.
The neuroimaging toolbox applied in this study is known as
Functional And Tractographic Analysis Toolbox (FATCAT) and
consists of a set of AFNI commands that are publicly available
for processing MRI data. The second component of the pipeline,
the anatomically weighted functional connectivity (awFC) model,
fuses FC and SC measures into a single unit identified as the awFC
metric. Connectivity is measured differently by each modality. For
instance, while structural connectivity counts the number of tracts,
functional connectivity measures temporally correlated regions. By
combining structural and functional dissimilarity multiplicatively,
the awFC merges structural and functional connectivity in a
modality-independent manner. The awFC metric can provide a
quantitative measure of the combined impact of structural and
functional connectivity on brain networks, rather than studying the
connectivity from one perspective (one modality) alone. According
to Rebeiro and colleagues (2017), their proposed approach of
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multiplying both structural and functional connectivity data can
generate a hybrid connectivity matrix that enables comprehensive
analysis of brain networks. As a result, combining data from many
modalities can theoretically lead to the provision of a more reliable
inference on the “connectome” (Liu et al., 2018). The awFC metric
we describe, measures the combined effect of connectivity on brain
networks. Given that the macroscopic connectome is a blend of
structural and functional connectivity, combining structural and
functional connection in a data fusion approach may provide a
better representation of the complex human connectome. While
the FATCAT-awFC pipeline was first introduced in Ayyash et al.
(2021), here we explore the utility in applying a data fusion
approach to study brain changes associated with development.
This article extends our previous work by applying the method to
study brain connectivity within RSNs in a sample of children aged
7–9 years old.

Adverse maternal experiences early in a child’s life can have
pervasive effects across the domains of cognition, emotion, and
behavior (Glover, 2011; Monk et al., 2012; Adamson et al.,
2018; Van den Bergh et al., 2020). It is possible that early
life experiences bias the allocation of resources toward neural
systems that are critical for effective adaptation within the
given environmental context (Chelini et al., 2022). For instance,
neurodevelopmental patterns which favor emotional responses
(e.g., hypervigilant limbic system, improved threat perception,
stronger sympathetic activation, etc.) may give rise to maladaptive
behavioral responses, and potentially establish a footing for poor
psychiatric outcomes (Chelini et al., 2022). Therefore, while
the precise underlying mechanisms remain unclear, alterations
in structural and functional neurodevelopment are proposed as
putative pathways by which adversity may become biologically
embedded and transmit its effects across generations (Van den
Bergh et al., 2020). When studying the link between early
adversity and subsequent neurodevelopmental outcomes, the
timing of adversity exposure must be considered. Prenatal and
postnatal periods of development are the most rapid phases
of brain development during which formative processes such
as neurogenesis, migration, differentiation, myelination, and
synaptogenesis are occurring to establish the baseline framework
for future development (Stiles and Jernigan, 2010). In early
postnatal life, exuberant axonal removal also occurs to establish the
number of connections that comprise the structural connectome
(Collin and van den Heuvel, 2013). At this time, there exists
many sensitive periods of development which are characterized by
heightened plasticity and vulnerability to the environment (Nelson
and Gabard-Durnam, 2020). It follows that environmental insults
during these early periods of development can interrupt normative
developmental processes and leave lasting effects on development.
As posited by proponents of the prenatal programming hypothesis,
the in-utero environment provides cues to the fetus about its
expected postnatal environment (Pluess and Belsky, 2011). Upon
exposure to adverse prenatal conditions, fetal brain development
can calibrate in a manner that supports optimal functioning within
an expected adverse postnatal environment (Glover, 2011; Pluess
and Belsky, 2011).

Emerging research continues to support the idea that there is
immense potential for perturbations in the prenatal environment
to redirect development. For instance, poor maternal mental
health during pregnancy is linked to atypical emotional and
cognitive development in the developing child. Children whose

mothers experienced anxiety or depression during pregnancy are
at increased risk for mental illnesses such as anxiety (O’Connor
et al., 2002; Van den Bergh and Marcoen, 2004; Bergman
et al., 2007), attention deficit hyperactivity disorder (ADHD)
(Huizink et al., 2002; O’Connor et al., 2002; Van den Bergh and
Marcoen, 2004), and conduct disorder (Barker and Maughan,
2009). These outcomes are likely a consequence of modifications
in neurodevelopment. De Asis-Cruz et al. (2020) report that
prenatal maternal anxiety is associated with increased functional
connectivity between earlier developing brain regions associated
with arousal and salience (e.g., brainstem and sensorimotor
areas) and reduced functional connectivity between regions
that subserve higher-order cognitive functions (i.e., executive
control and default mode network regions). These alterations in
child neurodevelopment are identifiable as early as the second
trimester of pregnancy. A study exploring resting-state functional
connectivity in infants aged 6 months also noted that prenatal
maternal depression is associated with altered connectivity between
the amygdala and other brain regions involved in emotion
generation and regulation such as the temporal cortex, insula,
ventromedial prefrontal cortex, medial orbitofrontal cortex, and
anterior cingulate cortex (Qiu et al., 2015). Posner et al. (2016a)
observed atypical structural and functional connectivity in the
amygdala-dorsal prefrontal cortex circuity amongst infants exposed
to prenatal maternal depression. Overall, such evidence points
toward the propensity of maternal mental health to affect
subsequent child neurodevelopment, especially in regions critical
for salience detection and emotion regulation.

Since adverse experiences are likely to exhibit continuity
across time, it is critical to account for both prenatal and
postnatal mental health experiences (O’Connor et al., 2002). Poor
postnatal maternal mental health can interfere with the capacity
for sensitive and responsive caregiving, affecting the quality,
and nature of the child’s early environment. Reductions in the
amount of social and emotional stimulation and can have pervasive
effects on subsequent child development (Goodman et al., 2011;
Tottenham, 2015). For instance, functional neuroimaging studies
have repeatedly shown associations between postnatal depressive
symptoms and altered functional connectivity between limbic
regions and mesocortical and mesolimbic networks (Wang et al.,
2020; Cattarinussi et al., 2021), reshaping the capacity for emotion
regulation and reward learning. Structurally, diffusion tensor
imaging (DTI) investigations have revealed that children exposed to
prenatal or postnatal maternal depression exhibit microstructural
alterations in limbic regions, prefrontal areas, the cingulum, corpus
callosum, and fornix (Lebel et al., 2016; Cattarinussi et al., 2021).
The directionality of changes in diffusivity remains inconsistent
for the amygdala and frontal regions however, reduced anisotropy
and increased diffusivity in the cingulum is often reported
(Cattarinussi et al., 2021). Maternal anxiety during pregnancy
is negatively associated with fractional anisotropy in prefrontal
regions, the middle frontal gyrus, and fornix (Graham et al.,
2020). Ultimately, these changes in white matter connectivity may
underlie difficulties observed in executive functioning, attention,
and emotion regulation.

