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Brain fog is a kind ofmental problem, similar to chronic fatigue syndrome, and appears

about 3 months after the infection with COVID-19 and lasts up to 9 months. The

maximum magnitude of the third wave of COVID-19 in Poland was in April 2021.

The research referred here aimed at carrying out the investigation comprising the

electrophysiological analysis of the patients who su�ered from COVID-19 and had

symptoms of brain fog (sub-cohort A), su�ered from COVID-19 and did not have

symptoms of brain fog (sub-cohort B), and the control group that had no COVID-19

and no symptoms (sub-cohort C). The aim of this article was to examine whether

there are di�erences in the brain cortical activity of these three sub-cohorts and, if

possible di�erentiate and classify them using the machine-learning tools. he dense

array electroencephalographic amplifier with 256 electrodes was used for recordings.

The event-related potentials were chosen as we expected to find the di�erences in

the patients’ responses to three di�erent mental tasks arranged in the experiments

commonly known in experimental psychology: face recognition, digit span, and

task switching. These potentials were plotted for all three patients’ sub-cohorts and

all three experiments. The cross-correlation method was used to find di�erences,

and, in fact, such di�erences manifested themselves in the shape of event-related

potentials on the cognitive electrodes. The discussion of such di�erences will be

presented; however, an explanation of such di�erenceswould require the recruitment

of a much larger cohort. In the classification problem, the avalanche analysis for

feature extractions from the resting state signal and linear discriminant analysis for

classification were used. The di�erences between sub-cohorts in such signals were

expected to be found. Machine-learning tools were used, as finding the di�erences

with eyes seemed impossible. Indeed, the A&B vs. C, B&C vs. A, A vs. B, A vs.

C, and B vs. C classification tasks were performed, and the e�ciency of around

60–70% was achieved. In future, probably there will be pandemics again due to the

imbalance in the natural environment, resulting in the decreasing number of species,

temperature increase, and climate change-generated migrations. The research can

help to predict brain fog after the COVID-19 recovery and prepare the patients for

better convalescence. Shortening the time of brain fog recovery will be beneficial not

only for the patients but also for social conditions.
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1. Introduction

The COVID-19 pandemic has changed the functioning of whole

societies and post-pandemic economic and social problems are going

tomanifest themselves probably formany years when it is over (Ciotti

et al., 2020). The most common symptoms of COVID-19 comprise

cough, fever, breathing problems, and fatigue. Nevertheless, there is

a wide range of neurological symptoms associated with COVID-19

in up to 25% of those who survived the disease. One of the most

often reported is the so-called brain fog (Ocon, 2013; Kovalchuk

and Kolb, 2017; Kverno, 2021; Asadi-Pooya et al., 2022; Callan et al.,

2022; Hugon et al., 2022; Krishnan et al., 2022). It appears 2–3

months after the infection and can last up to 6 months or sometimes

longer. It is indexed neither in ICD-10 nor in DSM-V; however, the

symptoms resemble some of those characteristics of CFS (chronic

fatigue syndrome) (Afari and Buchwald, 2003), which are diagnosed

as follows Chen (1986), Kroenke et al. (1988), David et al. (1990),

Bates et al. (1993), and Pawlikowska et al. (1994):

• Memory problems.

• Inability to focus or concentrate.

• Difficulty in processing information.

• Trouble in problem-solving.

• Feelings of confusion or disorientation.

• Having a hard time while calculating.

• Diminished visual and spatial skills.

• Trouble in finding proper words.

• Trouble in recognizing known faces.

As Ross mentions in JAMA (Ross et al., 2004), chronic

fatigue syndrome (CFS) is a challenge faced by the society and

medical doctors. There are at least four different and well-accepted

operational definitions of CFS (Holmes et al., 1988; Lloyd et al., 1990;

Sharpe, 1991; Fukuda et al., 1994); however, all rely on the subjective

reports, and there are no objective diagnostic discoveries. So it is

generally difficult to define official CFS symptoms; however, it seems

that many of them are similar as those reported by the patients with

post-COVID-19 brain fog (Ross et al., 2004; Ocon, 2013; Paul et al.,

2021; Theoharides et al., 2021; Wostyn, 2021; Asadi-Pooya et al.,

2022; Callan et al., 2022; Hugon et al., 2022; Kopańska et al., 2022;

Krishnan et al., 2022; Pierce et al., 2022; Premraj et al., 2022).

