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Neurologic injury after cardiopulmonary resuscitation is the main cause

of the low survival rate and poor quality of life among patients who

have experienced cardiac arrest. In the United States, as the American

Heart Association reported, emergency medical services respond to more

than 347,000 adults and more than 7,000 children with out-of-hospital

cardiac arrest each year. In-hospital cardiac arrest is estimated to occur

in 9.7 per 1,000 adult cardiac arrests and 2.7 pediatric events per 1,000

hospitalizations. Yet the pathophysiological mechanisms of this injury remain

unclear. Experimental animal models are valuable for exploring the etiologies

and mechanisms of diseases and their interventions. In this review, we

summarize how to establish a standardized rat model of asphyxia-induced

cardiac arrest. There are four key focal areas: (1) selection of animal species;

(2) factors to consider during modeling; (3) intervention management after

return of spontaneous circulation; and (4) evaluation of neurologic function.

The aim was to simplify a complex animal model, toward clarifying cardiac

arrest pathophysiological processes. It also aimed to help standardize model

establishment, toward facilitating experiment homogenization, convenient

interexperimental comparisons, and translation of experimental results to

clinical application.
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1. Introduction

Since the development of cardiopulmonary resuscitation (CPR), an increasing
number of patients now have return of spontaneous circulation (ROSC) and are
discharged from the hospital. The survival rate among patients who have had cardiac
arrest (CA) has increased by ∼10% (Yamaguchi et al., 2017). However, ROSC is
merely the first step in successful treatment, as many surviving patients live with
neurologic deficits that lead to poor outcomes (Bougouin et al., 2014). This is due
to the systemic tissue ischemia and hypoxia caused by CA, which can lead to
post-resuscitation reperfusion injury (Eltzschig and Eckle, 2011). Moreover, post-CA
hypoxic ischemic brain injury is the leading cause of death and poor long-term
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outcomes (Sekhon et al., 2017). We now face the clinical
challenge of improving post-resuscitation outcomes through
early assessment of neurologic deficits. To this end, we
require complex animal models to determine how we can
modify CA-induced pathophysiological processes. A systematic
review about contemporary animal model of CA reported
that there existed multiple CA animal models, but the
models’ great heterogeneity along with great variability in
definitions and reporting make comparisons between studies
difficult (Vognsen et al., 2017). In basic science studies,
there is often a lack of reproducibility between laboratories,
for the differences in animal species, protocols, type of
anesthesia, and so on (Granfeldt, 2016). In addition, most
animal models do not truly reflect clinical pathophysiological
processes, such as lacking comorbidities or post-resuscitation
management (Granfeldt, 2016). These limitations prevent the
results of animal models from being applied to human
neurologic protection guidelines. Standardized models enable
more homogenous experiments, allow convenient comparisons
between experiments, and facilitate translation of experimental
results to clinical applications.

Over the past 30 years, the etiology of CA has shifted
from sudden CA (SCA) to asphyxia-induced CA (ACA)
(Dezfulian and Lavonas, 2020; Van den Bempt et al., 2021).
SCA refers to sudden cardiac output cessation, characterized by
ventricular fibrillation (VF) or pulseless ventricular tachycardia
(Zimmerman and Tan, 2021). In contrast, ACA refers to breath
cessation and presents as pulseless electrical activity (PEA),
leading to progressive hypoxia and eventual CA. There are
several differences between ACA and SCA regarding post-
resuscitation neurologic deficits. From the pathophysiology
perspective (Dezfulian and Lavonas, 2020), anoxia perfusion
plays a dominant role in ACA-related brain injury. Anoxia
perfusion exacerbates lactic acidosis and leads to free radical
injury, which contributes to brain injury (Dezfulian and
Lavonas, 2020). Distinct from ACA, during SCA anoxic
perfusion is absent because circulation ceases (Dezfulian and
Lavonas, 2020). This accounts for the greater severity of brain
injury in ACA compared with SCA. A systematic review
reported that about 54% of CA animal studies model SCA
(VF-induced CA), compared with only 25% that model ACA

Abbreviations: ACA, asphyxia cardiac arrest; ADC, apparent diffusion
coefficient; aEEG, amplitude integrated electroencephalogram; CA,
cardiac arrest; CBF, cerebral blood flow; CMRO2, cerebral metabolic rate
of oxygen; CO2, carbon dioxide; CPC, cerebral performance category;
CPP, coronary perfusion pressure; CPR, cardiopulmonary resuscitation;
DWI, diffusion weighted imaging; EEG, electroencephalogram; ETCO2,
end-tidal carbon dioxide; GFAP, glial fibrillary acidic protein; HE,
hematoxylin-eosin; J, joules; L/P ratio, lactate to pyruvate ratio;
MAP, mean arterial pressure; MNM, multimodality neural monitoring;
MRI, magnetic resonance imaging; MWM, morris water maze; NDS,
neurologic deficit score; NSE, neuron-specific enolase; PEA, pulseless
electrical activity; ROSC, return of spontaneous circulation; SCA, sudden
cardiac arrest; TH, therapeutic hypothermia; TTM, target temperature
management; VF, ventricular fibrillation.

