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Objective: The conventional single-person brain–computer interface (BCI)

systems have some intrinsic deficiencies such as low signal-to-noise

ratio, distinct individual differences, and volatile experimental effect.

To solve these problems, a centralized steady-state visually evoked

potential collaborative BCI system (SSVEP-cBCI), which characterizes multi-

person electroencephalography (EEG) feature fusion was constructed

in this paper. Furthermore, three different feature fusion methods

compatible with this new system were developed and applied to EEG

classification, and a comparative analysis of their classification accuracy

was performed with transfer learning-based convolutional neural network

(TL-CNN) approach.

Approach: An EEG-based SSVEP-cBCI system was set up to merge

different individuals’ EEG features stimulated by the instructions for the

same task, and three feature fusion methods were adopted, namely

parallel connection, serial connection, and multi-person averaging. The

fused features were then input into CNN for classification. Additionally,

transfer learning (TL) was applied first to a Tsinghua University (THU)

benchmark dataset, and then to a collected dataset, so as to meet the

CNN training requirement with a much smaller size of collected dataset

and increase the classification accuracy. Ten subjects were recruited for

data collection, and both datasets were used to gauge the three fusion

algorithms’ performance.

Main results: The results predicted by TL-CNN approach in single-

person mode and in multi-person mode with the three feature fusion

methods were compared. The experimental results show that each

multi-person mode is superior to single-person mode. Within the

3 s time window, the classification accuracy of the single-person
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CNN is only 90.6%, while the same measure of the two-person

parallel connection fusion method can reach 96.6%, achieving better

classification effect.

Significance: The results show that the three multi-person feature fusion

methods and the deep learning classification algorithm based on TL-CNN can

effectively improve the SSVEP-cBCI classification performance. The feature

fusion method of multi -person parallel feature connection achieves better

classification results. Different feature fusion methods can be selected in

different application scenarios to further optimize cBCI.

KEYWORDS

steady-state visually evoked potential, collaborative BCI, feature fusion,
convolutional neural network, transfer learning

Introduction

Brain–computer interface (BCI) is a human–computer
interaction technology that allows people to directly
communicate with a computer or control peripheral device
without their surrounding muscles (Vaid et al., 2015). This
technology is useful for patients with movement disorders
and partial brain injuries, as it helps them realize simple
operation and communication (Wolpaw et al., 2000). At
present, electroencephalography (EEG)-BCI systems mainly
include event-related potentials evoked by endogenous events
based on cognitive function (Li et al., 2019), visually evoked
potentials (VEP) based on visual stimulation (Mary Judith and
Baghavathi Priya, 2021), and event-related area synchronization
and event-based active motor imagery in the phenomenon of
correlation synchronization (Munzert et al., 2009). Steady-state
visually evoked potential (SSVEP) is one of the most popular
EEG patterns in the field of BCI. Owing to its advantages such
as high information transmission rate (ITR), low requirement
on user training, and easy evocation, SSVEP is widely applied to
various fields such as medical care, industries, communication,
smart home, gaming, robotics, and vehicle control (Zhao
et al., 2016; Angrisani et al., 2018; Dehzangi and Farooq, 2018;
Farmaki et al., 2019; Nayak et al., 2019; Chai et al., 2020; Shao
et al., 2020).

Single-person BCI system’s performance is subject to
individual differences between users and their physical
or mental conditions, and this weakness becomes more
prominent as BCI system develops further (Song et al.,
2022). In contrast, multi-person-coordinated BCI can better
serve the future socialized human–computer interaction
and will most certainly dominate this field both in terms
of research and application. Studies have shown that
increasing the number of users can substantially improve
BCI performance (Valeriani et al., 2016). In human behavior

research, teams’ performance is always better than that
of individuals. The distinction in performance between
teams and individuals is even greater when humans acquire
diversified skills, judgments, and experiences under time
constraints (Katzenbach and Smith, 2015). As single-person
EEG signals have significant individual differences, by collecting
multi-person EEG signals and fusing these signals in a
reasonable way, signals with more distinctive features can
be obtained, and the BCI performance can be improved.
EEG signals from multiple subjects can significantly improve
ITR in the system compared to single EEG signals (Bianchi
et al., 2019). Subjects who need to stare at the stimulation
area for a long time are prone to fatigue due to visual
stimulation in SSVEP-BCI, which affects the quality of
EEG signal acquisition, and this is particularly evident for
some subjects (Peng et al., 2019). SSVEP-cBCI can make
up for this deficiency by increasing the user dimension and
improve the information transmission rate. Acknowledging
this viewpoint, this paper explores three feature fusion
methods, which include (1) parallel connecting features,
(2) serial concatenating features, and (3) feature averaging.
These approaches will be explained in detail in section
“Methods.” The three feature fusion methods aim to improve
the signal-to-noise ratio by merging multi-person EEG
information to get refined new features to enhance the
BCI performance.