The etiology of brain fog in patients who coped with COVID-

19 is still unknown. Some scientists postulate that SARS-CoV-

2 that leads to infection also causes mitochondrial dysfunction

(Pierce et al., 2022) in the brain, resulting in the viral genome

and mitochondrial toxic interaction causing brain infection.

The mitochondria are cellular structures that are crucial for

understanding the pathophysiology and treatment of post-COVID-

19 syndrome fatigue. Mitochondrial bioenergetic dysfunction may

lead to anaerobic glycolysis to compensate for dysfunctional oxidative

phosphorylation, as stated by Pierce (Pierce et al., 2022).

Brain cognitive functions are energy-sensitive and can be

functionally altered or disrupted by the energy-requiring viral

genome replication in the brain. The other mechanisms can

also cause brain fog in COVID-19: inflammation, reduced tissue

oxygenation, and reduced blood flow. This needs further validation

at present (Pierce et al., 2022).

To the best of our knowledge, there was no systematic research

involving investigations of brain cortical activity in the patients

with post-COVID-19 brain fog symptoms using the dense array

electroencephalography. We postulated that there may be a visible

difference between the brain cortical activity, cognitive function

disorders, and COVID-19, and that in future finding such a difference

can help better understand the brain fog phenomena among those

patients who got exposed, are recovering, and are coming back to

their social activities.

In order to verify our hypotheses, we investigated a cohort of 120

patients which is divided into three sub-cohorts: those who suffered

from COVID-19 and have symptoms of brain fog (sub-cohort A),

suffered from COVID-19 and have no symptoms of brain fog (sub-

cohort B), and the control group that had no COVID-19 and no

symptoms (sub-cohort C).

We have selected participants for the sub-cohorts by surveying

prospective participants and asking questions about their exposure

to COVID-19, the time they suffered from the above-mentioned

symptoms, and if they had at least three of them, we selected them

for the sub-cohort A. If they had not any of the reported symptoms

of brain fog and suffered from COVID-19 not earlier than 9 months

before the EEG recordings, they were assigned for the sub-cohort

B, and analogically if participants had neither reported COVID-19

nor symptoms of brain fog, they were assigned for the sub-cohort

C. Assignment for the sub-cohorts A, B, and C were performed

under the strict supervision of a medical doctor with experience in

COVID-19 and post-COVID-19 patients’ treatment.

Then we selected three commonly known tests with a large

number of variants and modifications in experimental psychology

that were supposed to be associated with typical symptoms of brain

fog and were supposed to manifest some differences in the brain

cortical activity. Those tests included: digit span (Lefebvre et al.,

2005; Ostrosky-Solís and Lozano, 2006; Leung et al., 2011; Woods

et al., 2011), face recognition (Graham and Cabeza, 2001; Kaufmann

et al., 2009; Wiese, 2012; Guillaume and Tiberghien, 2013), and task

switching (Astle et al., 2006; Swainson et al., 2006; Fong et al., 2014;

Gajewski et al., 2018).

The face recognition test is used to measure the ability to

distinguish known faces from unknown ones, often without memory

components, by asking participants whether they saw the displayed

face before displaying new and shown-before faces one by another

many times. The brain fog symptoms that were expected to manifest

themselves during the face recognition experiment except the others:

diminished visual and spatial skills, feelings of confusion and

disorientation, and recognition of known faces in our opinion is

associated with problems in finding names to objects.

The digit span test is used to measure working memory number

storage capacity. The participants can see or hear a sequence of

numerical digits and are asked to recall the sequence correctly, with

increasingly longer sequences being tested in each trial. The brain

fog symptoms that were expected to manifest themselves during the

digit-span experiment were mainly: memory problems and inability

to focus and concentrate.

The task-switching test is used to measure the ability to switch

attention from one task to another by doing tasks A and B with

being made to adapt quickly from one situation to another. The brain

fog symptoms that were expected to manifest during task-switching
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experiment themselves were mainly as follows: troubles in problem-

solving and having a hard time while calculating.

