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Objectives: Perivascular spaces have been involved in neuroinflammatory and

neurodegenerative diseases. Upon a certain size, these spaces can become

visible on magnetic resonance imaging (MRI), referred to as enlarged perivascular

spaces (EPVS) or MRI-visible perivascular spaces (MVPVS). However, the lack of

systematic evidence on etiology and temporal dynamics of MVPVS hampers their

diagnostic utility as MRI biomarker. Thus, the goal of this systematic review was

to summarize potential etiologies and evolution of MVPVS.

Methods: In a comprehensive literature search, out of 1,488 unique publications,

140 records assessing etiopathogenesis and dynamics of MVPVS were eligible for

a qualitative summary. 6 records were included in a meta-analysis to assess the

association between MVPVS and brain atrophy.

Results: Four overarching and partly overlapping etiologies of MVPVS have been

proposed: (1) Impairment of interstitial fluid circulation, (2) Spiral elongation

of arteries, (3) Brain atrophy and/or perivascular myelin loss, and (4) Immune

cell accumulation in the perivascular space. The meta-analysis in patients with

neuroinflammatory diseases did not support an association between MVPVS and

brain volume measures [R: −0.15 (95%-CI −0.40–0.11)]. Based on few and mostly

small studies in tumefactive MVPVS and in vascular and neuroinflammatory

diseases, temporal evolution of MVPVS is slow.

Conclusion: Collectively, this study provides high-grade evidence for MVPVS

etiopathogenesis and temporal dynamics. Although several potential etiologies

for MVPVS emergence have been proposed, they are only partially supported

by data. Advanced MRI methods should be employed to further dissect

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2023.1038011
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2023.1038011&domain=pdf&date_stamp=2023-03-30
https://doi.org/10.3389/fnins.2023.1038011
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2023.1038011/full
https://orcid.org/0000-0003-1362-4819
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-17-1038011 March 25, 2023 Time: 12:8 # 2

Okar et al. 10.3389/fnins.2023.1038011

etiopathogenesis and evolution of MVPVS. This can benefit their implementation

as an imaging biomarker.

Systematic review registration: https://www.crd.york.ac.uk/prospero/display_

record.php?RecordID=346564, identifier CRD42022346564.

KEYWORDS

enlarged perivascular spaces, Virchow-Robin spaces, magnetic resonance imaging,
etiology, etiopathogenesis, biomarker, systematic review, meta-analysis

1. Introduction

First described in detail by Virchow (1851) and confirmed as a
feature of normal brain histology by Robin (1859), the perivascular
space (PVS) is an anatomical compartment that follows the pial
trajectories of brain vasculature, surrounding the arteries, veins,
penetrating arterioles and venules (Troili et al., 2020; Wardlaw
et al., 2020; Ineichen et al., 2022). Although PVS are a normal
anatomic feature of brain vasculature that can be visualized using
histology, they can also become visible on magnetic resonance
imaging (MRI) if they exceed a certain diameter (depending on
the resolution of the MRI). These macroscopically visible PVS have
been referred to as enlarged PVS (EPVS), dilated PVS, or Virchow-
Robin spaces (Ineichen et al., 2022) (Figure 1). In this review, we
will use the term MRI-visible PVS (MVPVS) to acknowledge that
temporal dynamics of PVS are insufficiently understood and thus
to retain a more descriptive terminology.

On MRI, MVPVS show cerebrospinal fluid (CSF) signal
characteristics, appearing as linear-shaped signal changes with a
parenchymal vessel distribution (Wardlaw et al., 2013a). Typical
locations of MVPVS are in the basal ganglia along lenticulostriate
vessels, centrum semiovale, and midbrain (ponto-mesencephalic
junction) (Kwee and Kwee, 2007). Less frequent MVPVS locations
are: insula (Yamaguchi et al., 2021), hippocampus (Zhu et al.,
2011), anterior temporal lobe (McArdle et al., 2020), corpus
callosum (Manara et al., 2010, 2011), mesencephalon-thalamic
junction (Salzman et al., 2005), and cerebellum (Alqahtani et al.,
2014). Although many agree that MVPVS should be an imaging
component of cerebral vessel disease (Francis et al., 2019), emerging
data suggest that it can also be a feature of metabolic (Manara
et al., 2011), neurodegenerative (Charidimou et al., 2017), and
neuroinflammatory diseases (Granberg et al., 2020).

Since MVPVS can occur in a large spectrum of neurological and
systemic diseases affecting the central nervous system (CNS), it is
important to better understand MVPVS etiopathogenesis and their
longitudinal evolution. Although some pathomechanisms, such
as impaired interstitial fluid (ISF) drainage, have been proposed
as MVPVS etiology (Wardlaw et al., 2013a, 2020; Troili et al.,
2020), the biological basis of MVPVS and longitudinal evolution
of MVPVS in different diseases remain uncertain.