(Vognsen et al., 2017). Thus, this review summarizes the
procedures for establishing an ACA animal model, to provide
a standardized model for future CA research.

2. Attributes of rats for modeling
ACA

We need to establish a standard ACA model toward
developing effective CA diagnostics, treatments, and prevention
measures. Several attributes make the rat an ideal model
for CA research (Table 1). Rats and humans have similar
hemodynamic parameters during resuscitation (Barouxis et al.,
2012). Excepting that the rat heart rate is significantly faster,
other hemodynamic parameters like mean arterial pressure
(MAP), right atrial pressure, coronary perfusion pressure (CPP)
are similar (Popp et al., 2007). Financially, rats confer cost-
based advantages compared with other mammals like rabbits
and swine (Reid et al., 2003). Moreover, a rat model can be
operated alone. Transgenic rat technology and in vitro rat cell
line have also matured, allowing more basic CA investigations.
Compared with mice, rats have greater blood and tissue volumes
for meeting testing requirements. Furthermore, standardized
assessments of rats have been developed to evaluate neurologic
deficits, [e.g., the neurologic deficit score (NDS), described
below]. Finally, we have a thorough understanding of rodent
anatomy and physiology, facilitating extrapolation of study
findings to humans (Diao et al., 2020).

After selecting rats as experimental animals, we should
consider the rats’ type, sex, weight, and age of the rats. Reading
recent literature, Sprague Dawley rats (Chen et al., 2019; Diao
et al., 2020) were widely employed, while Wistar rats (Kuklin
et al., 2019) and Long-Evans rats (Kim et al., 2016) were
also used. These three types of rats are cultured from the
outbred strain, hence, the individual heterogeneity between
rats can reflect the heterogeneity of the CA patient to some
extent. Human epidemiological studies have shown that the
CA characteristics are different in men and women, and there
is a correlation between women and increased survival rates
(Wissenberg et al., 2014). In the current research, Studies
favored males over females to represent the whole population,
which is obviously biased. Therefore, in the experimental
CA animal study, the gender differences and its underlying
pathophysiological mechanism may also be an important
research yield. When it comes to rats’ age, it depends on the
purpose of the study (Vognsen et al., 2017). Normally, we
choose healthy adult rats (2–18 months) as model animals.
Taking feeding costs into account, rats aged 2–3 months
are mostly applied in the literature. Pediatric rats or aged
rats are also applied in experiments on newborn and elderly
populations. Under reasonable feeding conditions, the body
weight of rats was related to age to a certain extent. Rats
aged 2–3 months can generally reach 250–450 g. What we
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TABLE 1 Comparison of different animal cardiac arrest (CA) models.

Advantages Disadvantages

Rat The hemodynamic index is
similar to that of human.
Sufficient tissue for subsequent
testing.
Low price and easy to feed.
Experiment can be operated
alone.
In vitro rat nerve cell lines are
mature.

Heart rate is different from
that of humans.
Small animals have difficulty
to operate (but easier than
mouse relatively).

Mouse The hemodynamic index is
similar to that of human.
Low price and easy to feed.
In vitro mouse nerve cell lines are
mature.

Heart rate is different from
that of humans.
Insufficient tissue for
subsequent testing.
Small animals have difficulty
to operate.

Rabbit The hemodynamic index is
similar to that of human.
Sufficient tissue for subsequent
testing.
Low price.

The cardiovascular structure
and physiology differ greatly
from that of human.
Require at least two operators
to cooperate.
In vitro rabbit nerve cell lines
are immature.

Swine Physiology and anatomy are
similar to humans.
Sufficient tissue for subsequent
testing.

Expensive price.
Large animals require several
operators to cooperate.
The few antibodies designed
for swine limit the
subsequent testing.
In vitro swine nerve cell lines
are immature.

Different animal CA models’ advantages and disadvantages are listed.

tend to overlook here is that the majority of CA patients are
not healthy, they are usually complicated with organic disease.
A study of hypertensive CA rats showed that hypertension
groups got more severe brain damage and lower survival than
the control group (Wang et al., 2016). It reflected differences
between healthy CA patients and CA patients with other co-
morbidities. This may affect the translation of animal results into
the clinic. However, there are few studies on the comorbidity
model. It is necessary to develop the comorbidity model in the
future.

In summary, we support that rats have potential as ACA
animal models and that the selection of specific rat age and sex
needs to be matched to the purpose of the study.

3. Factors to consider in
establishing an ACA rat model

3.1. Anesthesia methods

Anesthesia, the first step in establishing a standardized ACA
rat model, includes induction, maintenance, and withdrawal.