Adverse experiences tend to co-occur (Sheridan and
McLaughlin, 2014). As demonstrated by the adverse childhood
experiences (ACE) study, there exists a strong relationship between
the number of adverse childhood exposures and the number of
long-term health risk factors, suggesting that the effect of ACEs
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on long-term health may be robust and cumulative (Felitti et al.,
2019). Accordingly, it is recommended that research considers the
impact of unique combinations of adverse exposures on long-term
health outcomes (Felitti et al., 2019). Several studies have reported
higher rates of poor maternal mental health in low socioeconomic
contexts (Beeghly et al., 2003; Goyal et al., 2010; Pitchik et al.,
2020; Radey and McWey, 2021). Therefore, in the present work,
we explore how early life exposure to poor maternal mental
health and socioeconomic status affects child neurodevelopment
years later. Socioeconomic status (SES) can be regarded as one’s
access to material and social resources (e.g., nutrition, housing,
safe neighborhoods, income, and education). SES-related health
disparities pose a risk for the physical and mental health and
wellbeing of a mother during pregnancy as well as her child. In
fact, SES reportedly moderates the impact of poor maternal health
on offspring outcomes (Stein et al., 2008, 2014; Pearson et al.,
2013). Postnatally, a low SES in childhood can set constraints on
the quality of learning experiences that the child gains as he/she
engages with their environment. It has been found that the risk of
developing mental health conditions (e.g., ADHD, externalizing
problems, depression, substance use, schizophrenia, etc.) over
the lifespan is two to three times higher for those from a low
SES background (Wadsworth and Achenbach, 2005). Deficits in
language development and executive functioning are commonly
reported outcomes linked to SES (Hackman and Farah, 2009; Pace
et al., 2017). Functional neuroimaging studies also report evidence
of altered neural activation in regions associated with language
processing in children from lower SES backgrounds (Raizada et al.,
2008; Romeo et al., 2018). In neonates, infants, and children, SES is
associated with altered maturation in neural networks underlying
sensory, emotional, and executive functioning (Gao et al., 2015;
Turesky et al., 2019; Ramphal et al., 2020).

Overall, evidence of atypical brain connectivity in the offspring
of mothers who experienced pre or postnatal adversity has been
demonstrated through fMRI and DTI studies (Rifkin-Graboi et al.,
2015; Posner et al., 2016a; Dean et al., 2018). However, to date, there
remains limited research exploring the impact of maternal adversity
on structural and functional maturational particularly during the
middle childhood period. Movement and low compliance with task
demands pose obstacles in using MRI to study development within
this age group, thereby hampering progress in our understanding
of brain maturation. Here we apply stringent criteria (Power
et al., 2012) for movement during rsfMRI; opting for improved
data quality at a cost to study sample size. We acknowledge,
the limitations imposed by these steps, however, as an initial
examination of our data, we were interested in understanding
whether the predicted alterations in FC and SC associated with
maternal adversity exposure were captured best using a multimodal
data fusion approach. As such, in the following study, we
concurrently study structural and functional neurodevelopment
using resting-state functional magnetic resonance imaging (rs-
fMRI) and diffusion tensor imaging (DTI) within a sample of 7–9-
year-old children whose mothers experienced adversity during the
prenatal and/or postnatal period and a sample of similarly matched
healthy control children. We hypothesized that children of mothers
who experienced adversity will exhibit greater awFC between
regions in RSNs in comparison to controls. As early adversity is
associated with aberrant white matter (Lebel et al., 2016; Demers
et al., 2021b) and gray matter development (Lupien et al., 2011;
Callaghan and Tottenham, 2016; Demers et al., 2021a), we suggest

that examining both features of development in one comparison
may be more informative to our understanding of the relation
between perinatal maternal adversity and child neurodevelopment.
We acknowledge that early life environmental experiences may
influence the allocation of resources in favor of developing systems
that are critical for adaption within a certain environmental context
(Chelini et al., 2022).

2. Materials and methods

2.1. Sample

Our sample consisted of mother-infant dyads from the MAVAN
(Maternal Adversity, Vulnerability, and Neurodevelopment)
cohort—a longitudinal birth cohort from Hamilton, Ontario
and Montreal, Quebec. Beginning from 6 months, children
were assessed using behavioral, cognitive, and diagnostic tools.
Information regarding prenatal and postnatal experiences were
acquired from mothers. Inclusion criteria included mothers who
were above the age of 18, delivered a singleton pregnancy, and
fluent in English or French. Exclusion criteria entailed mothers
with a history of incompetent cervix, presence of placenta previa,
maternal severe chronic illness, impending delivery, or a fetus
affected by a major anomaly. Ethics approval was obtained from
Hamilton Integrated Research Board and the Douglas Mental
Health University Institute. Informed consent was acquired from
all participants. Compensation of $25 was provided for every visit.

Functional magnetic resonance imaging and DTI data was
available for 33 MAVAN children in the middle childhood age
group and thus, analyses were conducted using this subsample.
Excluded from analysis were children with head motion that
exceeded a relative mean displacement of 0.55 mm. This stringent
threshold was considered an important criterion given our sample
age and resulted in the loss of eight children from the sample (see
Satterthwaite et al., 2012). Scans that had missing resting-state fMRI
data points (n = 2), rsfMRI artifacts (signal inhomogeneity) (n = 1),
or missing DTI data (n = 5) were omitted from the analysis. Our
final sample included a total of 17 subjects (11 females, 6 males)—9
children whose mothers did not have a history of prenatal and/or
postnatal adversity (7 females, 2 males) and 8 children with history
of maternal adversity (4 females, 4 males). Children were between
the ages of 7 and 9 years old (mean = 7.63 years; SD = 0.66).