Abbreviations: BBB, blood-brain-barrier; CAA, cerebral amyloid angiopathy;
CNS, central nervous system; EPVS, enlarged perivascular spaces; ISF,
interstitial fluid; NMOSD, neuromyelitis optica spectrum disorder; MS,
multiple sclerosis; MRI, magnetic resonance imaging; MVPVS, MRI-visible
perivascular spaces; PACNS, primary angiitis of the central nervous system.

This systematic review and meta-analysis aims to answer the
following two questions: (1) Which etiopathogeneses have been
shown and/or proposed for MVPVS? (2) How do MVPVS evolve
over time in healthy individuals or in individuals with CNS
diseases?

2. Materials and methods

We registered the study protocol in the International
prospective register of systematic reviews (PROSPERO,
CRD42022346564)1 and used the Preferred Reporting Items
for Systematic Reviews and Meta-Analysis (PRISMA) Guidelines
for reporting (Moher et al., 2015).

2.1. Search strategy

We searched for original studies published in full up to
December 12, 2022, in PubMed, Scopus, and Ovid EMBASE. The
search string was created in PubMed and translated to the other
databases. It contained two blocks: one with terms for enlarged
perivascular spaces and one with terms for etiology or evolution of
MVPVS, combined by the Boolean operator “AND”. We searched
reference lists of included articles for additional eligible articles.

2.2. Inclusion and exclusion criteria

We included publications on human or animal data that
reported on any outcome related to etiology and/or temporal
dynamics of MVPVS. Reviews were included if they discussed
MVPVS etiologies. We excluded conference abstracts, non-English
articles, and publications that reiterated previously reported
quantitative data.

2.3. Study selection and data extraction

Titles and abstracts of studies were screened for their relevance
in the web-based application Rayyan by two reviewers (SO and BI)
(Ouzzani et al., 2016), followed by full-text screening. Subsequently,

1 https://www.crd.york.ac.uk/PROSPERO/
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FIGURE 1

MRI-visible perivascular spaces (MVPVS) on magnetic resonance
imaging (MRI). MVPVS are isointense to cerebrospinal fluid (CSF) on
MRI on both T1 w (left column, acquired at 7-tesla static magnetic
field strength) and T2 w/PD sequences (right column, acquired at
3-tesla static magnetic field strength) (white arrowheads). They
commonly occur in the centrum semiovale (A), deep white matter
(B), and basal ganglia (C). Insets show higher magnifications. All
images have an isotropic voxel size of 0.5 mm.

the following data were extracted: title, authors, publication year,
study design, disease, and number of included subjects as well as
data on MVPVS definition, etiology, and temporal dynamics.

2.4. Quality assessment

The quality of each study with ≥10 included subjects was
assessed against predefined criteria by two reviewers (SO and BI)
using an adjusted version of the Joanna Briggs Institute Critical
Appraisal Tools. Discrepancies were resolved by discussion.

2.5. Data synthesis and analysis

Only publications reporting correlation coefficients were
included in the meta-analysis, and only summary-level data were
used. We defined a priori that only diseases/conditions with
more than three publications would be considered for a meta-
analysis. Since MS and NMOSD are both neuroinflammatory
entities, we decided post-hoc to pool MS and NMOSD studies

for the meta-analysis to increase its statistical power. A random-
effects model was fitted to the data. The amount of heterogeneity
(i.e., τ2), was estimated using the DerSimonian-Laird estimator
(DerSimonian and Laird, 1986). In addition, the Q-test for
heterogeneity (Cochran, 1954) and the I2 statistic (Higgins and
Thompson, 2002) are reported. A two-tailed p-value < 0.05 was
considered statistically significant.

2.6. Publication bias

We defined a priori that we would assess publication bias if
more than 10 studies were eligible for the meta-analysis. Thus,
due to the limited number of studies eligible, we did not assess
publication bias.

3. Results

3.1. Eligible publications and general
study characteristics

3.1.1. Eligible studies
In total, 3,301 original publications were retrieved from our

comprehensive database search, and an additional 43 publications
from reference lists of reviews on related topics. After abstract and
title screening, 303 publications were eligible for full-text search.
After screening the full text of these studies, 140 articles (9% of
deduplicated references) were included for qualitative synthesis and
6 for quantitative synthesis (Figure 2). 109 publications assessed
or discussed potential etiologies of MVPVS (including 19 reviews).
31 publications assessed longitudinal evolution of MVPVS. The
median follow-up time of these studies was 36 months (range
1–204 months).

3.1.2. Risk of bias assessment
Most of the publications reported the definition of MVPVS,

mostly as being CSF-isointense longitudinal structures (91%
of publications), and reported an MRI protocol (92%). Most
publications also adjusted their analyses for age and sex (67%).
Thus, the overall evidence was at low risk of bias for these domains.