In most cases, anesthesia induction in small animals is
carried out using narcotic gases (Cicero et al., 2018) like
isoflurane, sevoflurane, halothane, or carbon dioxide (CO2),
which are usually released in a small, enclosed space (Lee
et al., 2017b). Anesthesia can reduce the animal’s stress response
and ease surgical procedures like endotracheal intubation and
intraperitoneal administration.

According to the recent literature, pentobarbital,
sevoflurane, isoflurane, and chloral hydrate are most commonly
used in research to maintain anesthesia (Table 2). Maintenance
of a certain anesthesia depth is necessary for surgery, to avoid
the influence of increased catecholamines on brain metabolism
(Gough and Nolan, 2018). Anesthesia can be maintained
by micropump injection or scheduled administration.
Supplemental drugs can be added by observing the heart
rate, blood pressure, and response to painful stimuli (e.g., tail
clipping stimulation).

However, analgesia was neglected in many experiments.
This does not meet the ethical and regulatory requirements of
maximizing animal welfare (Carbone and Austin, 2016).
Therefore, we suggest that analgesia should be added
to the process of animal anesthesia. Buprenorphine,
carprofen, and meloxicam are commonly used analgesics
in rats. When planning the timing of administration,
the onset time of analgesic drug must be taken into
account. Compared with oral drugs, subcutaneous and
intraperitoneal administration takes 15–30 min to take
effect. The subcutaneous injection can avoid damage to
abdominal organs (Herrmann and Flecknell, 2019). Therefore,
the subcutaneous injection may be a better mode of drug
administration. The recommended doses of buprenorphine,
carprofen, and meloxicam were 0.01–0.1, 2–5, and 1–
2 mg/kg, respectively, by subcutaneous injection (Foley
et al., 2019).

Anesthesia should be withdrawn before CA is induced,
to reduce its cardiovascular impacts. Rats show reduced
O2 saturation and heart rate after administration of an
anesthetic mixture (Kirihara et al., 2016). Murakami et al.
compared inhalation (isoflurane) and intraperitoneal injection
(pentobarbital) anesthesia, showing that both decreased heart
rate and blood pressure in rats. Since pentobarbital has a more
obvious effect on heart rate and blood pressure, isoflurane is
recommended from the hemodynamic perspective (Murakami
et al., 2014). Therefore, CA should be induced when the rat
is about to recover from anesthesia, reducing the effects of
anesthetics on resuscitation outcomes and homogenizing the
experimental model.

Our team’s procedure is to use CO2 to induce anesthesia,
and then inject 3% sodium pentobarbital intraperitoneally for
maintenance at a dose of 45 mg/kg (Diao et al., 2020). The first
dose usually maintains for about 1 h. Additional doses of 0.1 ml
of 3% sodium pentobarbital are then used to maintain anesthesia
for∼30 min–1 h. CA is begun following anesthesia washout.
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TABLE 2 Modeling factors to consider.

Anesthesia method Neuromuscular
blocking agent

Definition of
CA

Duration of
CA

Definition of
ROSC

Definition of
failed ROSC

Tungalag et al., 2022 2–3% isoflurane by inhalation Vecuronium, 2 mg/kg MAP < 20 mmHg 5 min MAP ≥ 60 mmHg Not mentioned

Zhang et al., 2022 Isoflurane by inhalation (4%
induction, 1–3% maintenance)

Vecuronium, 2 mg/kg MAP < 20 mmHg 8 min MAP ≥ 60 mmHg lasting
for ≥ 5 min

Duration of
CPR > 5 min

Uray et al., 2021 Isoflurane by inhalation (4%
induction, 2% maintenance)

Cisatracurium 1 mg/kg MAP < 10 mmHg 10 min Sustained
supraventricular rhythm
with MAP > 50 mmHg

Duration of
CPR > 4 min

Hu et al., 2019 Pentobarbital by
intraperitoneal injection
(45 mg/kg induction,
10 mg/kg/h maintenance).

Pipecuronium, 0.1 mg/kg MAP < 30 mmHg 7 min MAP ≥ 60 mmHg lasting
for ≥ 5 min

Duration of
CPR > 10 min

Zhou et al., 2017 10% chloral hydrate by
intraperitoneal injection (0.3
ml/100 g)

No MAP < 25 mmHg 5 min MAP ≥ 60 mmHg lasting
for ≥ 10 min

Not mentioned

Keilhoff et al., 2017 5% sevoflurane Vecuronium, 1 mg/kg MAP < 10 mmHg 6 min MAP ≥ 60 mmHg Duration of
CPR > 2 min

Select, recent papers illustrating different modeling methods. CA, cardiac arrest; ROSC, return of spontaneous circulation; MAP, mean arterial pressure.