2.2. Maternal adversity score

Maternal adversity is represented by a composite binary
adversity score which accounts for perinatal maternal mental health
(i.e., anxiety and/or depression) as well as socioeconomic status.
This composite score was generated by researchers at the Women’s
Health Concerns Clinic in Hamilton, Ontario. Maternal depression
was measured using the Edinburgh Postnatal Depression Scale
(EPDS) and the Montgomery-Asberg Depression Rating Scale
(MADRS). The EPDS is a 10-item, self-report questionnaire that
provides an indication of depressive symptomatology during the
perinatal period (Cox and Holden, 2003). The MADRS is a 10-
item clinician-rated scale assessing symptom severity if depression
is suspected (Montgomery and Asberg, 1979). Maternal anxiety
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was probed using the State-Trait Anxiety Inventory (STAI) and the
Hamilton Anxiety Rating Scale (HAM-A). The STAI is a self-report
measure of trait (general feelings) and state (momentary feelings)
anxiety (Spielberger, 1983). The HAM-A is a 14-item, clinician-
report measure that assesses the severity of anxiety symptoms.
If a mother achieved an EPDS score >11 or a STAI score
>29 and HAM-A score >17, or MADRS score >6, they were
classified as experiencing perinatal depression and/or anxiety. Low
socioeconomic status was declared if the parental income met or
fell below the low-income tax cut-off level (i.e.,∼$30,000). Prenatal
assessments were collected between 12 and 36 weeks and postnatal
assessments were obtained within the first postnatal year.

One point was assigned for the presence of perinatal depression
and/or anxiety and/or low SES status. For group analyses, children
with a maternal adversity score above 1 were assigned to the
adversity group, while those with a score of 0 were placed in the
healthy control group.

2.3. Magnetic resonance imaging

In a separate visit prior to MRI acquisition, children were
invited for a mock scanning session to get familiarized with the
scanning environment. Magnetic resonance images were acquired
using a GE Discovery 750 3T MR scanner (General Electric
Healthcare, Milwaukee, WI) with a 32-channel head coil at
the Imaging Research Centre, St. Joseph’s Healthcare (Hamilton,
Canada), and a 3T Siemens Trio scanner (Siemens, Erlangen,
Germany) at the Cerebral Imaging Center, Douglas Research
Centre (Montreal, Canada).

Functional images were obtained using a single-shot
gradient-echo echo-planar imaging (EPI) and the acquisition
parameters included: TE (echo time) = 35 ms, TR (repetition
time) = 3,000 ms, flip angle = 90, matrix = 64 × 64 × 45, voxel
size = 3.75 mm × 3.75 mm × 3 mm, interslice gap = 0, slice
thickness = 3 mm, FOV = 24 cm2, 108 volumes (scan time
5.4 min), ascending interleaved sequence. Diffusion tensor images
were acquired with a single-shot spin-echo EPI sequence, with 66
gradient directions at 1,000 s/mm2. Additional DTI parameters
included: TE = 87 ms, TR = 8,800 ms, matrix = 122 × 122 × 70,
voxel size = 2 mm× 2 mm× 2 mm, FOV = 24.4 cm2, 70 ascending
interleaved slices, slice thickness = 2 mm (no slice spacing). Three
non-diffusion weighted b = 0 s/mm2 images were also collected.

Magnetic resonance imaging scanning was well-tolerated,
and positive feedback was provided by the parents, including
indications of willingness to participate in future studies.

3. Analyses

3.1. Functional magnetic resonance
imaging pre-processing and motion
correction

Resting-state functional data were pre-processed using FSL
version 6.0.1 (Jenkinson et al., 2012), using standard protocols
as described in prior analyses (Krafft et al., 2014). Pre-processing
steps included: (1) discarding the first three volumes of every

participant’s functional data to account for magnetic field
homogenization, (2) interleaved slice timing correction, (3) brain
extraction toolbox (BET) (Smith, 2002) for skull stripping, (4)
motion correction using MCFLIRT (Saccà et al., 2018), (5) spatial
smoothing using a Gaussian kernel with FWHM = 5 mm, and (6)
high pass filtering (0.1 Hz). Functional data was normalized and
registered to standard MNI152 space (12 DOF) and resampled to a
4-mm cubic voxel for subsequent analysis.

An additional step was introduced in the standard pre-
processing pipeline (Goto et al., 2016), which involves despiking
the functional data using AFNI (version 18.2.15) (Patel et al.,
2014). This method is said to be more effective than other motion
correction methods such as scrubbing (Goto et al., 2016).

A standard adult functional brain template (MNI 152) was used
for registration and normalization. Previous studies by Muzik et al.
(2000) and Wilke et al. (2002) demonstrated that spatial registration
of child data aged 5 and above and 6 and above, respectfully, to
adult brains, are acceptable with negligible or minor distortions (if
any). Additionally, children over the age of five do not undergo
significant increases in brain volume (Giedd et al., 1996; Casey et al.,
2000).

Head motion is a major source of artifacts in connectivity
studies (Power et al., 2012), and thus, it is necessary to exclude
subjects with gross motion (Satterthwaite et al., 2012). Satterthwaite
et al. (2012) deemed gross motion in functional data as having
a relative mean displacement greater than 0.55 mm. Therefore,
subjects with an average relative volume-volume displacement
greater than 0.55 mm were excluded from our study (n = 8). While
our final sample size was impacted by this criterion, it is important
to be stringent on motion parameters.

Five RSNs were examined: the default mode network (DMN),
involved in internally generated thoughts, the limbic network
(LIM), participating in emotion regulation, and the ventral
attention network (VAN), dorsal attention network (DAN), and
frontal parietal network (FPN), all of which subserve higher-
order cognitive functions. Previous literature has reported that
connectivity in these RSN’s has been impacted upon maternal
adversity exposure (Van den Bergh et al., 2018).

