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Editorial on the Research Topic

Cannabinoids in neuroinflammation, neurodegeneration and pain:

Focus on non-neuronal cells

Cannabinoids have the potential to be therapeutic for neurological and psychiatric

diseases associated with neuroinflammation, neurodegeneration and pain (Kelly et al.,

2020; Bryk and Starowicz, 2021). The cannabinoid system includes endogenous

cannabinoids, phytocannabinoids and synthetic cannabinoids, their target receptors

and biosynthetic and degradative enzymes (Morena et al., 2016). Alterations of

the cannabinoid system are associated with the inflammatory processes of these

conditions, but intriguingly, are also implicated in the alterations in affect which

may co-occur (Vecchiarelli et al., 2021). Non-neuronal cells in the central nervous

system are in particular related to the pathogenesis, maintenance and/or alleviation of

neuroinflammatory, neurodegenerative and pain states (Kelly et al., 2020; Šimončičová

et al., 2022; St-Pierre et al., 2022). To further elucidate the role of cannabinoids in

these disease contexts, this Research Topic includes a collection of primary research

articles and a mini review on the role of cannabinoids in these states in particular in

non-neuronal cells.

Two primary research articles in the collection investigate the role of enzymes

that metabolize N-acylethanolamines, including the primary endocannabinoid, N-

arachidonoylethanolamine (anandamide or AEA). In Duncan et al., human neural

precursor cell culture (ReN cells) were exposed to sublethal oxidative stress [tert-

butyl hydroperoxide (tBHP)]—which is particularly associated with neurodegenerative

diseases. They found that exposure to tBHP increased protein levels of cannabinoid

receptors (CB1 and CB2) and of an N-acylethanolamine metabolizing enzyme, fatty

acid amide hydrolase (FAAH), which metabolizes AEA, as well as the associated N-

acylethanolamine molecules, oleoylethanolamide (OEA) and palmitoylethanolamide

(PEA) (Malek and Starowicz, 2016). However, exposure to a lower dose of tBHP

increased expression of N-acylethanolamide specific phospholipase D (NAPE-PLD),
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a synthesizing enzyme for AEA. Intriguingly, they also found

that the mild level of oxidative stress also increased neurite

outgrowth. It is possible that because AEA can serve to

promote neurite outgrowth (Compagnucci et al., 2013), that

the oxidative stress-induced increases in NAPE-PLD generated

AEA, leading to the observed increased neurite outgrowth. It is

possible these cannabinoid increases are protective, as previously

demonstrated (Elmazoglu et al., 2020). While Duncan et al.,

showed an effect of oxidative stress on the N-acylethanolamine

metabolizing enzyme, FAAH, Vecchiarelli et al., investigates the

effects of a single nucleotide polymorphism (SNP) in FAAH

(C385A) mouse model (Dincheva et al., 2015) on basal and

colitis-induced alterations in inflammatory mediators in plasma

and the amygdala. Carriers of the mutant allele have reduced

FAAH activity and show attenuated colitis-induced increases of

plasma IL-2, LIF, MCP-1, and TNF, as well as amygdala G-CSF

and MCP-1 levels—without altering the colitis-induced disease

macroscopic colon damage. Interestingly, following chronic

stress, the receptor for MCP-1 is necessary for the development

of anxiety-like behavior-inducing monocyte trafficking to the

brain (Wohleb et al., 2013). Additionally, a central increase

of FAAH activity and decrease of AEA levels can contribute

to colitis-induced anxiety (Vecchiarelli et al., 2021); therefore,

it is possible that colitis-induced reductions of AEA allow for

an increase in MCP-1 contributing to monocyte-trafficking-

induced generation of anxiety-like behavior, suggesting AEA is

a potential modulator of inflammatory responses. Additionally,

Vecchiarelli et al., show that FAAH reduction leads to reduced

IL-1α, IL-9, MIP-1β, and MIP-2 levels in the amygdala,

indicating that FAAH, or the compounds it metabolizes, may

be involved in their baseline regulation centrally. Together,

these studies illustrate the effects of FAAH in response to

oxidative stress and on neuroinflammation, which may be

important for neurodegeneration and the affective symptoms of

inflammatory diseases.

The remaining articles in this Research Topic discuss the
role of CB2. Honig et al., show the effects of a clinically
available CB2 inverse agonist, Raloxifene, on visual system
outcomes following focal cranial impact mild traumatic brain

injury (mTBI). They found that Raloxifene reversed the effects of
mTBI on contrast sensitivity, light aversion, pupillary excessive

dilation and optic nerve axonal loss. Furthermore, in the injured

optic nerve, Honig et al., show that IBA1+ cell numbers are

increased and have a normalized transcriptional profile after 10

mg/kg of Raloxifene following mTBI. Therefore, highlighting

a further protective role for CB2 inverse agonism in the

regulation of IBA1+ cells (predominantly microglia) following

mTBI, which may contribute to the beneficial outcomes seen

in visual behavior following mTBI. The protective effects of

inverse agonismmight seem counterintuitive, as inverse agonists

suppress constitutive activity and activation of CB2 has shown

a role in cytokine signaling and is generally considered anti-

inflammatory (Young and Denovan-Wright, 2021), although

this is not always the case, as there may be ligand-specific

signaling biases (Oláh et al., 2017). Important to the function

of microglia and myeloid cells, activation of CB2 can suppress

phagocytosis (Han et al., 2022). Therefore, it is possible that

CB2 inverse agonism promotes favorable disease outcomes by

accelerating phagocytosis allowing the innate immune system to

clear debris while also providing an environment enriched in

restorative mediators (Yu et al., 2020; Martinez Ramirez et al.,

2022). This indicates that characterization of Raloxifene and

other CB2 inverse agonists at microglial CB2 could be of great

benefit for therapeutic discovery.

Our final article is a mini-review by Ferranti and Foster,

which highlights a role for CB2 in schizophrenia, a disease

becoming increasingly understood to possess inflammatory

risk factors (Comer et al., 2020a) and microglia-mediated

mechanisms (Sekar et al., 2016; Comer et al., 2020b). This article

highlights that in addition to, or maybe through, inflammatory

mediator signaling, a role for CB2 receptors in microglia

on associated behaviors, such as contextual fear memory.

Fear memory was enhanced with the overexpression of CB2

in hippocampal CA1 microglia, yet reduced with disrupted

microglial CB2 (Li and Kim, 2017). The Ferranti and Foster

review reminds us that CB2 receptors have also been described

on some neuronal populations. Therefore, a crucial next step

in the field is to better understand the cellular distribution

of central CB2 and the interplay between neuronal and non-

neuronal CB2 under basal physiological conditions and across

disease phenotypes.

Further understanding of the complex signaling of this

system will hopefully lead to the generation or refinement of

therapeutics for a host of neurological and psychiatric diseases

and articles in this collection have contributed toward this goal.
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