In our opinion, the selection of these tests was adequate

and linked, in the above-mentioned way, with the brain fog

syndrome, and we hoped to connect with the ERP signal information

using them.

All participants of the research completed all three tests and

implemented them in such a way that it was possible to calculate and

plot ERP for each so-called cognitive electrode of the 256 electrode

dense array EEG amplifier, which was used for the recordings.

In addition, the 5-min-long resting state signal was acquired.

Using the avalanche technique described by Oren Shriki (Shriki et al.,

2013) for feature extraction, the crucial electrodes were selected in

the resting state signal and their activity was used to train the linear

discriminant analysis (LDA) algorithms (Izenman, 2013).

The neural avalanches analysis identifies spatiotemporal cascades

of neuronal activity in the data and is used to assess several aspects

of cortical dynamics (Shriki et al., 2013). In particular, it is useful to

characterize deviations in the balance of excitation and inhibition,

and we were interested in probing the effect of COVID-19 on this

balance and look for differences among the cohorts. Two features

were extracted from the avalanche analysis: the branching parameter

and the exponent of the avalanche size distribution.

Multiple neurological disorders are characterized by changes in

the excitation–inhibition balance, e.g., autism and mild cognitive

impairment (MCI). Thus, we were interested in checking whether

the avalanche analysis exhibits differences among the cohorts because

this could suggest possible interpretations. The avalanche analysis

is non-linear and extracts information that does not exist in single-

channel spectral features. Furthermore, using single-channel power-

based features could easily result in a high-dimensional feature

vector, which would in turn lead to overfitting in the classifier

due to the limited number of datasets. In this sense, the avalanche

analysis allowed us to extract a low-dimensional feature vector that

characterizes the whole electrode array.

It will be proved that, it is possible to distinguish sub-cohorts

based only on the resting state with promising and satisfactory LDA

classifier efficiency.

The main contribution of this paper is showing the evidence of

differences in the ERP shape among 3 group of subjects (A - the

patients who suffered fromCOVID-19 and had brain fog symptom; B

- suffered from COVID-19 and had no brain fog symptoms; C - were

healthy and never COVID-19-ill) during solving three symptoms-

finding-oriented tasks. It was also found in this study that it is

possible to classify the resting state signal using neural avalanches

analysis for feature extraction and linear discriminant analysis (LDA)

(Izenman, 2013). After this first analysis, we can expect that there

are permanent or long-lasting biomarkers in the EEG signal that are

the characteristics of the brain fog phenomena. The relevance of this

study can be also manifested in the idea of an EEG-based protocol of

finding new, still unknown, cortical changes in the patients after the

COVID-19 episode.

2. Materials and methods

For all those experiments, permission from the Bioethical

Commission of Maria Curie-Sklodowska University in Lublin,

Poland was granted.

2.1. Cohort recruitment

First, we recruited 120 participants, mainly among the students of

Computer Science and Cognitive Science at Maria Curie-Sklodowska

University in Lublin, along with the students there were some

members of their families selected as well. There were 90 men and

30 women aged from 20 to 67, the average age was 24.88, and the

standard deviation of 9.57.

The process of the recruitment under the supervision of an

experienced medical doctor for COVID-19 treatment was already

described in Introduction.

One should remember that the experimental cohort consisted of

three sub-cohorts:

• A: A total of 40 post-COVID-19 subjects with serious symptoms

of brain fog.

• B: A total of 40 post-COVID-19 subjects without symptoms of

brain fog.

• C: A total of 40 healthy subjects who did not suffer from

COVID-19, without any symptoms of the brain fog.

We have made some attempts to find out that brain fog was

related to the COVID-19 infection and not to other diseases. The

participants were asked to declare serious diseases like real CFS

(present before COVID-19), cancer, and all other chronic diseases

including mental disorders, and if they declared so, they were

automatically excluded from the cohort that being built. In addition,

we did our best to ensure that in the control cohort, there were no

COVID-19 participants selected as they declared that neither they

had ever COVID-19 symptoms, nor their family members, nor close

relatives, and some of them had tests results.