3.2. Endotracheal intubation

Endotracheal intubation is challenging in rat experiments
for the difficulty to see the epiglottis and vocal cords.
14G venous catheter (45 mm length) is often used for
endotracheal catheter (Foley et al., 2019). The classical blind
oral intubation requires the operator’s proficiency (Stark
et al., 1981). Repeated intubation attempts can lead to
laryngeal edema, glottic injury, and death from respiratory
failure. In recent years, tracheal intubation under a visual
laryngoscope has been realized, and the intubation efficiency
is higher (Balzer et al., 2020). However, for laboratories
without advanced facilities, endotracheal intubation can be
performed on the premise of exposing the neck. In the
case of looking directly at the trachea, to some extent,
it can assist with endotracheal intubation (Diao et al.,
2020).

3.3. CA induction
method—asphyxiation

Asphyxia cardiac arrest is usually induced by disconnecting
the mechanical ventilator and clamping the tracheal tube, with
or without vecuronium. In recent years, the ACA model has also
been used for in vitro cardiopulmonary cerebral resuscitation
studies (Wollborn et al., 2019; Yin et al., 2021). It can accurately
model the main causes of CA and death due to asphyxia,
including post-CA changes in blood gases and pathophysiology
of the heart, brain, kidney, and other tissues. This method
requires simple equipment and procedures. Because it does not
require thoracotomy, it has minimal effects on lung function.

Even under sedation, rats struggle when ACA is induced,
which may cause equipment disconnection that may affect the
experiment. Vecuronium can prevent this by reducing animal
sensitivity. A neuromuscular blocking agent, it is administered
to induce apnea without adverse cardiovascular effects (Jurado
and Gulbis, 2011). A muscle relaxant is used first to reduce the
stress response, with which apnea time tends to be consistent.
Other muscle relaxants like pecuronium, cisatracurium, or
rocuronium are also used in rat models (Table 2).

Our procedure is to administer vecuronium at a dose of
2 mg/kg by intravenous injection, leading to an apnea duration
in rats of∼15 s (Diao et al., 2020).

3.4. CA duration

Operationalized CA duration varies among investigators.
Some define this as lasting from the start of disconnecting the
mechanical ventilator to clamping the tracheal tube, while others
define it as the no-flow period (i.e., no perfusion, which causes
the MAP decrease to a certain value, often 25 or 20 mmHg
depending on the experimental design) (Table 2).

Our procedure is to divide asphyxiation into three phases.
Phase 1 is from clamping the tracheal tube to apnea, which
generally lasts 15 s with vecuronium. Phase 2 is hypoxic
perfusion, when apnea occurs with some perfusion, generally
lasting 3 min. Phase 3 is no-flow, with duration depending
on the experimental design. It can be inferred that prolonging
CA duration will aggravate neurologic deficits and decrease the
ROSC rate. The recent literature indicates that CA duration
usually ranges from 4 to 10 min. In our experience, a 6-min
CA model achieves neurologic deficits while maintaining a high
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TABLE 3 CPR parameters.

Mechanical ventilation Epinephrine Chest compression Defibrillation Ventilation
weaning

Keilhoff et al., 2017 FiO2 = 1.0 0.005 mg/kg, at initial 300/min No 1 h post ROSC

Chang et al., 2020 FiO2 = 1.0 0.01 mg/kg, at initial and
0.02 mg/kg, every 2 min

200/min No 1 h post ROSC

Hu et al., 2019 FiO2 = 1.0, a frequency of 80/min,
tidal volume of 0.6 ml/100 g

0.02 mg/kg, at initial 240/min, with a depth of 25–30%
of the anterior posterior diameter
of the animal’s chest.

Single 2-J rectilinear
biphasic shock

6 h post ROSC*

Zhu et al., 2018 FiO2 = 1.0 0.01 mg/kg, at initial 200/min No 1 h post ROSC

Tae et al., 2017 FiO2 = 1.0 0.005 mg/kg, at initial 300/min No 2 h post ROSC

Hansen et al., 2017 FiO2 = 1.0, a frequency of
105/min

0.01 mg/kg, every 2 min 200/min, with a depth of 1.4 cm
(1/3 of anterior–posterior chest
diameter) by mechanical chest
compressions

No Not mentioned

Keilhoff et al., 2017 FiO2 = 1.0, intermittent positive
pressure ventilation

0.001 mg/kg, at initial 200/min No When sufficient
spontaneous
respiration was
established

CPR parameters applied in several recent papers.
*Hu et al. (2019) study aimed to observe the effect of different post-resuscitation hyperoxia therapy durations, with ventilation weaning time extended to 6 h post-resuscitation.
CPR, cardiopulmonary resuscitation; ROSC, return of spontaneous circulation.

ROSC rate (>80%), while use of a 7-min CA model reduces the
ROSC rate to∼50%.

3.5. CPR

It is well known that high-quality CPR plays an
important role in improving CA survival. Standard CPR
procedures include chest compressions, mechanical ventilation,
epinephrine, and defibrillation, when needed (Table 3).
End-tidal CO2 (ETCO2) and CPP are effective indices of
resuscitation efforts.