3.2. MVPVS imaging and assessment
methods

3.2.1. Magnetic resonance imaging parameters
Eligible publications used a variety of different MRI parameters

to visualize MVPVS. Applied static magnetic field strengths were
between 1.5 and 7 tesla. Most commonly acquired images were T1-
weighted (T1 w) and/or T2-weighted (T2 w), with a concomitant
T2 w-FLAIR to distinguish MVPVS from other imaging features
such as lacunes of presumed vascular origin (Wardlaw et al., 2013a).

3.2.2. Assessment methods for enlarged
perivascular spaces

There was a consensus to define MVPVS as linear to ovoid
imaging features with an MRI signal intensity similar to that of CSF.
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FIGURE 2

Flow chart of study inclusion. MVPVS, MRI-visible perivascular spaces.

Only one publication (Jiménez-Balado et al., 2020) particularly
mentioned that MVPVS were assessed in accordance with the
Standards for Reporting Vascular Changes on Neuroimaging
(STRIVE) criteria (Wardlaw et al., 2013a). Eight publications
did not report how MVPVS were defined. MVPVS were most
commonly assessed in the centrum semiovale, the basal ganglia, and
the brain stem.

Most studies assessed MVPVS using a manual scoring and/or
segmentation. However, a couple of studies used automated
segmentation methods using intensity-based thresholding
approaches (Ramirez et al., 2015; Wang et al., 2016; Boespflug
et al., 2018), vesselness filter approaches (Ballerini et al., 2018;
Sepehrband et al., 2019), combination of these two methods
(Spijkerman et al., 2022), or approaches based on machine-
learning (Park et al., 2016; Hou et al., 2017; Boutinaud et al., 2021;
Williamson et al., 2022) [reviewed in Moses et al. (2022)].

3.3. Etiology of MVPVS

We identified four partly overlapping hypothesized MVPVS
etiopathogeneses:

3.3.1. Hypothesis of interstitial fluid circulation
impairment

According to this proposed etiology, MVPVS emerge due
to locally impaired ISF dynamics. Insufficient clearance of ISF

via perivascular spaces could lead to fluid retention and thus
enlargement of perivascular spaces (Figure 3A). Four partly
overlapping mechanisms could lead to impaired ISF drainage via
perivascular spaces.

3.3.1.1. Vascular amyloid deposition hypothesis

Patients with cerebral amyloid angiopathy (CAA) are reported
to harbor higher MVPVS burden (i.e., the overall extent of MVPVS)
in the centrum semiovale compared to controls (Charidimou et al.,
2013; Shams et al., 2016). This observation has been corroborated
by data showing a spatial association between EPVS and CAA
severity in the overlying cortex (Van Veluw et al., 2016; Perosa
et al., 2022) which has led to the hypothesis that MVPVS could
be a marker of impaired ISF drainage due to upstream amyloid
deposits in the vessel wall. In fact, it has been suggested by DTI-
ALPS (diffusion tensor image analysis along the perivascular space),
an MRI-based approach (Taoka et al., 2017), that CAA is indeed
associated with lower MVPVS diffusivity (Xu et al., 2022). However,
by employing 11C-Pittsburgh B compound (PIB) PET (Banerjee
et al., 2017) or florbetaben/florbetapir PET (Sepehrband et al., 2021;
Wang et al., 2021; Jeong et al., 2022), the association between
MVPVS and CAA has not been confirmed in the Alzheimer’s
disease continuum, which commonly co-occurs with cerebral
amyloid angiopathy. In addition, two studies found an association
of MVPVS with tau by employing flortaucipir PET (Sepehrband
et al., 2021; Wang et al., 2021) or CSF analysis (Wang et al.,
2022). It is also noteworthy that it is still under debate whether
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FIGURE 3

Potential etiopathogenesis of MRI-visible perivascular spaces
(MVPVS). Four overarching and partly overlapping etiologies have
been suggested for MVPVS: (A) Impairment of ISF circulation,
potentially with abnormal blood-brain-barrier leakage (Fisher, 1979;
Wardlaw et al., 2013b); (B) spiral elongation of vessels/tortuous
vessels; (C) brain atrophy and/or perivascular myelin loss; and
(D) immune cell accumulation in the perivascular space. The
perivascular spaces are the compartments between the
parenchymal basement membrane of the glia limitans (formed by
compacted astrocyte foot processes and an overlying parenchymal
basement membrane, blue) and the endothelial basement
membrane of the blood vessel (purple) [reviewed in Ineichen et al.
(2022)].

MVPVS formation is the consequence or driver of vascular protein
deposition (Lynch et al., 2022).

3.3.1.2. Blood-brain-barrier leakage hypothesis

Small vessel disease could be a driver for the enlargement
of perivascular spaces. This has been referred to as the
blood-brain-barrier (BBB) leakage hypothesis (Fisher, 1979;
Wardlaw et al., 2013b; Brown et al., 2018; Bown et al.,
2022b). Vascular risk factors, such as hypertension, could lead
to endothelial dysfunction potentially resulting in BBB leakage,
rarefaction of adjacent white matter, pericyte loss, arteriolar
thrombosis, microbleeds, and finally failure of ISF drainage.