3.2. Functional magnetic resonance
imaging analysis using FATCAT

Group independent component analysis (GICA) was applied
to the resting data using MELODIC (FMRIB Analysis Group,
Oxford University; Beckmann and Smith, 2004; Beckmann et al.,
2005). The pre-processed functional data in MNI space was passed
through the MELODIC GUI with the component number set at
20 and the decomposition approach set to multisession temporal
concatenation. Independent components were compared and
matched to the standard Yeo seven network template (Yeo et al.,
2011) using a spatial cross correlation from FATCAT’s “3dMatch”
command (Taylor and Saad, 2013). Of the 20 components
generated, five networks were consistent with standard RSNs
(with a mean correlation of r = 0.62): DMN, FPN, LIM,
VAN, and DAN. The remaining maps were either taken to be
artifactual, noise or simply not matching with the components.
Each of the independent component Z-score maps for the five
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identified networks were further segmented at the group level into
discrete regions of interest (ROIs) using FATCATs “3dROIMaker”
with an empirically determined threshold for each network, in
order to use the ROIs with the diffusion data, the ROIs were
transformed into diffusion-weighted space and inflated using
FATCAT’s “3dROIMaker” command to overlap or abut white
matter tracts. The Pearson correlation coefficient was calculated
between the mean time courses of each ROI pair, using the
non-inflated ROIs with FATCAT’s “3dNetCorr” command (Taylor
and Saad, 2013). Functional connectivity (Pearson’s correlation)
was estimated for each subject. Functional connectivity group
differences were then investigated using a Wilcoxon-test between
the adversity exposed and control groups using R code and
corrected for multiple comparisons (which will be discussed
in greater detail later in this section). Statistically significant
(padj < 0.05) group differences were identified and reported in this
study as “conventional functional connectivity.”

3.3. Diffusion tensor imaging
pre-processing

Diffusion tensor imaging pre-processing steps were performed
using a source-code repository (Davis et al., 2019). Pre-processing
involved a combination of FSL and AFNI commands and consisted
of the following steps: (1) Diffusion-weighted images and b = 0
images were converted from DICOM to NIFIT using dcm2nii, (2)
Eddy current distortions and motion were corrected (registered
to b = 0 reference volume) with FSL’s “eddy_correct” command
(Jenkinson et al., 2012) and diffusion vectors were rotated, (3) DTI
images were skull stripped using FSL’s “BET” (Smith, 2002) (4)
FATCAT’s “3dDWItoDT” (Taylor and Saad, 2013) was applied for
diffusion tensor fitting, and FA maps were generated (in diffusion-
weighted space), (5) FA maps were spatially normalized to a
standard FA template (FMRIB58) for group analysis.

3.4. Diffusion tensor imaging analysis
using FATCAT

Uncertainty maps from FA and principal eigenvector were
generated, with the FATCAT command “3dDWUncert” (Taylor and
Saad, 2013) to include in probabilistic tractography. Probabilistic
tracking was then estimated between inflated ROI-pairs using
FATCAT’s “3dTrackID” (Taylor and Saad, 2013) with the default
standard settings: FA = 0.2, turning angle = 60, Monte Carlo
iterations = 1,000. The DTI measures, such as the distance and
number of tracts between each inflated group-level ROI pair were
estimated for each subject. “Conventional structural connectivity”
was calculated by counting the number of tracts between two
ROIs (a DTI metric output by FATCAT). Group-level comparison
of structural connectivity was performed to study differences
between adversity and control groups. Between-group comparisons
were performed with a Wilcox-test and corrected for multiple
comparisons using the false discovery rate. Comparisons that were
statistically significant (padj < 0.05) are reported in this study and
discussed.

FIGURE 1

Functional And Tractographic Analysis Toolbox-awFC pipeline. This
is a two-stage pipeline and when combined, results in a more
straightforward approach for combining fMRI and DTI data. The first
stage is the “Functional and Tractographic Connectivity Analysis
Toolbox” (FATCAT) pipeline. The outputs include functional
connectivity (derived from fMRI) and the number of tracts (derived
from DTI). The second stage of the pipeline is known as the
anatomically weighted functional connectivity (awFC), which
processes the output of FATCAT to produce the anatomically
weighted functional connectivity measure (awFC measure). fMRI,
functional magnetic resonance imaging; DTI, diffusion tensor
imaging; DT, diffusion tensor; ICA, independent component
analysis; ROIs, regions of interest; SC, structural connectivity; FC,
functional connectivity; awFd, anatomically weighted functional
dissimilarity; awFC, anatomically weighted functional connectivity;
set of AFNI commands (3dMatch, 3dROIMaker, 3dNetCorr,
3dDWItoDT, 3dDWUncert, and 3dTrackID).

3.5. Combined structural and functional
connectivity analysis using the awFC
method

Figure 1 depicts how the FATCAT-awFC pipeline begins with
the FATCAT and later transitions into the awFC method. From the
FATCAT, functional connectivity (from the functional data) and
“tract count” (from the structural data) are output. Subsequently,
these two metrics are used as inputs for the awFC method.

Once “tract count” is output from the FATCAT approach
(Taylor and Saad, 2013), a number of additional steps were
performed using the awFC method to calculate an improved
structural connectivity measure. These steps include: calculating
the probabilities of structural connectivity, performing a
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Poisson-regression (to adjust for distance bias), computing
and incorporating indirect (second-order) structural connectivity
between ROI pairs (Bowman et al., 2012). Structural connectivity
probabilities were estimated by calculating the 90th percentile
of voxel-level counts connecting two ROIs, divided by the
total streamlines leaving the ROI (Bowman et al., 2012).
Next, the structural connectivity distance-bias was adjusted
by fitting a zero-inflated Poisson regression model (Bowman
et al., 2012). The Poisson regression was applied using:
log(µ

(
Sij

∣∣ gij
)
= α0 + α1gij), where gij is the distance between

each region pair, Sij is the unbiased number of tracts (Bowman
et al., 2012). All possible second-order (indirect) connections were
calculated using the equation: πij = max[πij, maxm(πimπmj)],
where π is the probabilities of structural connectivity, i is the
starting ROI, j is target ROI, and m is the third connection
(Bowman et al., 2012). The greater connectivity value (between
the direct and indirect connectivity) was taken to be the pathway
between the connected ROIs (Bowman et al., 2012). Once all steps
are performed, a structural connectivity metric is produced.