Standard chest compressions involve compression depth,
frequency, and positioning. The literature indicates that chest
compressions are performed at a rate of 200–300 times/min, at a
depth of 1/3 the anteroposterior thorax diameter. Compressions
can be performed manually, but maintaining uniformity of
their frequency and depth is difficult, leading to interruptions.
Electric chest compressors have therefore been invented in
recent years. Compared with manual compressions, mechanical
compressions can improve organ perfusion pressure, cerebral
blood flow (CBF), and ETCO2 concentration (Vane et al., 2017).
There are two chest compression approaches: cardiac pump
and thoracic pump. Cardiac pump is performed by vertical
sternum compression, thoracic pump by horizontal chest wall
squeezing from both sides. The vast majority of experiments
use cardiac pump. Okuma et al. (2019, 2021b) recently
proposed a new approach: combining the two in a “three-
side chest compression.” They found that this showed optimal
CPR performance, improving CA survival. Its benefits may
derive from increased intrathoracic pressure and stable cardiac

hemodynamics. It may also improve reserve brain function.
Yet three-side chest compression also increases operational
difficulty.

Mechanical ventilation can improve early ACA outcomes
and increase ROSC rates (Berg et al., 2000). The recent literature
indicates that rat model mechanical ventilation is usually
carried out with a small animal ventilator. Our procedure is to
perform mechanical ventilation (FiO2 = 1.0) at the beginning
of CPR at a frequency of 80–110 times/min with tidal volume
0.65 ml/kg. Although the optimal oxygen concentration during
CPR is uncertain (O’Driscoll et al., 2017), current guidelines
recommend maximum oxygen CPR to ameliorate tissue hypoxia
(Newell et al., 2018). Clinical studies have shown that higher
arterial oxygen partial pressure during CPR is associated with
increased an ROSC rate (Spindelboeck et al., 2016; Demiselle
et al., 2021).

Epinephrine, a systemic vasoconstrictor, can increase
perfusion of important organs (i.e., the brain and heart) and
is characterized by increased CPP (Putzer et al., 2020). The
recommended epinephrine dose in adult advanced cardiac life
support is 1 mg/3–5 min (Panchal et al., 2020). To model clinical
practice, the dose used in rats ranges from 5 to 40 ug/kg, with
10 and 20 ug/kg commonly used. However, epinephrine can
damage hemodynamics and cause myocardial injury. McCaul
et al. (2006) studied the relations between epinephrine dose
and outcomes in CA rats, showing that the group treated with
30 ug/kg had higher mortality than the 10 ug/kg group; that is,
larger epinephrine dose was associated with increased mortality.

The 2020 CPR guidelines indicate that early defibrillation is
beneficial for ROSC (Panchal et al., 2020). Several clinical studies
have shown that VF in ACA is more common than previously

Frontiers in Neuroscience 05 frontiersin.org

https://doi.org/10.3389/fnins.2022.1087725
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1087725 December 22, 2022 Time: 21:8 # 6

Yu et al. 10.3389/fnins.2022.1087725

thought (Herlitz et al., 2005a,b). In one ACA study in pigs,
the initial rhythm converted from PEA to VF in 57% of pigs
before CPR was begun (Varvarousi et al., 2015). If a shockable
rhythm occurs, 2–4 joules (J) could be applied for defibrillation,
with 2 J most commonly used in recent rat models (Hu et al.,
2019; Yang et al., 2021). Electrical defibrillation can also have
side effects, with too high defibrillation energy causing heart
damage (Ishigaki et al., 2016). Xie et al. (1997) showed that in
a CA rat model, increasing defibrillation energy from 2 to 20 J
significantly reduced survival, cardiac index, and left ventricular
function, possibly from abnormal intracellular Ca2+ kinetics
(Ristagno et al., 2008).

ETCO2 is related to CBF (Lewis et al., 1992), and
cardiac output and ETCO2 ware both affected by chest
compressions (Gudipati et al., 1988). Thus, ETCO2 can be
used for non-invasive monitoring of blood flow from chest
compressions during resuscitation. In the 2020 American
Heart Association guidelines, ETCO2 was recommended for
assessing resuscitation quality (Panchal et al., 2020). Sustained
increased ETCO2 (≥40 mmHg) is related to ROSC, and low
or decreased ETCO2 suggests that CPR is low-quality. ETCO2

has also been associated with post-CA resuscitation outcomes in
clinical trials. When ETCO2 < 10 mmHg, ROSC cannot occur
(Sanders et al., 1989), the phenomenon also observed in rats.
Abruptly increased ETCO2 is observed when ROSC occurs (Yagi
et al., 2021), and remains higher in those who survive (20.1–
16.3 mmHg) than in those who do not (2.0–6.0 mmHg) (Sato
et al., 1993).