Vascular disease can be caused by hypertension, as shown
by early MRI and histopathology data (Braffman et al., 1988).
This vascular maladaptation could stem from continued pulsatile
barotrauma of affected blood vessels (Gutierrez et al., 2015).
However, the association between hypertension and centrum
semiovale MVPVS is ambiguous: whereas some studies suggest an
increased MVPVS burden in hypertension (Hurford et al., 2014;
Zhang et al., 2016; Arba et al., 2018; Lara et al., 2022), some studies
do not confirm such a relation (Potter et al., 2015b; Riba-Llena
et al., 2016) or show a decreased MVPVS burden in hypertension
(Charidimou et al., 2014). In fact, accumulating evidence indicates
that vascular risk factors such as hypertension are rather associated
with basal ganglia MVPVS (Klarenbeek et al., 2013), which was
corroborated by a recent meta-analysis (Francis et al., 2019).
A potential explanation for this observation stems from imaging
studies in hypertensive rats showing abnormal CSF flow dynamics
and potentially perivascular clearance (Mortensen et al., 2019).

Hypertension is linked to reduced cerebrovascular reactivity
(Hajjar et al., 2010). Cerebrovascular reactivity represents the
dynamic ability of cerebral blood vessels to adjust cerebral blood
flow in response to vasoactive stimuli (Liu et al., 2019). Reduced
cerebrovascular reactivity has been associated with higher MVPVS
burden (Blair et al., 2020; Kapoor et al., 2022) which has also been
substantiated in rodents (Hadaczek et al., 2006; Kress et al., 2014).
A 5-year prospective study employing flow MRI in 122 participants
found that white matter lesions and MVPVS precede the increase in
arterial pulsatility index, a measure of vascular resistance (Vikner
et al., 2022). However, additional data is required to elucidate
whether dilation of perivascular spaces are a consequence, cause,
or bystander phenomenon to cerebrovascular reactivity deficits
(Kapoor et al., 2022).

Whereas amplified vascular pulsations by hypertension could
lead to vascular damage (and consequently impaired ISF drainage),
reduced vascular pulsation could also lead to impaired ISF
dynamics, as shown in rodent studies (Iliff et al., 2013).
Interestingly, patients with carotid stenosis and thus potentially
lower downstream vascular pulsations show higher basal ganglia
MVPVS burden (Sahin et al., 2015) and diffusivity (Liu et al., 2021).

Intracerebral bleeding and stroke are ultimate consequences of
vascular disease. Along these lines, intracerebral bleeding has been
associated with MVPVS, as shown for symptomatic intracranial
hemorrhage (Best et al., 2020), cerebral microbleeds (Wang et al.,
2019), and CAA (Boulouis et al., 2017). In CAA, this only seems to
apply to centrum semiovale MVPVS (Boulouis et al., 2017), which
stands in contrast to basal ganglia MVPVS, as shown by florbetapir
PET (Raposo et al., 2019). Thus, this pathomechanism seems to
be more specific to CAA, while other factors might be relevant in
hypertensive intracerebral hemorrhages (Tsai et al., 2021).

Additional pathomechanisms for the enlargement of PVS
have been debated for ischemic pathology. Hemodynamically
compromised individuals with atherosclerotic large vessel disease
show higher levels of MVPVS (Mikami et al., 2018). Based on this
observation, it has been hypothesized that MVPVS could serve as
fluid absorbers in such a situation. In acute stroke, the data on
MVPVS are less consistent: MVPVS seem to either vanish (Mikami
et al., 2018) or increase (Zhang et al., 2016; Yu et al., 2022), possibly
depending on the exact timing and/or extent of tissue damage.
For example, in rodent stroke models, an early acute fluid inflow
into perivascular spaces has been observed, which appears to drive
formation of acute edema following ischemia (Mestre et al., 2020).
In addition, both post-stroke (Wardlaw et al., 2009) and older age
(Bake et al., 2009; Li et al., 2019) seem to be associated with BBB
dysfunction, which is in turn associated with MVPVS. This suggests
that MVPVS could indicate early BBB malfunction with abnormal
ISF dynamics.

3.3.1.3. Venous reflux and CSF-ISF efflux routes
Also, venous pathology has been associated with the

enlargement of PVS: disruption of deep medullary veins was
associated with increased burden of basal ganglia MVPVS (Zhang
et al., 2022). Similarly, cerebral venous reflux after hypertensive
intracerebral hemorrhages was associated with a larger number of
basal ganglia MVPVS (Tsai et al., 2022).