As a branch of machine learning, deep learning has
achieved great success in solving problems in computer
vision and natural language processing. It is different from
traditional machine learning as it does not entail manual
feature extraction (LeCun et al., 2015). Using gradient descent
learning to optimize convolutional neural network (CNN)
parameters successfully solved the problem of handwritten
digit classification (LeCun et al., 1998). However, owing
to the complexity of EEG signals, the application of deep
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learning neural networks in EEG signal detection is still in the
exploratory stage. Cecotti and Graser (2010) developed a four-
layer CNN for P300 detection. At present, the SSVEP EEG
signal classification method converts the original EEG signal
through FFT and then inputs it into CNN for classification
(Cecotti, 2011; Zhang et al., 2019; Ravi et al., 2020). As
a superb CNN model designed for EEG, EEGNet exhibits
good classification performance, but other models perform
better in some moments. In this study, some details of
the basic EEGNet were adjusted, and the network structure
was modified to adapt to the newly created fusion features.
The transfer learning (TL) training strategy using a THU
benchmark dataset as the source task training set was
adopted to initially train the parameters of the convolutional
layer and build the basic feature extractor. Using the data
collected by the laboratory as the target task training set
and test set, the CNN parameters were further optimized
to construct SSVEP-cBCI. In this paper, the classification
model is trained with the TL-CNN method, which reduces
the required amount of training collected data and improves
the classification accuracy. And the feature fusion approach
further improves BCI performance in classification accuracy,
ITR and stability.

Section “Methods” elaborates on the personnel, equipment,
and experimental paradigms associated with the experiments,
the three multi-person features fusion methods, the specific
structure of the modified CNN in this study, and its difference
from EEGNet. Then the following part introduces the specific
training method of TL. In section “Results,” the classification
accuracy and ITR difference of the three feature fusion methods
and those predicted by a single-person CNN are compared.
Finally, some significant conclusions are drawn, and the
specific usage of the three feature fusion methods in this
experiment is analyzed.

Methods

Experimental setup

The structure of cBCI system
The cBCI system mainly has two structural forms:

distributed and centralized (Wang and Jung, 2011). In
both systems, experiments are simultaneously conducted
on more than one subject. In the distributed cBCI,
subjects’ EEG information is collected individually for
subsequent data preprocessing, feature extraction, and
pattern recognition through the corresponding BCI
subsystem. The results corresponding to each subject
are then transmitted to the integrated classifier, and
the final decision is produced through decision-making
layer’s voting mechanism, while in the centralized cBCI,
as shown in Figure 1, subjects’ EEG information is

collected individually for sequential data preprocessing
and feature extraction. The EEG data features of all
subjects are fused for pattern recognition to make the
final decision for the group. The model adopted in
this study is a centralized cBCI system, which does
not rely on the voting mechanism of the distributed
system, and classification is carried out with a CNN
based on TL (TL-CNN).

Experimental paradigm
In this experiment, the EEG data were collected and

transferred from the EEG amplifier to the software Curry8
(Neuroscan). Three electrodes were placed on O1, Oz, and O2
according to the International 10–20 system. Using the double
mastoid as reference and ground electrodes, the impedance of all
electrodes was reduced to below 5 k�. The sampling frequency
is 256 Hz, and a band-pass filter between 5 and 40 Hz is used in
the data processing to filter out low-frequency noise and 50 Hz
power frequency noise.