It is well known that a critical marginal myocardial blood
flow level must be achieved for successful resuscitation (Ge
et al., 2020). CPP is the difference between aorta and right atrial
pressures. Increased CPP predicts increased myocardial blood
flow and thus ROSC. Elevated CPP has also been associated
with elevated ROSC in rat models (Wu et al., 2017; Wang et al.,
2018), in which it is measured by inserting a catheter into the
right ventricle (Wang et al., 2018), though use of this complex
technology is infrequent.

The experimental ACA/CPR model protocol is shown
in Figure 1. In conclusion, there are many factors to
consider when building a CA model. Anesthesia drugs that
interfere study purposes should be avoided. Analgesia should
be considered in conjunction with sedation. For unskilled
operators without advanced equipment, cervical exposure may
be considered before endotracheal intubation. Combined with
the neuromuscular blocking agent during asphyxia can reduce
stress to the animal and control the duration of respiratory
arrest. The duration of cardiac arrest is related to the severity of
nerve damage and ROSC rate, so it is necessary to reasonably
determine the CA duration in combination with the study
purpose. ETCO2 and CPP are recommended to test the CPR
efficiency.

4. Post-resuscitation management

Post-resuscitation oxygen therapy and hypothermia therapy
are widely used in clinical practice, therefore, the inclusion of
these two treatments in the animal model can better simulate
the clinical situation.

4.1. Oxygen therapy

Cardiac arrest is a sudden cessation of circulation and
respiration, with blocked oxygen delivery. Thus, oxygen
support is needed during resuscitation and post-resuscitation
to restore vitality, especially of the heart and brain. The
oxygen concentration used with mechanical ventilation post-
resuscitation should thus also be considered. Regarding
hypoxic/ischemic disease, administration of hyperoxic gas may
ensure vigorous resuscitation.

However, recent animal model findings have confirmed
that hyperoxic ventilation post-resuscitation aggravates
hypoxic/ischemic damage. Okuma et al. (2021a) studied

FIGURE 1

Six-min asphyxia cardiac arrest (ACA)/CPR model protocol (our protocol as an example). aFiO2 = 1.0, frequency of 100/min, tidal volume of
0.65 ml/100 g. bManually, 200–300/min, at a depth of 1/3 the anterior–posterior chest diameter. c0.01 mg/kg, every 2 min. dSingle 2J
rectilinear biphasic shock. eMAP > 60 mmHg lasting for ≥10 min. CA, cardiac arrest; CPR, cardiopulmonary resuscitation; ROSC, return of
spontaneous circulation; MAP, mean arterial pressure.
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post-resuscitation outcomes between normoxic (FiO2 = 0.3)
and hyperoxic (FiO2 = 1.0) therapies in the ACA rat model,
showing that the former reduced oxidative stress in multiple
organs and improved organ injury, oxygen metabolism, and
survival. Another ACA model study used target temperature
management (TTM) in four hyperoxic ventilation groups
(durations of 0, 1, 3, or 5 h) and a normoxic ventilation
group (FiO2 = 0.21). The 3-h hyperoxic ventilation group
had better neurologic outcomes and a higher survival rate
compared with the normoxic ventilation group, while the
other hyperoxic groups had worse outcomes (Hu et al.,
2019). European guidelines from 2015 (Nolan et al., 2015)
recommend maintaining blood oxygen saturation at 92–98%
post-resuscitation, and have recently added an arterial oxygen
pressure target of 10–13 kPa (75–100 mmHg) (Nolan et al.,
2021b).

To conclude, applying oxygen therapy post-resuscitation is
common in clinic, although the best oxygen therapy (including
oxygen concentration and duration of oxygen therapy) has not
been determined. But the current research shows that hyperoxic
therapy at a specific time is better than normoxic therapy and
long-term hyperoxia therapy. Additional studies are needed
to explore optimal oxygen concentrations. Our protocol is to
maintain hyperoxic ventilation (FiO2 = 1.0) for 1 h post-
resuscitation, and normoxic ventilation (FiO2 = 0.21) for 1 h
after that (Diao et al., 2020). We also withdraw mechanical
ventilation 2 h post-resuscitation.

4.2. Hypothermia

In 2002, two prospective clinical studies of therapeutic
hypothermia (TH) were published in the New England Journal
of Medicine. Their results showed that mild hypothermia
significantly improves survival and neurologic recovery after
out-of-hospital CA compared with normothermia (Bernard
et al., 2002; Hypothermia after Cardiac Arrest Study Group,
2002). These findings inspired researcher interest in this
therapy, which has also been shown effective for preserving
neurologic function. TH can inhibit activation of apoptosis,
reduce post-injury inflammatory response, and produce
neuroprotective effects (Hong et al., 2021). In addition, since
the cerebral metabolic rate decreases 6–7% for every 1◦C drop
in body temperature (Kaylor et al., 2022), reducing oxygen
demand may improve neurologic function.