It has also been speculated that the MVPVS enlargement
in long-duration space travelers (Barisano et al., 2022a; Hupfeld
et al., 2022) may be caused by venous pathology (Wostyn et al.,
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2022a,b). Concretely, a cephalad venous fluid shift would result
in impaired cerebral venous outflow and thus reduced CSF/ISF
dynamics. Consequently, the CSF may stagnate and accumulate at
periarterial sites with dilation of the periarterial spaces. Along these
lines, a brain upward shift could also obstruct major CSF-ISF efflux
routes and/or dural lymphatics such as the superior sagittal sinus
or bridging veins (Barisano et al., 2022a,b). Compromised CSF-ISF
efflux by clogging of blood degradation might also cause MVPVS
enlargement after subarachnoid hemorrhage (Kim J. et al., 2022).

3.3.1.4. Sleep and time of day

Poorer sleep quality has been associated with increased MVPVS
burden in a variety of diseases and also healthy adults (Berezuk
et al., 2015; Baril et al., 2022; Del Brutto et al., 2022a; Wang et al.,
2022). Although the pathomechanism behind this link is still under
debate, sleep has been speculated to be a critical factor in CNS
fluid dynamics (Brown et al., 2018). With this, poor sleep could
contribute to less efficient ISF-CSF drainage (Baril et al., 2022). But
also in individuals with stable sleep habits, MVPVS volumes can
increase at later times of the day, possibly mediated by higher fluid
amount within the MVPVS (Barisano et al., 2021).

3.3.2. Hypothesis on spiral elongation of
vessels/tortuous vessels

Although no direct evidence supports this hypothesis, it has
been speculated that spiral elongation of arterial vessels could result
in MVPVS (Wardlaw et al., 2013b; Ruchoux et al., 2021). Increasing
space requirements and/or vascular pulsations of tortuous arteries
could lead to dilation of perivascular spaces (Figure 3B). A similar
mechanism has been proposed for MVPVS of the anterior temporal
lobe: vascular tortuosity could lead to compression of small
communicating fluid channels resulting in opercular perivascular
cysts (Salzman et al., 2005; McArdle et al., 2020). Here, a tortuous
middle cerebral artery branch could compress communicating fluid
channels between the subarachnoid and perivascular spaces in the
adjacent cortex.

It has also been suggested that ageing is associated with
increased vascular tortuosity, which would further emphasize the
link between aging and MVPVS (Spangler et al., 1994; Brown et al.,
2002; Thore et al., 2007).

3.3.3. Hypothesis on brain atrophy and
perivascular myelin loss

MRI-visible perivascular spaces could be a sign of focal ex vacuo
atrophy and/or demyelination of adjacent brain tissue (Groeschel
et al., 2006; Wardlaw et al., 2013b). Tissue loss surrounding the
perivascular compartment would result in secondary dilation of
perivascular spaces (Figure 3C). If this were the case, one could
expect that higher MVPVS burden would be associated with lower
brain volume measures. Such an association has mostly been
studied in stroke, Alzheimer’s dementia, multiple sclerosis, and
healthy individuals, yet the data across these studies is inconsistent.
Whereas some publications report a negative correlation between
MVPVS and various brain volume measures, e.g., in stroke (Potter
et al., 2015b; Wang et al., 2016; Zhang et al., 2016), Alzheimer’s
disease (Gertje et al., 2021), MS (Kilsdonk et al., 2015; Liu et al.,
2022), NMOSD (Cacciaguerra et al., 2022), or health (Chen et al.,
2011; Sim et al., 2020), several studies do not confirm such an

association (stroke (Arba et al., 2018), Alzheimer’s disease (Chen
et al., 2011), MS (Wuerfel et al., 2008; Conforti et al., 2014, 2016;
Favaretto et al., 2017; Cavallari et al., 2018; Wooliscroft et al., 2020;
Kolbe et al., 2022), and health (Huang et al., 2021)).

Based on this inconsistent data, we meta-analyzed correlation
in six studies in MS (Conforti et al., 2014; Kilsdonk et al.,
2015; Favaretto et al., 2017; Kolbe et al., 2022; Liu et al., 2022)
and NMOSD (Cacciaguerra et al., 2022) reporting correlation
coefficients between MVPVS and brain volume measures
(including a total of 258 MS patients and 14 NMOSD patients). The
employed MRI parameters for the included studies are summarized
in Table 1 (the remaining studies could not be included, either
due to missing quantitative data or an insufficient number of
publications per disease). In this meta-analysis, we did not identify
a significant (negative) correlation between MVPVS and brain
volume [R: −0.15 (95%-CI −0.40–0.11)] (Figure 4). However,
there was substantial heterogeneity between studies assessing
whole brain MVPVS (I2 = 77%) (Higgins and Thompson, 2002).
Of note, age was not a significant moderator for MVPVS in the
meta-analysis (p = 0.28) (age range between 35 and 49). The effect
size did not change in a meta-analysis only comprising studies
in MS [R = −0.12 (95%-CI −0.40–0.17)] or when applying the
Knapp-Hartung method for the meta-analysis.