2.2. EEG recordings

All EEG recordings were made using the 256-channel dens array

EEG amplifier with HydroCel GSN 130 Geodesic Sensor Nets (see

Figure 1) manufactured by Electrical Geodesic Systems (EGI)1 with

250 Hz sampling frequency. The amplifier works with the Net Station

4.5.4 software and SmartEye 5.9.7 for gaze calibration and eye-

blinking or saccadic artifact removal. The lab is also equipped with

geodesic photogrammetry system (GPS) working under control of

the Net Local 1.00.00 and GeoSource 2.0. The ERP experiments are

designed in the PST e-Prime 2.0.8.90.

2.3. ERP experiments

All subjects participated in three ERP, also mentioned in the

Introduction, experiments on the same day in the sequence as follows:

2.3.1. Face recognition
In this experiment, the participants were shown three faces to

remember. They were presented on the screen for 6 s, one by one.

Later there were repeated random sequences of 12 faces (including

1 500 East 4th Ave. Suite 100, Eugene, OR 97401, USA.
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FIGURE 1

Electrodes placement on HydroCel GSN 130 Geodesic Sensor Net (Geodesics, 2007).

those to be remembered) and the participants were asked to click on

the response pad each time they saw the known face. There were in

total 270 trials in the experiment. The experiment continued until the

whole sequence of faces was presented.

2.3.2. Digit span
The participants were asked to remember what they heard in

earphones and then recall from their memory by typing on the

keyboard the sequences of numbers from 1 to 10. At the beginning,

there were three-digit long sequences that increased in length by one

up to 10-digit long sequences, after being repeated several times each

time before the increase the length of the sequence by 1. In detail,

the digits were presented as follows: 10 × 3-digit sequences, 10 × 4-

digot, 5× 5,6,7 an 8-digit sequences, 9× 9-digit sequences, and 15×

10-digit sequences. In one n-digit sequence series, there were always

different sequences. There were in total 64 trials in this experiment.

In some cases, the experiment was repeated from the beginning until

30 errors in the sequence recall were registered.

2.3.3. Task switching
In the task-switching experiment, there was a computer screen

divided into the top section and the bottom section. Each time

there was a letter and a number shown either in the top or in the

bottom section of the screen. The participants were asked to click

button on the response pad if there was a vowel in the top section

of the screen or if there was an even number in the bottom of

the screen. There were in total 150 trials in this experiment. All

participants declared that they knewwhat the vowel and even number

were. The experiment continued until 75 vowels and 75 numbers

were presented.

2.3.4. Resting state
Then patients were asked to sit with closed eyes and do not move

in order to record the 5 min of resting state signal.

After the resting state phase, the photograph using

photogrammetry station was taken for the future

source-localization experiment.

2.4. Preprocessing pipelines

2.4.1. For ERP
The collected signal was preprocessed using the following

procedures and parameters set on the Net Station software: filtration
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with 0.1 Hz high-pass and 30 Hz low-pass filters; segmentation with

parameters in the range of 200–1,000 ms; automatic and in some

cases manual artifact removal; and averaging and baseline correction

beginning at 200 ms and lasting for 200 ms (see Figure 2).

Our dense array amplifier recorded the ERP signal from all 256

electrodes. However, we expected to find differences on the so-called

cognitive electrodes based on our previous experience in the cognitive

processing EEG signal analysis (Kawiak et al., 2020; Kwasniewicz

et al., 2021; Schneider et al., 2022). These electrodes are described

in the EGI 256-channel cap specification as best for cognitive ERP

observations, covering the scalp regularly, and numbered as follows:

E98, E99, E100, E101, E108, E109, E110, E116, E117, E118, E119,

E124, E125, E126, E127, E128, E129, E137, E138, E139, E140, E141,

E149, E150, E151, and E152 (see Figure 1).

Even though the cohort consisted of 120 participants, its

division into three sub-cohorts made it hard to receive smooth ERP

curves. In such cases, a wide range of smoothing filters can be

applied to different phases of data preparation, preprocessing, and

cleaning (Kawala-Sterniuk et al., 2020). So, to generate better plots

additionally, we manually removed the rest of the artifacts and the

noise was reduced using polynomial smoothing.