Ten healthy subjects (8 males, 2 females, 21–27 years
old) participated in the experiments. All participants had
normal or corrected vision. Four of them had participated
in SSVEP experiments previously. All participants read
and signed the informed consent forms. Subjects sat on
a comfortable chair 60 cm in front of a standard 24-
inch monitor (60 Hz refresh rate, 1,920 × 1,080 screen
resolution). The SSVEP stimulation interface is shown in
Figure 2, and the four stimulation squares are all 50 × 50
pixels. The refresh frequency of the display equals integer
multiples of the stimulation frequency of the four color
blocks, which can ensure stable stimulation frequency and
avoid frequency deviation. The stimulation frequencies of the
four color blocks are 8.6, 10, 12, and 15 Hz, respectively.
It was evidenced that stimulation frequencies of 10 and
12 Hz can stably induce high-amplitude SSVEP signals
(Chen et al., 2015), and the stimulation duration was set
to be 4 s. To avoid interference caused by simultaneous
flickering of the four color blocks, the phases of the four
color blocks are set as 1.35π, 0.35π, 0.9π, and 0.35π,
respectively. Prolonged staring at the flickering stimulus
color blocks made the subjects feel tired and distracted
them, resulting in a frequency deviation of the SSVEP
signal. To improve the concentration of the subjects and
the quality of SSVEP EEG signals, random labels were
used to remind the subjects to look at the corresponding
stimulus squares.

0.02 s after the five-pointed star appeared, the four color
blocks started to flash. After the flashing, a rest time of 2 s
was given to the subject to adjust the viewing angle. During
the experiment, the subjects were asked to focus on the
corresponding color block and blink as few times as possible.
Each color block flashed twice in total, and there was a 1-min
rest between two consecutive experiments.
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FIGURE 1

Centralized cBCI structure designed in this study.

FIGURE 2

SSVEP stimulation interface and label reminder method. (A) Stimulus interface. (B) Random tag prompt.

Multi-Person feature extraction and
fusion

Multi-Person feature extraction
The EEG data filtered and processed by the fourth-order

Butterworth filter is converted from the time domain to
the frequency domain by FFT transformation (Chen et al.,
2015). Low-frequency (8.6, 10, 12, and 15 Hz) stimulation
area was used in these experiments. The features of the
frequency band from 6 to 32 Hz were selected from the FFT-
transformed data to further filter out noise and improve feature
quality.

The characteristics of the SSVEP signal are as follows:


FeatueO1 = |FFT(XO1)|

FeatueOZ = |FFT(XOz)|

FeatueO2 = |FFT(XO2)|

(1)

The input of the convolutional neural network is:

Input =

∣∣∣∣∣∣∣
min_max(FeatueO1)

min_max(FeatueOz)

min_max(FeatueO2)

∣∣∣∣∣∣∣ (2)

The min–max normalization (discrete normalization)
is conducted on the data of each channel (Ali et al.,
2014) to avoid adverse effects on the classification
accuracy owing to huge differences between values,
ensure good performance of different data within the
same neural network, and improve the robustness
of the algorithm.

Feature fusion
This paper proposes three methods to fuse multi-

person EEG features. As shown in Figure 3, in parallel
connection, three-channel (O1, Oz, O2) data are extracted
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FIGURE 3

Three fusion methods: (1) feature parallel connection (2) feature serial connection (3) feature averaging. Single-1 and Single-2 represent two
single-person features for feature fusion.

to obtain the effective feature after data preprocessing and
FFT transformation. The features of different subjects are
connected in parallel, serial concatenation, or averaging.
In parallel feature concatenation, connection is made
mainly the spatial domain, which implies more feature
lead channels. In serial feature connection, connection
is made mainly in the frequency domain, which implies
that there is no change in the number of channels, but
the domain scope expands greatly, and thus, the effective
features are enhanced from the frequency perspective and the
BCI performance improves. However, serial concatenation
requires more training on epoch and convolution kernel
to achieve the similar classification accuracy of parallel
connection. It involves more complex algorithm, so it is
more difficult to set up an online system by Python. The
above two feature fusion methods are suitable for subjects
with a known number of participants in the experiment,
but when the number of participants in the brain group
is unknown, different CNNs meant for various number
of subjects should be set up and trained, which entails
more input in the experimental preparation. This problem
can be solved by adopting the third approach, feature
averaging, that is, to get new features by averaging the
normalized EEG frequency features of all subjects. The CNN
using this approach shares the same structure of single-
person CNN, and its classification accuracy is superior
to that of a single-person CNN but inferior to that of
a two-person CNN.