3.3.4. Hypothesis on immune cell accumulation in
the perivascular space

A relatively small longitudinal study in MS patients has
speculated that MVPVS dilation could represent perivascular
accumulation of immune cells prior to a neuroinflammatory
insult which could result in enlargement of the perivascular space
(Wuerfel et al., 2008; Figure 3D). This notion was based on data
showing higher MVPVS volumes in MS patients with gadolinium-
enhancing MRI lesions. Although MS lesions form in a perivenular
configuration that can be imaged via specific types of susceptibility-
sensitive MRI (Sati et al., 2016), findings showing perivascular cell
accumulation in MVPVS in MS have not been reproduced to date
(Achiron and Faibel, 2002; Cavallari et al., 2018; Kolbe et al., 2022)
[reviewed in Granberg et al. (2020)].

3.4. Temporal evolution of MVPVS

3.4.1. Neuroinflammatory diseases
Two studies investigated the temporal dynamics of MVPVS

in MS. One study had a subset of 18 MS patients who were
prospectively followed monthly for 1 year (Wuerfel et al., 2008).
These MS patients showed higher MVPVS volumes in MRI scans
positive for contrast-enhancing lesions compared to scans without
such lesions. MVPVS volumes did not decrease in patients who
shifted from a state with to a state without contrast-enhancing
lesions. The other study comprised 59 MS patients with a mean
follow-up time of 20 months (Kolbe et al., 2022). Across the
cohort, the number of MVPVS increased in the centrum semiovale
(+4.1 MVPVS per year) but not in the basal ganglia or midbrain,
and MVPVS increase in the midbrain was associated with white
matter lesion volume change. Higher MVPVS numbers were not
associated with prospective brain volume loss, and MVPVS change
was not associated with contrast-enhancing lesions, brain volume
change, or physical disability of MS patients.
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TABLE 1 Employed magnetic resonance imaging (MRI) parameters of studies included in the meta-analysis.

Study B0 magnetic
field strength

Sequences to assess
MVPVS

MVPVS assessment
method

Image resolution

Cacciaguerra et al., 2022 (NMOSD) 3T 3D T2 w Potter scale (Potter et al., 2015a)
(semiquantitative)

1 mm isotropic

Conforti et al., 2014 (MS) 3T 2D T2 w-PD fast spin echo, 2D
T2 w-FLAIR, 3D T1 w spoiled
gradient-recalled

manual/semi-automatic assessment
using MIPAV (MVPVS number, area,
and volume)

T1 w: 1 × 1.2 × 1.2 mm

Favaretto et al., 2017 (MS) 3T 3D T1 w, 3D T2 w-FLAIR, 2D
phase sensitive inversion recovery

Manual count/segmentation using
ITK-SNAP (MVPVS number and
volume)

T1 w and T2 w-FLAIR: 1 mm
isotropic, 2D PSIR:
1 × 1 × 3 mm

Kilsdonk et al., 2015 (MS) 7T 3D T1 w Manual count in 5 brain regions using
MIPAV (MVPVS number)

0.8 mm isotropic (nominal)

Kolbe et al., 2022 (MS) 3T 2D T2 w fast spin echo Potter scale (Potter et al., 2015a)
(semiquantitative)

0.8 × 0.8 × 5 mm

Liu et al., 2022 (MS) 3T T2 w Potter scale (Potter et al., 2015a)
(semiquantitative)

Not reported

MVPVS, MRI-visible perivascular spaces; FLAIR, fluid-attenuated inversion recovery; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder; PD, proton density; PSIR,
phase sensitive inversion recovery.

MRI-visible perivascular spaces changes have also been studied
in primary angiitis of the central nervous system (PACNS)
(Campi et al., 2001). In a small study in patients with contrast-
enhancing parenchymal lesions, 4/6 patients showed MVPVS with
concomitant contrast enhancement which subsequently regressed
during the follow-up (12–60 months).

3.4.2. Vascular diseases
In a cohort with hypertension, 23 of 233 individuals (10%)

showed increasing numbers of MVPVS in the basal ganglia over
a 4-year follow-up period (Jiménez-Balado et al., 2020). Similar
rates of basal ganglia MVPVS progression have been observed after
subarachnoid hemorrhage (6%) (Kim J. et al., 2022). Interestingly,
the MVPVS progression rates were much higher in the centrum
semiovale after subarachnoid hemorrhage (31%).

3.4.3. Metabolic disorders
Two studies investigated MVPVS changes in

mucopolysaccharidoses. The initial study found that corpus
callosum MVPVS increased in 3 of 18 patients, decreased in 2
patients, and remained stable in the remaining 13 patients during
a follow-up period of 37 months (Manara et al., 2011). MVPVS
in CNS locations outside the corpus callosum were stable in most
patients (17/19 patients, 89%). Similar MVPVS dynamics were
reported in the other study (Alqahtani et al., 2014).