We applied the grand average cross-correlation described in

Luck (2005) for the ERP calculations and the R 4.1.3 version of the

developer’s statistical environment.

2.4.2. For classification
All recordings went through the same preprocessing pipeline

performed in Matlab, using the EEGLAB toolbox and the custom

code. At first, the high-pass filter (1 Hz cutoff) was applied, and

then non-scalp electrodes (radius > 0.5) leaving 137 channels

were removed. The line noise (45–55 Hz) was removed using the

CleanLine EEGLAB extension. Consequently, the ASR algorithm

using clean_rawdata EEGLAB extension was carried out and

down-sampled the data to 125 Hz (origin sampling rate is 250

Hz) and channels re-reference to mean was performed. We

applied ICA and EEGLAB IC Labels procedures. The resulting

ICs identified as muscles, eyes or heart activities as well as line

and channel noise were removed. Finally, a low pass filter was

applied (40 Hz).

2.4.3. Features extraction for classification
Due to for the relatively large number of electrodes, we conducted

the neural avalanches analysis (Shriki et al., 2013; Yu et al., 2013;

Lombardi et al., 2021), narrating the cortical dynamic.

The analysis followed in Arviv et al. (2015), with some

adjustments, in relation to different methods, channels number and

sampling rate. The SD thresholds were set to positive and negative

2.7. We applied the analysis to the C sub-cohort with 10 different

time windows, 1t of 8 ms, and obtained the mean α and σ . We

found that 31t of 24 ms yield agreeable results (α = –1.5336,

SD = ±0.0620, σ = 1.1023, SD = ±0.1485, and N = 17). We

then produced α and σ values for each recording using 1t = 3

(see Figure 3).

The linear discriminant analysis (LDA) (Izenman, 2013) was used

for classification. Note that in Tables 1, 2, sensitivity is calculated as

TP/P and specificity as TN/N, PPV = TP/(TP + FP), and NPV =

TN/(TN+ FN).

3. Results

3.1. ERP data analysis

3.1.1. Event-related potential on cognitive
electrodes

The first objective of the reported research was to examine

whether there are differences in ERPs calculated for all

three sub-cohorts.

We have used the cross-correlation to find out whether the signal

in particular cases is not correlated. We found the differences that are

presented in Figures 4–8.

In Figure 4, the ERPs of the least cross-correlated signal on the

particular electrodes are presented for the face recognition test for the

case when the participants saw the known faces, while in Figure 5, the

case of unknown faces in the same experiment is shown.

In Figure 6, one can find ERPs calculated for the least correlated

signal on the best manifesting electrodes in this case in the digit

span experiment when the participants were wrong in recalling the

sequences of numbers from the working memory.

In Figures 7, 8, the ERP analogical results are shown for the

task-switching experiment for the digits and letters shown to the

participants on the screen, respectively.

Tables 3–20 in Appendix A supporting the plots of Figures 4–8.

Note that the cross-correlation was applied to all cognitive

electrodes; however, in Figures 4–8, the most interesting plots which

are least correlated are presented.

One should also remember that the cross-correlation method is

only one of many that can be applied to find the ERP differences in

the particular sub-cohorts. The other one is, e.g., the difference in

the amplitude that is clearly visible in the plots of Figures 4–8 even

without calculations.

3.2. Machine-learning data analysis

The secondary objective of the research was to build machine-

learning classifiers that model brain cortical dynamics of the cohort

participants and classify this activity with high, >70%, accuracy. We

are experienced in classifying the EEG cortical responses for the

source localization data (Wojcik et al., 2018a,b, 2019a,b); however,

for this research, we investigated the plain signal obtained from the

amplifier. We have built five machine-learning LDA classifiers to

process the collected resting state signal.

We have split the data into train and test data sets (70–30%) while

maintaining all cohorts’ proportions in both sets. We trained the five

LDA classifiers for five different conditions. For each classifier, we

performed the k-fold cross-validation evaluation, the “k” was set to

17%. We report the mean and standard deviations of sensitivity and

specificity as well as positive predictive values, as shown in Table 1.

As the classifiers are binary, during the classification, we

compared the following groups: (A&B vs. C), (B&C vs. A), (A vs.