Deep learning network construction

Improved the network structure of
convolutional neural network

Lawhern et al. (2018) designed EEGNet, a compact CNN
specially for EEG signals, that is based on CNN and includes
two parts: spatial feature extraction and frequency or time
domain feature extraction. It can efficiently extract features from
frequency-domain EEG information and send them to a neural
network-based classifier, eliminating the need to manually
extract two-part features. This paper makes some adjustments
on the EEGNet, changing the number of convolution kernels,
the size of the convolution kernel, and the depth of the
convolution layer. In this experiment, the collected data were
used to predict the classification accuracy of the test set, and
the EEGNet was modified to accommodate the data. In this
study, the ordinary convolution layer was discarded, a depthwise
convolution layer was added, and the pointwise convolution
layer was changed into a small narrow-band convolution.
The network consists of six consecutive layers, including four
convolutional layers, one fully connected layer, and one softmax
output layer (Jang et al., 2016). Network fitting is accelerated
through batch normalization (Ba et al., 2016). Linear activation
layer adopts ReLu function (Agarap, 2018).

Table 1 summarizes the modified CNN structure. The
convolution kernel of the C1 convolution layer has size 3 ×
1, and its function is to learn the linear combination and
spatial filtering features between different channels. The method
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TABLE 1 Single-person convolutional neural network structure.

Layer
number

Layer Filter Kernel
size

Feature
size

Activation

1 Input data – – (3.78) –

2 Conv2D 16 (3.1) (3.78) ReLU

3 Conv2D 32 (3.1) (1.78) ReLU

4 Conv2D 32 (1.3) (1.78) ReLU

5 Conv2D 64 (1.3) (1.76) ReLU

6 Flatten – – – –

7 Dense 8 – – –

8 Dropout – Rate = 0.5 – –

9 Dense 4 – – Softmax

of padding and zero-filling is adopted to prevent the loss of
information caused by convolution (Dwarampudi and Reddy,
2019). The C2 layer does not use the method of padding
and zero-filling and integrates multi-channel data into a single
channel by convolution. The C3 convolution layer extracts
features along the input frequency spectrum by convolution
and acts as a band-pass filter. The C4 convolution layer also
integrates frequency features without padding. Among them,
the convolution operations of the C2 and C4 layers have
achieved the down-sampling effect. After Flatten layer, a fully
connected layer is followed by softmax for classification.

Network structure of feature fusion
convolutional neural network

As can be seen in Table 2, compared with the single-person
CNN, the difference between the two-person parallel feature
concatenation CNN structure is that it increases the number
of key channels, from three-channel to six-channel EEG data,
which greatly increases the number of features.

Therefore, the two-person parallel feature connection
CNN structure was added to unpadded convolution layers
C2 and C3 in accordance with the single-person CNN

TABLE 2 Two-person parallel feature connection CNN structure.

Layer
number

Layer Filter Kernel
size

Feature
size

Activation

1 Input data – – (6.78) –

2 Conv2D 16 (6.1) (6.78) ReLU

3 Conv2D 32 (3.1) (4.78) ReLU

4 Conv2D 64 (3.1) (2.78) ReLU

5 Conv2D 64 (2.1) (1.78) ReLU

6 Conv2D 128 (1.3) (1.78) ReLU

7 Conv2D 256 (1.3) (1.76) ReLU

8 Flatten – – – –

9 Dense 8 – – –

10 Dropout – Rate = 0.5 – –

11 Dense 4 – – Softmax

TABLE 3 Two-person serial feature connection CNN structure.

Layer
number

Layer Filter Kernel
size

Feature
size

Activation

1 Input data – – (3.234) –

2 Conv2D 48 (3.1) (3.234) ReLU

3 Conv2D 96 (3.1) (1.234) ReLU

4 Conv2D 96 (1.3) (1.234) ReLU

5 Conv2D 192 (1.3) (1.232) ReLU

6 Flatten – – – –

7 Dense 8 – – –

8 Dropout – Rate = 0.5 – –

9 Dense 4 – – Softmax

structure while keeping the fully connected layer and the
last two layers unchanged. The network classification results
show that the classification accuracy falls by about 1% as
each of the two convolutional layers is reduced. Multiple
convolution operations can effectively extract complex multi-
channel features and integrate them into a single spatial feature.

As can be seen in Table 3. The CNN structure used by
the two-person serial feature connection method is similar to
the single-person CNN structure. With the dual serial feature
connection, the number of features input to the CNN is
increased. This builds more feature extractors by increasing
the number of convolution kernels to get better results. If
the number of convolution kernels of the two-person CNN
connected by serial features is the same as that of the single-
person CNN, the classification accuracy will drop by about 2%.