Functional connectivity was generated from the FATCAT
pipeline and SC was produced from the awFC method. To
combine FC and SC into a single metric, the dissimilarity
metrics were first calculated (Bowman et al., 2012). FC and SC
measure distinct aspects of brain connectivity, where FC measures
the temporal correlation (using Pearson correlation), and SC
measures the tract count between brain regions. Therefore, to
generate a modality-independent comparison between structural
and functional connectivity, the dissimilarity metric is used
(Kriegeskorte et al., 2008). The structural dissimilarity (1 minus
structural connectivity) and functional dissimilarity (1 minus
functional connectivity) are multiplied to obtain the anatomically
weighted functional dissimilarity. For ease of interpretation, the
dissimilarity metric (a combined structural-functional measure) is
transformed back to a correlation metric. This metric is known
as the anatomically weighted functional connectivity, which is
obtained by applying the equation: 1−

∣∣awFd
∣∣ (Bowman et al.,

2012).

3.6. Wilcoxon test and multiple
comparisons adjustment

A Wilcoxon test was applied to determine whether there were
any significant FC, SC, and awFC differences between children of
mothers who experienced perinatal adversity compared to healthy
controls. The R function, “wilcox.test(),” was employed to assess
pair-wise differences in FC, SC, and awFC between the adversity
and control groups for each ROI-pair within each RSN. False
Discovery Rate (FDR) was used to correct for multiple comparisons
(Waite and Campbell, 2006) via the function “p.adjust()” from
the stats package in R (R Core Team, 2018). The significance
level was set to padj < 0.05. Significant awFC differences between
the control and adversity groups were visualized using boxplots,
with the “ggplot()” function from the ggplot2 package (v.2.2.1) in
R software (v.4.0.2). Finally, the effect size was calculated using
Cohen’s d, “cohen.d” function from the effsize package (Tocrchiano,
2017) in R (R Core Team, 2018). A Cohen’s d between 0.5 > d > 0.2
is considered small, 0.8 > d > 0.5 moderate and d ≥ 0.8 large.

4. Results

4.1. Significant ROI-ROI pairs

A complete listing of the ROIs in each RSN, their associated
anatomical location, volume, and MNI coordinates is reported
in Table 1. A visual representation of the ROIs that revealed
significant connectivity differences between groups are shown in
Figure 2.

4.2. ROI-ROI awFC group differences

Children of mothers who experienced prenatal and/or
postnatal adversity showed lower awFC in a number of ROI-
pairs compared to healthy controls (Table 2). Specifically, in
comparison to healthy controls, the adversity group exhibited lower
awFC in (i) the DMN—between the PCC and the left angular
gyrus (p = 0.0274), (ii) the FPN—between the left inferior frontal
gyrus to the lingual gyrus/cerebellum (p = 0.0053), and between
the right superior frontal gyrus and the lingual gyrus/cerebellum
(p = 0.0274), (iii) the LIM—between the right superior temporal
gyrus and the left superior temporal gyrus (p = 0.00149), and
(iv) the DAN—between the right posterior orbitofrontal gyrus and
the left inferior temporal gyrus (p = 0.032). Conversely, children
exposed to prenatal and/or postnatal maternal adversity showed
greater awFC in the VAN—between the right anterior orbitofrontal
gyrus and the left lingual gyrus/cuneus (p = 0.00551). Group
comparisons are shown in the boxplots in Figure 3. The multiple
tests performed in this study were corrected for false discovery rate
(FDR) to account for the potential inflation of Type I error due
to multiple comparisons. FDR correction is a statistical method
that adjusts the p-values based on the number of tests performed
and the proportion of truly null hypotheses. This helps to control
the rate of false positive findings and provides a more stringent
criterion for declaring statistical significance. The results were
considered statistically significant if the FDR-corrected p-value was
less than 0.05.

4.3. ROI-ROI FC and SC group
differences

In comparison to healthy controls, children exposed to
perinatal maternal adversity exhibited FC differences in: (i) the
DMN—between the PCC and the left angular gyrus (FC p = 0.0274,
SC p = 0.815), (ii) the FPN—between the left inferior frontal gyrus
to the lingual gyrus/cerebellum (FC p = 0.006, SC p = 0.041),
and between the right superior frontal gyrus and the lingual
gyrus/cerebellum (FC p = 0.0274, SC p = 0.664), (iii) the LIM—
between the right superior temporal gyrus and the left superior
temporal gyrus (FC p = 0.002, SC p = 0.095), (iv) the VAN—
between the right anterior orbitofrontal gyrus to the left lingual
gyrus/cuneus (FC p = 0.032, SC p = 0.198), and (v) the DAN—
between the right posterior orbitofrontal gyrus and the left inferior
temporal gyrus (FC p = 0.00551, SC p = 0.06). See Table 2 for a
summary of the results.
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TABLE 1 Complete listing of ROIs used in the study.

ROI no. Anatomical names MNI coordinates x, y, z Volume (#
of voxels)

Default mode network

1 Medial frontal gyrus (MFG) 2 62 8 7

2 Posterior cingulate cortex (PCC) −2 −62 24 5

3 Right angular gyrus (R-AG) 46 −58 28 6

4 Left angular gyrus (L-AG) −46 −58 28 5

Frontoparietal network

5 Left inferior frontal gyrus (L-IFG) −38 38 12 12

6 Lingual gyrus/cerebellum (LG/CER) −6 −74 −12 12

7 Right Superior frontal gyrus (R-SFG) 10 38 56 10

Limbic network

8 Right posterior orbitofrontal gyrus (R-pOFG) 18 38 −24 12

9 Left posterior orbitofrontal gyrus (L-pOFG) −42 30 −20 12

10 Right superior temporal gyrus (R-STG) 46 14 −44 11

11 Left superior temporal gyrus (L-STG) −42 2 −52 12

12 Dorsolateral prefrontal cortex (DLPFC) −2 46 32 12

Ventral attention network

13 Left lingual gyrus/Cuneus–Lateral occipital cortex
(L-LG/CU)

−14 −98 −16 20

14 Right orbitofrontal gyrus (R-aOFG) 14 70 −16 5

15 Right cerebellum (R-CER) 10 −66 44 20

Dorsal attention network

16 Right anterior orbitofrontal gyrus (R-aOFG) 14 58 −20 9

17 Right posterior orbitofrontal gyrus (R-pOFG) 22 30 −16 14

18 Right middle frontal gyrus (R-MFG) 38 42 −16 14

19 L-Inferior temporal gyrus (L-ITG) −50 −54 −16 14

Peak MNI coordinates and cluster sizes are given for these nineteen ROIs belonging to five resting-state networks: default mode, frontoparietal, limbic, ventral attention, and dorsal attention.
ROIs were defined using FATCATs 3dROIMaker command. ROI, region of interest; RSN, resting state network.