3.4.4. Tumefactive MVPVS and opercular
perivascular cysts

In contrast to MVPVS, which can be observed in healthy
individuals of all age groups, opercular perivascular cysts (type IV
MVPVS) are much rarer (Lim et al., 2015). This MVPVS subtype
mostly occurs in the anterior temporal lobe and less commonly
in the frontal operculum and can be associated with perilesional
T2 signal (McArdle et al., 2020). A recent case series reported on
18 individuals with opercular perivascular cysts (McArdle et al.,
2020): of 13 subjects with follow-up ranging from 2 months to
approximately 10 years, 11 exhibited stable MVPVS dimensions
while 1 showed a slight increase in MVPVS volume within a
7-month period.

Very large MVPVS, referred to as giant or tumefactive MVPVS,
can also occur in other regions of the CNS, including the basal
ganglia (Tsutsumi et al., 2011), the centrum semiovale (Taniguchi
et al., 2017), the hippocampus (Rivet et al., 2017), the corpus
callosum (Manara et al., 2010), and the midbrain (Rocha et al.,
2013). Several case reports have confirmed the mostly stable nature
of these structures (Ogawa et al., 1995; Sawada et al., 1999; Flors
et al., 2010; Tsutsumi et al., 2011; Sankararaman et al., 2013;
Tseng et al., 2013; Taniguchi et al., 2017), some of them with
follow-up periods of up to 7 years (Manara et al., 2010). However,
a subset of these MVPVS can enlarge over time (Mehta et al.,
2013; Gopinath et al., 2018; Yamaguchi et al., 2021). This can
result in compression of adjacent CNS structures with concomitant
neurological disorders such as non-communicating hydrocephalus
(Papayannis et al., 2003), necessitating surgical decompression
(Rocha et al., 2013; Rivet et al., 2017). A systematic review
summarized MRI findings from 164 cases with tumefactive MVPVS
(Kwee and Kwee, 2019): whereas most tumefactive basal ganglia
MVPVS remained stable (23/24 cases), 7 of 64 participants (11%)
showed enlargement of MVPVS in the pontomesencephalic region.

3.4.5. Healthy individuals
A recent study assessed MVPVS progression in the Atahualpa

project cohort, which comprises healthy community-dwelling
elderly Ecuadorian (mean age: 66). Within more than 1,700 patient-
years and a mean follow-up of 6.5 years, 56 of 263 individuals (21%)
showed mostly mild MVPVS progression (Del Brutto et al., 2022b).
Another community-based study followed 191 older subjects
(mean age: 68) over 7 years; 65 of the study participants (34%)
showed MVPVS progression during the follow-up time (Xia et al.,
2020).

4. Discussion

4.1. Main findings

This study aimed at systematically summarizing potential
etiologies of MVPVS as well as their temporal dynamics. Based on
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FIGURE 4

Forest plot of correlation coefficients between MRI-visible perivascular spaces (MVPVS) and brain volume measures. Pooled analyses of studies
comparing the correlation between MVPVS and brain volume measures shows no statistically significant correlation (a negative correlation indicates
that higher MVPVS levels correlate with lower brain volume measures). Correlation coefficients were extracted and pooled using the random effects
DerSimonian-Laird method. CI, confidence interval; MS, multiple sclerosis; NMOSD, neuromyelitis optica spectrum disorder.

a comprehensive literature search, we identified four major, partly
overlapping hypothesized etiologies of MVPVS (Figure 4): (1)
Impairment of ISF circulation, potentially driven by deposition of
protein aggregates, arterial/venous pathology, sleep disturbances,
and disruption of CSF-ISF efflux routes; (2) Spiral elongation of
arteries; (3) Brain atrophy and/or perivascular myelin loss; and (4)
Immune cell accumulation in the perivascular space. Overall, only a
few studies have investigated temporal dynamics of MVPVS. These
studies mainly show that MVPVS present with limited evolution
over time.

4.2. Findings in the context of existing
evidence

Although these four proposed etiologies constitute different
pathomechanisms for MVPVS, they are partly overlapping. For
example, chronic hypertension can cause both BBB damage
(Ungvari et al., 2021) and vascular tortuosity (Ciuricã et al.,
2019), and hypertension can also be associated with brain atrophy
(Wiseman et al., 2004). Nevertheless, it is likely that these etiologies
contribute differently to MVPVS emergence and/or dynamics in
different neurological entities. For example, in vascular diseases
such as small vessel disease and stroke, impaired dynamics of ISF
could be a main driver of MVPVS formation, e.g., via endothelial
dysfunction, vessel-wall thickening, luminal occlusion, and BBB
leakage (Wardlaw et al., 2013b). In MS or other neuroinflammatory
diseases, immune cell accumulation could be a possible etiology
(Wuerfel et al., 2008), yet this is a highly controversial hypothesis
for which there is insufficient evidence to date (Granberg et al.,
2020).