Target temperature management is a broad concept that was
first introduced in 2011; it includes TH, normal temperature
control, and fever treatment (Nunnally et al., 2011). TTM
is the only recommended post-resuscitation neuroprotective
management, and is endorsed by both the American Heart
Association and the Society of Critical Care Medicine (Kaylor
et al., 2022). Animal experiments have repeatedly confirmed its
neuroprotective effects (Hong et al., 2021; Wang et al., 2021b).

High-quality TTM requires several factors: initial timing,
target temperature, cooling method, cooling duration, and
rewarming duration. TTM should begin as soon as possible
to shut down oxygen demand early. Most experts agree with
a target temperature of 33–36◦C. Low target temperatures
theoretically provide better neurologic function but may
also confer adverse events like unstable hemodynamics and
hemorrhage. However, recent studies of patients with CA
demonstrated that TTM at 33 or 36◦C produces equivalent
neuroprotective effects, while 36◦C leads to fewer adverse events
(Lee et al., 2018; Hong et al., 2021). Target temperature generally
depends on patient condition and severity of neurologic
damage. There are three main cooling methods: surface,
intravenous-induced, and drug-induced. Surface cooling uses
mechanical methods, like a cold room, ice blankets, icepacks,
spraying the body with alcohol, and cold water baths, which
require relatively long periods (∼30 min) to reach target body
temperature (Yanamoto et al., 2001; Wang et al., 2010; Lagina
et al., 2012). In contrast, intravenous-induced hypothermia,
usually with an infusion of cold saline, achieves the target
body temperature within 5 min (Wang et al., 2010). Recent
hypothermia drug studies have shown that these can eliminate
shivering by acting on central or peripheral thermoregulatory
pathways, and can also be used to treat conscious patients with
hypothermia (Lee et al., 2017a). In animal experiments, cold
temperature durations range from 30 min to 6 h, with 4 h
commonly used (Diao et al., 2020; Xu et al., 2022). Finally,
rewarming rate is usually controlled at 0.5–2.0◦C/h (Diao et al.,
2020; Xu et al., 2022) or as the fastest rewarming speed (Jawad
et al., 2021; Wang et al., 2022).

Hickey et al observed spontaneous hypothermia in the
ACA model of rats (Katz et al., 1995, 1998; Hickey et al.,
1996; Radovsky et al., 1997). And studies demonstrated
that spontaneous hypothermia reduced neuronal damage and
ameliorated inflammation and neurologic deficit (Hickey et al.,
2000; Zhou et al., 2018). Therefore, maintaining normothermia
is often needed to avoid variable temperature confounds. Rat’s
normal core body temperature (rectal temperature) is about
37.5◦C (Dangarembizi et al., 2017), therefore, most rat models
control the normal body temperature at 37.5± 0.5◦C (Tungalag
et al., 2022; Xu et al., 2022). Heating pads or lamps can keep
the rats at normal body temperature. During the operation, we
should also pay attention to keeping the animals warm and
keeping them away from the cold air. After the operation, the
animals can maintain their body temperature in a constant
greenhouse (Klahr et al., 2017). Many researchers are currently
devoted to studying the neurologic protective effects of specific
drugs combined with TTM post-resuscitation (Huang et al.,
2016; Brucken et al., 2018; Nakayama et al., 2018). This area
holds strong exploration potential.

Hypothermia therapy has been widely recognized in
clinics. The setting of the target temperature needs to be
considered in light of the neurologic deficit severity. In
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the experiments about hypothermia therapy, we should pay
attention to the phenomenon of spontaneous hypothermia
in animals, and guarantee heat preservation of the normal
temperature control group.

5. Neurologic deficit assessment

It is important to assess neurologic deficits toward
developing a successful model. Many methods exist for
this purpose, including the NDS, cognitive function
assessment, pathology, electroencephalogram (EEG), nerve
injury biomarkers, magnetic resonance imaging (MRI),
and microdialysis.

5.1. NDS

The NDS is used to evaluate neurologic deficit. Its
template is patterned on the standard human neurologic
examination. Different animals have corresponding scales; for
rats, three are commonly used. First, Hendrickx et al. (1984)
adapted a rat NDS from that used with monkeys. Second,
Katz et al. (1995) developed a new NDS adapted from the
canine version; this version consisted of five components:
consciousness and respiration, cranial nerve function, motor
function, sensory function, and coordination (including balance
beam walking). Third, based on multiple animal model scales
(including versions for the rat, canine, and neonatal piglet),
Geocadin et al. developed a novel NDS in 2000. This version
ranged from 80 (best) to 0 (brain dead) (Geocadin et al.,
2000) and included seven parts: general behavioral deficit,
brainstem function, motor assessment, sensory assessment,
motor behavior, behavior, and seizures.