Group differences in SC were observed in the FPN–between
the left inferior frontal gyrus and the lingual gyrus/cerebellum.
However, this difference did not survive the correction for multiple
comparisons. The multiple comparisons made in the study were
corrected using FDR correction to control for false positive findings
and identify statistical significance with a stringent criterion of
FDR-corrected p-value less than 0.05.

5. Discussion

Across biological scales (i.e., cellular formation, synaptic
formation/pruning, myelination, macroscale network
connectivity), there is a developmental progression from
primary unimodal somatosensory/motor and visual regions
to transmodal association cortices which support the emergence
of complex cognition (Rakic et al., 1994; Cao et al., 2017; Casey
et al., 2019; Paquola et al., 2019; Dong et al., 2022). Programmed
neurodevelopmental events such as neurogenesis, myelination,
and pruning drive the maturation of functional networks and
brain structure (Grayson and Fair, 2017). Importantly, it is
recognized that structural and functional development interact
throughout development (Damoiseaux and Greicius, 2009; Suárez
et al., 2020). Accordingly, in the present research, we identified
differences in resting state networks, factoring in metrics of
both FC and SC acquired from rs-fMRI and DTI imaging data.

We hypothesized that the awFC method would provide a more
sensitive approach to study network development in comparison
to investigating SC and FC alone. The awFC method was used
to explore differences in DMN, LIM, VAN, DAN, and FPN
connectivity between children exposed to perinatal maternal
adversity and a group of healthy control children. Our results
suggest that in comparison to independent SC and FC analyses,
the combined awFC method was more sensitive to differences in
network connectivity within the LIM and FPN. We also found
that children exposed to perinatal maternal adversity exhibited
greater connectivity within the VAN in comparison to healthy
controls.

5.1. Comparing awFC with SC and FC
across regions of the FPN and LIM that
distinguish between adversity and
healthy control groups

The value of exploring differences in network connectivity
using a fused structural-functional approach is reflected in our
findings relating to the LIM and FPN. While analyses of group
differences in SC and FC metrics separately identified network
differences distinguishing the adversity from the control group, the
connectivity differences were of greater significance when groups
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FIGURE 2

Statistically significant anatomically weighted functional connectivity group differences between brain regions are displayed for each network.
Isolated brain regions were defined using the FATCAT command 3dROIMaker. Each color represents a different ROI for each network (A) DMN,
green ROI, posterior cingulate cortex, red ROI, left angular gyrus (B) FPN, blue ROI, left inferior frontal gyrus, orange ROI, right superior frontal gyrus,
green ROI, lingual gyrus/cerebellum (C) LIM, yellow ROI, right superior temporal gyrus, red ROI, left superior temporal gyrus (D) VAN, yellow ROI,
right anterior orbitofrontal gyrus, blue ROI, left lingual gyrus/cuneus (E) DAN, yellow ROI, right posterior orbitofrontal gyrus, red ROI, left inferior
temporal gyrus. ROI, region of interest; DMN, default mode network; FPN, frontoparietal network; VAN, ventral attention network; DAN, dorsal
attention network. Anatomical positions, A, anterior view; P, posterior view; S, superior view; I, inferior view; L, left view’ R, right view.

TABLE 2 Group differences in connectivity from structural, functional, and anatomically weighted functional connectivity.

Start ROI End ROI SC p-value (FDR
corrected)

FC p-value (FDR
corrected)

awFC p-value
(FDR corrected)

Cohen’s D

Default mode network

PCC L-AG 0.815 0.0274* 0.0274* 0.626 (medium)

Frontoparietal network

L-IFG LG/CER 0.041 0.006* 0.0053* 1.66 (large)

R-SFG LG/CER 0.664 0.0274* 0.0274* 1.36 (large)

Limbic network

R-STG L-STG 0.095 0.002** 0.00149** 1.75 (large)

Ventral attention network

R-aOFG L-LG/CU 0.198 0.032* 0.032* −1.27 (large)

Dorsal attention network

R-pOFG L-ITG 0.06 0.00551* 0.00551* 1.79 (large)

A Wilcoxon test was performed to reveal significant brain connectivity differences between children exposed to high maternal adversity (HA) and Healthy Control children. Significant
awFC differences between children of mothers with high adversity compared to children of mothers with low adversity scores are shown, along with their corresponding structural and
functional connectivity group differences. This table displays significance of group differences in connectivity values [bold identifies significant (p < 0.05)] of structural connectivity, functional
connectivity, and awFC for each ROI-ROI pair. *Survives FDR (q < 0.05), **Survives FDR (q < 0.01). awFC, anatomically weighted functional connectivity; ROI, region of interest; SC,
structural connectivity; FC, functional connectivity; PCC, posterior cingulate cortex; L-AG, left angular gyrus; L-IFG, left inferior frontal gyrus; LG/CER, lingual gyrus/ cerebellum; R-SFG,
right superior frontal gyrus; R-STG, right superior temporal gyrus; L-STG, left superior temporal gyrus; R-aOFG, right anterior orbitofrontal gyrus; L-LG/CU, left lingual gyrus/cuneus; R-pOFG,
right posterior orbitofrontal gyrus; L-ITG, left inferior temporal gyrus.

were contrasted using awFC data. These findings suggest that it
may be important to consider the influence of SC when studying
resting-state functional connectivity in developmental populations.