Transfer learning-based feature fusion strategy
with different datasets

Compared with traditional machine learning algorithms,
deep learning methods heavily rely on high-quality data.
Obtaining sufficient high-quality datasets to train high-quality
convolution kernel parameters is a critical problem to be solved
in CNN setup. Transfer learning (Pan and Yang, 2009) gives an
effective solution to this problem. The SSVEP EEGs collected
in the THU benchmark dataset (Chen et al., 2015) exhibit
good features and low error rates of subjects’ operation, and
thus, this dataset was used as the source dataset for initial
parameters training on the model. In general, parameters
in CNN are randomly initialized by training collected data
directly. Compared with transfer learning, it requires a larger
amount of data and training time to fit and get a satisfactory
feature extractor. While using transfer learning methods, initial
parameters can be constructed in a pre-training manner, and
these parameters are usually derived from prior knowledge
and hence can well perform the corresponding task. As a
consequence, only a small amount of actual experimental data
serve as the training set, and the model parameters are re-
learned through fine-tuning for the model to adapt to the actual
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FIGURE 4

Training strategy.

experimental data. This method can improve the classification
accuracy of the model and effectively reduce the required size of
experimental data collected in our laboratory to train the CNN.

The comparison among various fine-tune methods suggests
significant differences in their stability but insignificant
difference in their classification accuracy. Figure 4 shows that
only the parameters of the deep convolutional layer and the
fully connected layer are trained, while the parameters of the
shallow CNN are frozen and not involved in the training. Since
the feature distribution of the source task data (THU benchmark
dataset) does not coincide with that in this experiment, fine-
tuning on the parameters of the deep convolutional layer
with a small learning rate can improve the feature extraction
performance of the convolutional layer.

In the first step, training was conducted with the THU
benchmark dataset as the training set, and a total of 720
samples were used, with 180 samples per stimulus. The network
weights are learned in accordance with the Adam learning
algorithm, which optimizes the network weights through back-
propagation, and the cross-entropy function is adopted as the
loss function (Zhang and Sabuncu, 2018).

Loss = −
T∑

j = 1

yjlogPj (3)

The data of 24 people in the THU benchmark dataset is
used as the pre-training dataset, and different combinations of
multiple people are randomly used for feature fusion. After
repeated experiments to verify,the different combinations of
multiple people used for feature fusion during the pre-training
of the initialized feature extractor do not have an impact on
the final classifier. An initial pretraining learning rate of 0.001
was adopted. The epoch was set to 80 and the mini-batch
size of stochastic gradient descent is set to 16. Next, the pre-
training model with initial weights was established for the
experimental paradigm followed in this study. Based on the pre-
training model, the epoch was then reset as 40 for training with

the collected experimental data. A very large epoch makes a
personal private network and reduces the generalization ability
(Pan and Yang, 2009).

Results

The 10 subjects were labeled as S1 to S10, and two adjacent
subjects made up one group (e.g., S1 and S2 made up group C1,
and S3 and S4 made up C2). Table 4 shows only one grouping
case to show the fusion of features at different levels of feature
quality, group members were interchangeable and tried different
combinations. As the parallel feature connection method gives
the best classification result with fused features and CNN,
Table 4 only lists the classification of different subjects and
subject groups in different time windows under parallel feature
connection. The three-channel EEG data of the two people in
each group were connected in parallel to obtain six-channel EEG
data, and the six-channel CNN model was trained using the
TL strategy. Table 4 shows that, based on the CNN classifier,
the classification accuracy of both single- and two-person
feature fusion declines as the time window decreases. Personal
characteristics become more marked when the stimulation time
is longer. This table compares the classification accuracy results
of single-person CNN and five representative results of two
grouping types with two people in a group: (1) Feature fusion
of subject data with significant and insignificant features. That
is, one of them yielded a high classification accuracy, but the
other yielded a low classification accuracy. The final result is
lower than the best single-person classification accuracy with
significant features. (2) Feature fusion of subjects’ data with
only significant features. As the data features of the two people
were both significant, the classification accuracy of the neural
network was markedly improved.