In aging, which has consistently been associated with increased
MVPVS burden (Zong et al., 2020; Barisano et al., 2021; Kim H. G.
et al., 2022; Lara et al., 2022), ex vacuo brain atrophy (Wardlaw
et al., 2020), and vascular tortuosity (Spangler et al., 1994; Brown
et al., 2002; Thore et al., 2007) could be more prominent drivers for
MVPVS emergence. In addition, increasing exposure to vascular
risk factors could also contribute to enlargement of MVPVS in
aging (Lara et al., 2022). Of note, however, in our meta-analysis,
there was no significant correlation between MVPVS and brain
volumes.

MRI-visible perivascular spaces are also a common
neuroimaging finding in younger (Piantino et al., 2020; Zou
et al., 2022) and healthy individuals (Del Brutto et al., 2022b; Kim
H. G. et al., 2022). In this population, tortuosity of arterial blood
vessels could be an etiology for MVPVS. Furthermore, a heritable
component of MVPVS burden has been suggested (Luo et al., 2017;
Barisano et al., 2021) [reviewed in Bown et al. (2022a)].

It is generally assumed that MVPVS mostly adjoin arterial
vessels (Ineichen et al., 2022), which is bolstered by small imaging
studies (Bouvy et al., 2014; George et al., 2021). However, structural
differences between periarterial and perivenous spaces are scarcely
investigated, and it thus remains unclear to what degree these
presumable etiologies contribute to MVPVS emergence within
arteries or veins. It can be speculated that arterial alterations,
such as hypertension or vascular tortuosity would contribute to
the enlargement of periarterial spaces only, whereas ex vacuo
atrophy would contribute to enlargement at both sites. Along these
lines, different mechanisms could contribute to MVPVS emergence
in the basal ganglia or the supratentorial white matter, but
again, structural MVPVS differences between these two anatomical
regions are insufficiently understood. Additionally, it has been
suggested that basal ganglia MVPVS are associated with vascular
pathology such as hypertension (Klarenbeek et al., 2013; Francis
et al., 2019) or venous reflux (Tsai et al., 2022; Zhang et al., 2022),
whereas centrum semiovale MVPVS are associated with amyloid
angiopathy (Boulouis et al., 2017).

Regarding MVPVS evolution over time, only a few and mostly
small studies assessed temporal dynamics of MVPVS. Based on
these limited data, it seems that number of MVPVS are for the
most part stable over relatively long observation periods (median
follow-up time of eligible studies was 36 months). However, in
a minority of cases, they might increase in number and size
with aging. Additional mechanisms could contribute to MVPVS
dynamics in neuroinflammatory diseases such as PACNS (Campi
et al., 2001).

4.3. Limitations

Our study has some limitations: First, a wide variety of imaging
methods and MVPVS evaluation methods have been employed
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to assess MVPVS. Even within studies, the interrater agreement
for MVPVS detection can be moderate to substantial (Cohen’s
kappa: 0:58–0.91) (Wang et al., 2019; Best et al., 2020; Javierre-
Petit et al., 2020; Ciampa et al., 2021; Song et al., 2021). This
heterogeneity could have biased our narrative summary. Second,
for assessing the correlation between MVPVS and brain atrophy,
we pooled studies with various methodological backgrounds for
summary estimates (Table 1), and the meta-analysis could only
be conducted for a subgroup of patients with neuroinflammatory
diseases. Nonetheless, we mitigated this partly by only including
studies that reported correlation coefficients, i.e., uniform outcome
measures, and by applying a random effect model meta-analysis.
Third, it is noteworthy that only very few studies (Van Veluw
et al., 2016) provided pathology data for assessing MVPVS
etiopathogenesis, and the hypotheses presented even in these
studies were mostly based on imaging data, which could also bias
the conclusions drawn. Fourth, only a few animal studies assessing
etiopathogenesis of enlarged perivascular spaces were eligible. With
this, the proposed MVPVS etiopathogeneses remain speculative
and further data is warranted to corroborate their validity.

5. Conclusion

Our study summarizes potential etiologies (Figure 4) and
temporal dynamics of MVPVS. Although a variety of etiologies
have been proposed, they are only partly supported by actual data.
Thus, advanced MRI methods, e.g., to monitor fluid dynamics
within perivascular spaces, as well as ultra-high-field MRI to gain
high-resolution insights into perivascular spaces, could give more
detailed understanding of MVPVS etiopathogenesis (Ineichen
et al., 2022). In addition, larger studies with longer follow-up times
and harmonized MRI across sites investigating temporal MVPVS
dynamics are warranted, preferentially boosted by automated and
thus less biased detection of MVPVS. Finally, correlating MVPVS
with their corresponding histopathology could give key insights
into their pathophysiology.
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