B), (A vs. C), and (B vs. C), where A is the group that recovered

from COVID-19 with the brain fog symptoms, B is the group that

recovered from COVID-19 without the brain fog symptoms, and C is

the group that has not suffered from COVID-19 at all.

The classification results performed on the test set are very

promising and range from 64 to 71% in distinguishing (C vs. A,B)

71%, (B,C vs. A) 64%, (A vs. B) 64%, (A vs. C) 64%, and (B vs. C)
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FIGURE 2

Data analysis pipeline for the ERP experiments. For detail see the text.

FIGURE 3

Data analysis pipeline for the resting state. For detail see the text.
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TABLE 1 Results of cross-validation.

Sensitivity Std Specifity Std PPV Std Fold size

A & B vs. C 0.59621 0.093311 0.56944 0.34326 0.78671 0.16854 12

B & C vs. A 0.68889 0.30307 0.5849 0.091849 0.41587 0.18462 12

A vs. B 0.59286 0.29781 0.60408 0.25717 0.55119 0.17694 9

A vs. C 0.64444 0.27114 0.6 0.2708 0.60833 0.22454 7

B vs. C 0.55556 0.21465 0.81667 0.29107 0.79444 0.23134 8

TABLE 2 Results of classification performed using the test set.

Sensitivity Specifity PPV NPV

A & B vs. C 0.70833 0.75 0.89474 0.46154

B & C vs. A 0.63636 0.66667 0.5 0.77778

A vs. B 0.63636 0.53846 0.53846 0.63636

A vs. C 0.63636 0.875 0.875 0.63636

B vs. C 0.69231 0.75 0.81818 0.6

69%. As one can see in Table 2, we can classify, with higher than 70%

accuracy, the cases of the participants that suffered from COVID-

19 and the healthy ones, and also a high degree of classification

efficiency is achieved for distinguishing healthy patients from those

that recovered from COVID-19 and have no brain fog symptoms.

Moreover, now it is possible to create the voting agents system that

include the both machine learning and ERP analysis, which can

divide participants with perfect accuracy into all three groups based

only on the results of the electrophysiological EEG data analysis.

4. Discussion

4.1. Event-related potentials

We hypothesized that there may be a difference in the cortical

activity among the patients with brain fog, without brain fog, and

healthy participants of the control group. Indeed, such a difference

was found in the ERP signals using the cross-correlation method and

the amplitude difference observation.

Of the three experiments, the highest cross-correlation between

the ERP signal of all three sub-cohorts could be observed in

the face recognition test (see Figures 4, 5 and Tables 13–10 in

Appendix A). It is commonly accepted that with face recognition,

N400 (James et al., 2001; Caldara et al., 2004; Balconi and Pozzoli,

2005), and N170 potentials in the spectrum of the ERP (Bentin

and Deouell, 2000) are associated. During the experiment, the

participants generally knew which face was to be remembered and

which was new. Even though there is relatively the biggest correlation

among all sub-cohorts, one can observe in Figures 4, 5 the difference

in amplitudes. The sub-cohort who suffered with COVID-19 and

the participants without brain fog had the highest amplitude. The

lowest amplitude in general was characteristic of the members of

a healthy control group, except for the electrode E150, which is

positioned somewhere above in the right hemisphere occipital lobe

visual cortex. One should note the local maximum in the amplitude

near 170 ms and 400 ms, which in a way confirms the appropriate

accomplishment of the experiment. The sequence of amplitudes

requires future investigations; however, we could postulate that the

healthy participants have least difficulties in solving the problem,

while the brain fog sub-cohort oscillates somewhere between the

regular COVID-19 and healthy control.

These amplitude differences and the sequence similar to that

discussed earlier are themost visible during the digit span experiment

(see Figure 6 and Tables 11–13 in Appendix A). In fact, in the digit

span test, the cross-correlations were the smallest. In the literature,

the N200 potential is associated with auditory discrimination that

could play a role in the digit span experiment (Lim et al., 1999).

Also, P200 and P300 are associated with the working memory

condition as presented in Polich et al. (1983), Lefebvre et al.