Taking the 3-s time window as an example, the 10-person
average classification accuracy of the single-person system CNN
without TL is only 43.5%, but with TL, it can reach as high
as 90.6%. The five-person average classification accuracy of the
two-person CNN without TL is only 55.0%, while with TL,
it reaches 96.6%.

The 10-person data containing S1–S10 were used as data
sets for subsequent experiments and called the collected
data set. The results of each model training and prediction
are different. The collected data are randomly shuffled, and
then feature fusion is performed to calculate the average
classification accuracy and ITR through the 10-fold cross-
validation method, as shown in Figure 5, respectively. It can
be clearly seen from Figure 5 that the classification accuracy
results of the two feature fusion methods and feature averaging
method based on CNN invariably exceed that of single-person
CNN in different time windows. Three multi-person fusion
methods based on CNN ITR significantly outperformed single-
person CNN (p < 0.0001). Parallel feature connection ITR
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TABLE 4 Classification accuracy comparison of single- and two-person models under different time windows.

TL-CNN (%)

3 s 2.8 s 2.6 s 2.4 s 2.2 s 2.0 s 1.8 s 1.6 s

S1 91.6 87.5 81.3 77.1 79.1 75 70.8 60.4

S2 89.5 85.4 87.5 83.2 77.1 66.7 66.7 66.6

S3 97.9 91.6 91.6 89.6 91.7 83.3 77.1 70.8

S4 79.1 68.6 77 70.8 66.7 68.6 70.8 64.5

S5 100 100 97.9 95.8 95.8 93.7 87.5 75

S6 93.7 87.5 83.3 83.3 83.4 79.2 77.1 72.9

S7 79.1 77 77.1 68.8 60.4 60.4 58.3 54.2

S8 100 100 100 97.9 97.9 93.4 87.5 85.4

S9 75 64.5 68 70.9 60.4 60.4 60.4 50

S10 100 97.9 97.9 93.7 91.7 91.7 72.9 72.9

Saverage 90.6 86.4 86.2 82.4 80.4 77.3 72.9 67.3

C1 95.8 93.3 87.5 79.2 91.6 77 75.1 75

C2 89.5 93.3 95.5 85.4 81.2 79.2 81.3 75

C3 100 95.8 97.9 95.8 91.7 85.4 91.2 91.2

C4 100 100 95.8 93.7 87.5 85.4 85.4 75

C5 97.9 97.9 93.7 93.7 83.3 87.5 81.2 70.8

Coverage 96.6 96.1 94.1 89.6 87.1 83.1 82.9 77.4

FIGURE 5

Accuracy and ITR under different time windows. (A) Classification accuracy for different time windows. (B) ITR for different time windows.

also significantly outperformed the other two feature fusion
methods (p < 0.05). Among these three methods, the parallel
feature connection method always ranks first, with the highest
classification accuracy and ITR. The serial feature concatenation
method and the feature averaging method exhibit similar overall
performance, but the feature averaging method is more flexible
and requires less computation. It can thus be concluded that
feature averaging is better than serial feature concatenation.

The optimal scheme to set up cBCI is to train the
corresponding parallel feature connection model with the TL
method in advance when the number of subjects is known or

to train the single-person model with the TL method and then
apply the feature averaging method to this trained model when
the number of subjects is unknown.

The classification accuracy of different time windows was
averaged to obtain the total classification accuracy as shown
in Figure 6. The total classification accuracy of the single-
person CNN is 80.4% as baseline, which is far lower than
the total classification accuracy of the multi-person CNN-
based three feature fusion methods. As can be seen from
Figure 6, when the number of participants in the experiment
increased, the total classification accuracy of the three feature
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FIGURE 6

Total classification accuracy of three fusion methods under
different number of participants. The line “a” is the total
classification accuracy of the single features.

fusion methods slightly improved. The fusion method of
parallel feature connection invariably attained the highest total
classification accuracy; the feature averaging method was always
noted to be the second best, and the serial feature connection
was found to be the worst. Why is the parallel method so
good? Upon increasing the number of participants, owing to the
increase in the number of features, the CNN used by the three
feature fusion methods needs to be slightly modified, mainly
by increasing the number of convolution kernels. However, as
the parallel feature connection needs to continuously integrate
the information of multiple-lead channels through convolution,
more convolutional layers are added. It has been proven that
the convolution method can integrate the features of multiple
individuals and multiple leads in a nonlinear way, which is
better than the method of feature averaging. Therefore, if the
computing power of the computer allows, it is an excellent
cBCI construction method to use the method of parallel feature
connection to fuse the EEG features of multiple people and send
them into the TL-CNN model.