Using the awFC approach, we found that in comparison to
healthy controls, children whose mothers experienced perinatal

maternal adversity showed lower awFC in the FPN between
the inferior frontal gyrus and cerebellum as well as the SFG
and lingual gyrus. Our findings complement those from the
maternal deprivation literature which consistently report that poor
maternal mental health impacts the structural development of
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FIGURE 3

Boxplots demonstrate the anatomically weighted functional connectivity strength in children of mothers with a high adversity score (orange boxes)
compared to children of mothers with a lower adversity score (blue boxes). Significant differences between HA and HC are shown within the (A)
DMN between the PCC and L-AG (B) FPN between the L-IFG and the LG/CER (C) FPN between the R-SFG and the LG/CER (D) LIM between the
R-STG and the L-STG (E) VAN between the R-aOFG and L-LG (F) DAN between the R-pOFG and L-ITG. adversity, children exposed to maternal
adversity, control, healthy control group, The asterisks indicate a statistically significant difference in the ROI awFC between groups at *p < 0.05 and
**p < 0.01. DMN, default mode network; FPN, frontoparietal network; LIM, limbic network; VAN, ventral attention network; DAN, dorsal attention
network; L, left; R, right; IFG, inferior frontal gyrus; LG/CER, lingual gyrus / cerebellum; SFG, superior frontal gyrus; STG, superior temporal gyrus;
aOFG, anterior orbitofrontal gyrus; LG, lingual gyrus; pOFG, posterior orbitofrontal gyrus; ITG, inferior temporal gyrus.

their offspring, especially in frontoparietal regions. For instance,
postnatal depressive symptoms are negatively correlated with SFG
thickness in children (Lebel et al., 2016). Similarly, fetal exposure
to increasing levels of prenatal maternal stress is associated with
reductions in SFG and lingual gyrus thickness (Davis et al., 2020).
It has been reported that brain regions which show cortical
thinning also exhibit weakened connectivity (Bullmore, 2019).
Furthermore, research exploring the influence of SES on brain
structure has revealed reduced cortical maturation (i.e., gray

and white matter volume, integrity of WM tracts) in children
exposed to low maternal SES compared to higher-SES children
(Olson et al., 2021). These differences are hypothesized to result
from changes in neuronal morphology, dendritic arborization, or
stunted/suppressed synaptogenesis (Olson et al., 2021). The FPN
is thought to play a role in executive functioning and cognitive
control over emotion. Therefore, atypical FPN maturation may
play a role in the widespread socioemotional, behavioral, and
cognitive deficits reported among adversity exposed children
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(Hackman and Farah, 2009; Madigan et al., 2018; Pan et al.,
2018; McLaughlin et al., 2019a,b; Oh et al., 2020; Priel et al.,
2020). Evidently, as the literature suggests, maternal adversity
impacts the structural neurodevelopment of offspring. Our
study emphasizes that when examining developmental differences
associated with adversity exposure, it is important to consider
how structure interacts with function, rather than studying only
one modality in isolation. Specifically, we demonstrate that SC
can impact on estimates of FC between regions of the FPN.
Importantly, attention to the sensitivity of analytical techniques
when studying outcomes of adversity exposure may yield important
information that helps characterize altered maturational brain
changes.

The adversity group also displayed lower awFC in the LIM
between the left and right superior temporal gyrus in comparison
to healthy controls. Typically, interhemispheric connectivity
strengthens with age (Smyser et al., 2010; Muetzel et al., 2016). In
fact, RSN connectivity between homotopic regions is considered
a ubiquitous feature of brain architecture (Salvador et al., 2005;
Hermesdorf et al., 2016). Our results may point toward a
delayed pattern of maturation for children in the adversity
group exhibited lower awFC than the healthy control children.
However, interpretations of delayed maturation should be taken
with caution as we did not explore longitudinal developmental
trajectories in this study. Alterations in homotopic connectivity
have been identified in various psychiatric conditions, and
specifically in the superior temporal gyrus amongst individuals
with depression (Guo et al., 2013; Hermesdorf et al., 2016). Alike
other brain regions, the superior temporal gyrus is implicated
in a multitude of processes including language development,
emotional functioning, and social cognition. As such, atypical
development involving this region (as seen when comparing
adversity exposed children to healthy controls) may increase
the risk for poor outcomes. For instance, Noble et al. (2012)
report that children raised in low SES environments demonstrated
relatively smaller volumes in the left superior temporal gyrus,
compared to their higher SES peers. It is suggested that protracted
pruning allows for a period of prolonged plasticity which may
be beneficial in higher SES environments (Noble et al., 2012).
Further, there is consistent evidence that socioeconomically
deprived environments and the lack of access to consistent
and responsive caregiving are associated with differences in the
development of emotion processing and language-supporting
brain regions (Tomalski and Johnson, 2010; Tottenham, 2015).
Similarly, our awFC results identified atypical development
in the LIM among children exposed to perinatal maternal
adversity. Crucially, the independent SC analysis did not identify
significant differences in LIM connectivity between the adversity
and control groups. However, by integrating SC in estimates
of FC, the awFC method was able to capture important
developmental changes related to interhemispheric connectivity
in the LIM with a greater degree of sensitivity than FC
alone.

Collectively, we report that when examining the FPN and
LIM the awFC method was more sensitive than separate FC
and SC analyses in detecting connectivity differences. We suggest
that it is promising to see that the awFC method identified
differences in higher-order cognitive and emotion networks
as they are commonly reported neural targets of adversity

exposure (Tomalski and Johnson, 2010; Tottenham, 2015; Chen
and Baram, 2016) identified in existing unimodal imaging
research.