(2005), and Dong et al. (2015) where the digit span was also used

for research. In Figure 6, a clear, notable difference in the ERP

shape can be observed near 200 ms. Moreover, the gradient and

general signal tendencies are completely different in the healthy

control than in those with COVID-19 brain fog and no brain

fog sub-cohorts. In the healthy control, one can note the sharp

minimum, while among those who suffered from COVID-19, there

are slowly decreasing waves. Again, the brain fog sub-cohort is placed

somewhere between the healthy control and the regular COVID-19

sub-cohorts plots.

The complete mish-mash among the ERP plots, amplitude

sequences, and cross-correlations can be observed after the

task-switching experiment (see Figures 7, 8 and Tables 14–20

in Appendix A). The ERP investigations for the task-switching

experiment were extensively used in this research, in fMRI, and in the

dense sensors nets (Swainson et al., 2003; Astle et al., 2008; Mueller

et al., 2009; Gajewski et al., 2018) with a similar variety of findings.

In order to put in the logical order, our results should consider the

task-switching experiment in its two sub-variants: the first when the

participants decided about the digit (see Figure 7 and Tables 14–17 in

Appendix A) and the second when the participants decided about the

letter (see Tables 18–20 in Appendix A).

In the case when the participants could see digits (see Figure 7 and

Tables 14–17 in Appendix A), there is a similar tendency observable

in the ERP plots with a minima of around 200 ms and 500 ms.

The 200 ms is reported in Scisco et al. (2008) where the authors

use the task-switching experiment for the cardiovascular fitness

investigations. The 500 ms time is also reported in Karayanidis et al.

(2011) and is related to the pre-target negativity. The differences

in amplitude can be observed on particular electrodes and as the

cross-correlation method proves—they are not correlated.

In the case when the participants could see letters (see Figure 8

and Tables 18–20 in Appendix A), there is a distinct maximum

observable for the regular COVID-19 in all three sub-cohorts in

around 350–400 ms. It is stated in Jackson et al. (2004) that they are
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FIGURE 4

ERP plots generated for the electrodes E99, E150, and E100 that showed smallest cross-correlation in the face recognition experiment when the

participants saw the known face. Red line—the participants that su�ered from COVID-19 and with brain fog symptoms. Blue line—the participants that

su�ered from COVID-19 and without brain fog symptoms. Green line—the participants without COVID-19 episode. See also Tables 3–5 in Appendix A.

FIGURE 5

ERP plots generated for the electrodes E99, E100, and E101 that showed the smallest cross-correlation in the face recognition experiment when the

participants saw the unknown face. Red line—the participants that su�ered from COVID-19 and with brain fog symptoms. Blue line—the participants that

su�ered from COVID-19 and without brain fog symptoms. Green line—the participants without COVID-19 episode. See also Tables 3–5 in Appendix A.

associated with the language skills, so in a way with letters and our

results also confirm the appropriate set up of the experiment. The

sequence of amplitudes is the same, the highest for brain foggy sub-

cohort A, medium for sub-cohort B, and the lowest for healthy sub-

cohort C. Nevertheless, the obvious amplitude and cross-correlation

difference in the task-switching experiment verify our hypotheses

positively and similar to the two other experiments achieve the

primary objective of this study.

One should note that in Figures 4–8 and Tables 3–20 in

Appendix A, only the data for the least cross-correlated electrodes

are presented. However, the cross-correlation analysis confirmed our

expectations and followed our findings on all cognitive electrodes.

This justifies our choice of the ERP experiment to be conducted

during the project realization.

In addition, our approach can be an interesting idea for designing

a new EEG-based test for the COVID-19 episodes. Such a test can be

useful especially when we find someone who reports being healthy

and not suffering from COVID-19 before, however, possessing

cortical activity characteristics of the target group.

4.2. Resting state classification

Before addressing the machine-learning results, we should

consider the relatively small amount of data (yet of high quality) that

was included in the study. Also, most of the classifiers dealt with

highly imbalanced classes.

Most of the classifiers showed better performance in the metrics

reported on the test set than in the k-fold cross-validation. This

could be explained by the larger amount of data available in

the test set than in the train set; hence, each mistake had a

smaller significance.