Discussion

Visually evoked potentials have been extensively studied
by researchers (Mary Judith and Baghavathi Priya, 2021).
When subjects gaze at flickering visual stimuli with flicker
frequencies exceeding 4 Hz, their cerebral cortical activity would
be modulated, resulting in a periodic rhythm similar to that of
the stimulus (Bondre and Kapgate, 2014). CNN-based EEGNet,
which was specially designed for EEG, has been widely applied
to classification tasks in various EEG paradigms: e.g., P300
VEP, falsely correlated negatively matched waves, motor-related
cortical potentials, and sensorimotor rhythms. In this study,

the original EEGNet was modified, and the accuracy of the
classification mode was improved by increasing the number
of convolutional layers and the number size of convolutional
kernel of each convolutional layer. In addition, three different
multi-person EEG feature fusion methods are proposed herein
to integrate multi-person EEG information to improve BCI
performance. Each of the three fusion methods was found to
have merits and shortcomings. In summary, in the case of
known multi-person BCI collaborations with a fixed number
of people, the parallel feature connection method is the best
choice because it involves smaller models and fewer training
parameters than the serial connection method; also, compared
with feature averaging method, it produces higher classification
accuracy. When the number of subjects is unknown, the feature
averaging method should be chosen, and feature averaging using
multiple subjects can be directly applied to a trained single-
person CNN. Serial feature concatenation method is not suitable
for the construction of online BCI system.

In this study, a small number of leads (e.g., O1, OZ, O2)
were collected for setting up a multiple-person BCI system,
which can facilitate the experimental preparation, reduce the
subjects’ fatigue, and improve the system’s execution efficiency.
Different from the voting and averaging methods of the
existing distributed multi-person BCI systems, a complete
single EEG data is constructed through multi-person feature
fusion, and a transfer learning-based CNN is used to achieve
classification in this new system. Compared with traditional
CNN methods, the number of samples to collect is markedly
reduced, and the accuracy is slightly improved. Moreover,
a neural network with multiple narrow-band convolution
kernels is constructed, and a multi-channel and multi-person
feature fusion method is set up to extract the corresponding
nonlinear features for fusion so as to improve the recognition
accuracy of SSVEP-cBCI, further enhancing the classification
accuracy and signal-to-noise ratio. The experimental results of
the 10 subjects show that the CNN classification fusing two
persons’ features produces a higher SSVEP-cBCI recognition
accuracy, and the TL-CNN-based two-person BCI effectively
raises the classification accuracy and the robustness of BCI.
The impact of individual differences in single-person BCI
systems on system performance stability has been resolved.
With the increase in the number of participants in the
experiment, the total classification accuracy of the three
feature fusion methods has been slightly improved, and the
parallel feature connection method invariably exhibits the
best performance.

The deep learning SSVEP-cBCI algorithm based on multi-
person feature fusion established in this paper has been verified
through offline system experiments and can be extended to real-
time online systems in the future to complete real-time control
of external equipment. Since the SSVEP-cBCI experimental
paradigm requires multiple subjects to simultaneously fixate on
the same flickering stimulus interface, a method of replicating
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multiple monitors was employed, and the collected multi-
person EEG data were used for subsequent data processing
and identification by a microcomputer. In the case of a
fixed number of multi-person BCI collaborations and the
computing power is allowed, it is necessary to prepare
multiple corresponding number of different participants CNN
classification models, perform corresponding feature fusion
(parallel feature connection) and classification model training,
and use the trained models to complete real-time online
experiments. This feature fusion method can maximize the
performance of cBCI. If the number of multi-person BCI
collaborations is not fixed, or the computing power is
not allowed, or there is not enough corresponding CNN
classification model established, then the multi-person features
can be integrated by the method of feature averaging, and the
single-person CNN model can be used to complete real-time
online experiments. Parallel feature connection are suitable for
high-precision tasks, such as controlling unmanned vehicles,
which requires precise control of the vehicle’s travel to avoid
collision. The feature averaging method fits into rehabilitation
centers. Different numbers of patients can send requests at
the same time, and as the number increases, medical staff can
make corresponding responses more accurately. Serial feature
connection can be used as an alternative method to increase the
robustness of cBCI.
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