5.2. Contrasting awFC between adversity
and healthy control groups in the VAN

Greater FC in the VAN was identified for the adversity
group compared to controls. This pattern was opposite to that
observed in the other RSNs examined, where lower connectivity
distinguished the adversity group from controls. Specifically, we
found evidence of greater awFC within regions of the VAN (R
aOFG and L LG/CU) among children whose mothers experienced
perinatal adversity. Attention processing is associated with the
engagement of two segregated functional networks—the DAN
and the VAN—each subserving a specialized processing function
(Corbetta and Shulman, 2002). The DAN is involved in goal-
directed, top-down processing that maintains attention in the
face of distracting stimuli (Corbetta et al., 2008). Conversely,
the VAN is characterized as a stimulus-driven, bottom-up system
that orients attention to stimuli outside of the current focus
(Corbetta et al., 2008). Both networks interact to control which
information is perceived and attended to Farrant and Uddin
(2015). For instance, a granger causality analysis of task-based
fMRI revealed that signals from the DAN to the VAN work
to filter out unimportant distractor stimuli while signals from
the VAN to the DAN interrupts attention maintained by the
DAN in order to facilitate the reorientation of attention to
newly salient stimuli (Wen et al., 2012). It has been observed
that disruptions in the coupling of these networks results in
attention deficits which underlie multiple psychopathologies (Suo
et al., 2021). While these networks are well-characterized in adult
neuroimaging studies, there is minimal research focusing on their
developmental trajectory, with less exploration into changes in
within-network connectivity as compared to between-network
investigations (Farrant and Uddin, 2015). One study by Dong
et al. (2022) found that children exhibiting low VAN functional
connectivity displayed an accelerated profile of cortical maturation
which resembles adolescence and adulthood organization. Dong
et al. (2022) suggested that a decrease in VAN connectivity
could signal the pruning of excessive/redundant connections
to allow for more efficient information processing. However,
both premature and delayed pruning may be consequential for
future development. Furthermore, due to hierarchical nature
of brain development, earlier maturing brain networks could
shape the development of later developing cortical networks
(Zeanah et al., 2011; Menon, 2013; Dong et al., 2022). The
VAN is an intermediary network that coordinates signals between
primary unimodal and the association cortices (Corbetta and
Shulman, 2002; Konrad et al., 2005; Dong et al., 2022). As such,
it is situated in a pivotal position to affect the development
of multimodal association cortices which underlie higher-order
cognitive functioning. Here, we observed greater connectivity in
the VAN among the adversity group. While this finding will need to
be replicated in a larger sample and explored across developmental
timepoints, it suggests that altered VAN connectivity observed in
association with maternal adversity may have knock-on effects that

Frontiers in Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnins.2023.1066373
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1066373 March 11, 2023 Time: 14:40 # 12

Ayyash et al. 10.3389/fnins.2023.1066373

impact upon the consolidation of an adult-like functional cortical
organization.

5.3. Structural connectivity and FC
decoupling

In this study, we did not detect any differences in SC in the
DMN, LIM, VAN, and DAN between healthy controls and children
whose mothers experienced perinatal maternal adversity. Over
development, synaptogenesis functions to increase the number
of WM tracts while pruning decreases the number of these
connections. It has been suggested that from age 2–7 years, the
activity of these processes counterbalance one another resulting
in a “plateau phase” (Levitt, 2003). Since the mean age of
our sample was 7.63 years (SD = 0.66), it is possible that
this feature might explain the lack of observable differences.
Furthermore, WM maturation is driven by multiple processes. In
this study, tract density was used as the metric for quantifying
SC and therefore changes in myelination would not be detected
by this approach. Accordingly, alterations SC may not be as
easily identifiable during middle childhood in comparison to
changes in FC. Developmental events such as pruning and
myelination are also dependent on the network in question and
vary in their timing and rate of change (Marsh et al., 2008;
Walhovd et al., 2014). Inter-subject variability in maturational
trajectories may also contribute to the incongruent SC and FC
findings.

6. Limitations and future directions

Our research does have some important limitations which
must be considered. First, owing to the loss of subjects due
to movement during the scan, our sample size was small (17
participants). As such it will be important to replicate these findings
in a larger sample. In addition, our study conceptualized maternal
adversity as low SES and/or experiencing poor prenatal and/or
postnatal maternal health (i.e., anxiety and/or depression). The
field of adversity research continues to find optimal methods of
measuring adversity exposure. The challenge may stem from the
fact that adverse events co-occur, but each event can contribute
to distinct neural outcomes (Sheridan and McLaughlin, 2014;
McLaughlin and Sheridan, 2016). For example, living in low
socioeconomic conditions is linked to an increased risk for abuse,
lack of access to adequate healthcare, poor maternal mental health,
etc. In a composite score, the specific effect of individual adverse
experiences and their degree of severity would not be adequately
represented in developmental outcomes. Furthermore, since our
score measures maternal adversity across the perinatal period, we
were unable to separate the independent impact of prenatal and
postnatal exposures. Research efforts have suggested that prenatal
and postnatal experiences do affect development in diverging ways,
in addition to accounting for shared variance (O’Connor et al.,
2002; Monk et al., 2012). Future investigations should continue to
explore these relationships with consideration to different forms
and severity of adversity exposure.

As this is the first study which has combined FC and SC
using data fusion techniques to study developmental changes in

middle childhood following perinatal maternal adversity exposures,
comparing our results to the broader literature must be done
with caution. Additional research using multimodal imaging
would be beneficial for identifying whether accelerated vs. delayed
maturation is dependent on imaging modality and level of analysis
(e.g., ROI vs. network).

We used DTI-based tractography to identify white matter
tracts. This method is highly prone to motion artifacts, inaccuracies
and is unable to distinguish between the crossing, convergence, and
divergence of fibers (Jbabdi and Johansen-Berg, 2011). We collected
3 DTI scans in each participant, permitting us to drop whole scans
and retain some data, if movement was an issue. In addition, the
number of vectors sampled was different in each of these scans
(19, 20, and 21) giving us a total of 60 directions and improved
capacity to resolve crossing fibers. Of note, it has been observed
that diffusion spectrum imaging is better able to detect fibers and
fiber crossings (Damoiseaux and Greicius, 2009) and therefore may
provide a better suited technique for future studies.

7. Conclusion

To our knowledge, this is the first neuroimaging study which
uses a combined data fusion structural-functional connectivity
approach to explore the impact of perinatal maternal adversity
on RSN development in middle childhood. We combine SC
information from DTI with FC information from rs-fMRI to
identify potential alterations in network connectivity within the
VAN, DAN, DMN, FPN, and LIM upon perinatal adversity
exposure. Our results indicated that there is a benefit of using an
awFC approach as it is more sensitive in highlighting differences
in connectivity in networks associated with higher-order cognitive
and emotional processing (FPN and LIM) in comparison to
independent FC and SC analyses. Furthermore, our awFC analysis
suggests that poor maternal mental health and/or low SES during
the perinatal period may be associated with greater awFC within the
VAN. These results may suggest that it is possible for environmental
perturbation in early life to recalibrate brain development in a
way that facilitates survival within contexts of uncertainty and
inconsistent caregiving.
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