The A&B vs. C classifier had sensitivity of 0.70833, while the

COVID-19 samples were 75% of the cases, so it underperformed
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FIGURE 6

ERP plots generated for the electrodes E138, E151, and E150 that showed the smallest cross-correlation in the digit span experiment when the

participants were wrong. Red line—the participants that su�ered from COVID-19 and with brain fog symptoms. Blue line—the participants that su�ered

from COVID-19 and without brain fog symptoms. Green line—the participants without COVID-19 episode. See also Tables 6–10 in Appendix A.

FIGURE 7

ERP plots generated for the electrodes E129, E152, and E149 that showed the smallest cross-correlation in the task-switching experiment when the

participants saw digits. Red line—the participants that su�ered from COVID-19 and with brain fog symptoms. Blue line—the participants that su�ered

from COVID-19 and without brain fog symptoms. Green line—the participants without COVID-19 episode. See also Tables 11–13 in Appendix A.

FIGURE 8

ERP plots generated for the electrodes E101, E126, and E119 that showed the smallest cross-correlation in the task-switching experiment when the

participants saw letters. Red line—the participants that su�ered from COVID-19 and with brain fog symptoms. Blue line—the participants that su�ered

from COVID-19 and without brain fog symptoms. Green line—the participants without COVID-19 episode. See also Tables 14–17 in Appendix A.
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a null classifier (appointing the “1” label to all samples). Yet the

specificity indicates that 6 out 8 samples were identified correctly as

C (healthy, no COVID-19) cases.

The B&C vs. A classifier had consistently poor results in

validation and test performances. This could be attributed to the

fact that we grouped the B and C groups that have reasonably

claimed to be essentially different (COVID-19 with no brain fog

symptoms and healthy, no COVID-19). This result could also

indicate that the brain fog effect can not be identified in the domain

of neural dynamics.

The another support for this claim are the A versu B classifier

results that did not rise above the chance level.

The A vs. C and B vs. C classifiers results are similar. The

sensitivity was slightly higher than that of null classifiers (0.5789 and

0.61904) but not by a large margin. Yet the specificity reveals that

most of the healthy subjects of group C were accurately identified.

The positive predictive value and the negative predictive value

indicate that the mistake tends to be the wrong classification of B

cases as C.

Although the topic might be quite different from that

of the present study, the methodology, that is the use of

machine-learning techniques for automatic identification and

classification of symptoms is similar to that of other studies

(Dipaola et al., 2019, 2021).

4.3. Future research

In the post-COVID-19 era, there is a wide variety of problems

to solve in all areas of the global economy. The mental health of

society will be one of the most important issues to address in the

scientific effort. The main challenge of the reported research was to

find differences in the ERP and resting state signal possible to be

distinguished either by the cross-correlation or amplitude analysis or

using classifiers.

Having developed models and classifiers as mentioned in

Tadeusiewicz (2015) and Salankar et al. (2022), in future it may be

possible to predict the probability of brain fog episodes in patients

that have recovered <2 months before the first brain fog symptoms,

which can help doctors to prepare better therapy and brain fog

prevention paths. Such an approach requires, however, additional

self-arranged tests carried out by volunteers for finding COVID-19

antibodies and are not predicted to be obligatory for this research.

In the next step, this can lead to a wide range of innovations and

a new kind of therapies researched, invented, and introduced in the

post-pandemic reality, including the Industry 4.0 (Rojek et al., 2020a)

approach and 3D printing of therapeutic toys or tools (Rojek et al.,

2020b) to increase the comfort of life in future patients, thus making

the research presented herein justified.

This is the first article in the series planned to be published in

connection with the greater project realization. In the future, we will

apply the source localization techniques in order to find differences in

the geodesic activity of the cortex between sub-cohorts. As this is only

the initial stage of the research, we plan and hope to get better insight

into the brain fog phenomena providing a better understanding that

will result in a better diagnosis and therapy planning toward faster

and full recovery as future pandemics are predicted to come in the

next decades.

Global warming and climate change together with the decreasing

number of species and intensive migrations support the development

of new viruses and some of them probably will require future

lockdowns and similar COVID-19 commonly known restrictions.

That is why the outcome of the research was our motivation for

finding a methodology that will allow predicting brain fog proneness

on time, thus improving the comfort of the life of future patients.
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