Rat neurologic function changes dynamically across the
first few days post-resuscitation. Modi et al. (2022) used an
NDS of 0–80 with a cutoff of 60 to distinguish mild and
severe neurologic impairment. In their study, 24 h NDS scores
were <60, which lowered at 48 h. That is, neurologic function
deteriorated. In contrast, Zhang found that 24-h NDS was
>60, with 48-h and 72-h scores gradually increasing and stable,
indicating neurologic improvement. Thus we can assume that
when the 24-h NDS is higher than the cutoff value neurologic
function will gradually deteriorate, and that when the 24-h NDS
is lower than the cutoff value neurologic function may recover
gradually. Another ACA/CPR rat model study also showed
stable NDS scores at 72 h and later (Chen et al., 2019). Therefore,
24 h is recommended as the early post-resuscitation neurologic
function assessment timepoint, and 72 h or later should be used
for long-term evaluation.

Though the NDS is a brief, convenient instrument for
evaluating neurologic deficits, it is not without limitations. First,
some items are unreasonable, like that proposed by Geocadin

and Katz for which the only brainstem reflex options are
“present” or “absent,” but may actually be “sluggish” in studies.
In this respect, the NDS proposed by Hendrickx is superior. In
addition, because the NDS is subjective, intra-investigator rating
differences may lead to information bias, as may also occur if
investigators are unblind regarding group assignment. Thus, it
is recommended that at least two investigators rate on the NDS,
both of whom should be blinded.

5.2. Cognitive function assessment

Cognitive function assessment is another aspect of
neurologic deficit assessment. In the ACA rat model, we
observed cognitive function impairment (Han et al., 2020).
Animal behavioral assessments are often used to assess cognitive
function. As for rodents, the maze test can evaluate memory
and cognitive function. The Morris water maze (MWM)
test assesses hippocampal-dependent learning, including the
acquisition of spatial memory and long-term spatial memory.
Studies have shown that at day 18 after resuscitation, ACA rats
had significantly longer total swimming distances than shams
before reaching the platform placed in the MWM test (Huang
et al., 2019). The Y-maze test can evaluate spatial memory
quantitatively and objectively. Studies have shown that in the
Y-maze test, the spontaneous alternation rate decreased in rats’
post-resuscitation, suggesting cognitive impairment (Lee et al.,
2020). Electrical stimulation is needed in Y-maze test, which
will cause stress to rats. T-maze is analogous to the Y-maze, and
can evaluate spatial memory quantitatively and objectively, but
without electrical stimulation. In T-maze test, we also observed
that the spontaneous replacement rate of ACA rats decreased
(Lee et al., 2017b).

In addition to the maze test, the novel object recognition
test can also assess cognitive function, performed based on
the spontaneous tendency of a rat to explore a novel object.
The higher recognition index (RI = novel object interaction
time/total object interaction time) demonstrates a better
cognitive function. Emulsified isoflurane postconditioning
improves ACA rat’s neurological outcomes, characterized by
elevated RI (Zhang et al., 2017).

However, it should be spotted that in CA rats with severe
neurologic deficits, the behavioral tests mentioned above may
not be completed for motor function damage. Therefore, we
need to accurately evaluate the rats’ status to confirm whether
behavioral experiments can be carried out.

5.3. Histopathology

Following CA, neuron and glial cell ultrastructure changes
occur. Hematoxylin-eosin (HE) staining of perineuronal edema
appears as dark neurons, soma, axons, and dendrites, especially
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among large neurons in the cortex and thalamus, clearly
indicating large necrotic changes that may lead to cell death
(Sharma et al., 2011). With inflammation, glial cells are activated
and altered morphology or numbers are observed (Chang et al.,
2020). Such pathology analyses can be used to observe cell-level
nerve injury.

There are unique neural tissue methods in addition to
conventional HE staining. Nissl staining clearly distinguishes
Nissl bodies (which can be reduced or even eliminated
with neuronal damage), nuclei, and nucleoli (Kiernan et al.,
1998). Fluoro-Jade stains denatured neurons, which show blue
fluorescence under ultraviolet light, allowing both qualitative
and quantitative damage assessments (Schmued et al., 1997).
Different glial cells have corresponding, specific staining
methods. Cajal staining is a selective technique for astrocytes
(Garcia-Marin et al., 2007), and immunohistochemistry or
immunofluorescence analysis for glial fibrillary acidic protein
(GFAP) can show the activation of astrocytes (Lu et al.,
2022). Silver carbonate staining shows cell bodies and
microglial processes (McCarter, 1940; Wang and Wei, 2012).
Oligodendrocytes are stained with the del Rio Hortega method
(McCarter, 1940). Neuron ultrastructures like cell membranes,
cytoplasm, and organelles are visible with electron microscopy.
In the 10-min rat CA model, researchers have observed
clumping or condensation of neuronal chromatin, indented
nuclei, and altered mitochondria and endoplasmic reticulum
(Hossmann et al., 2001). Yasuda et al. studied the dynamic
pathology changes of glial cells in transient global ischemia
in rats (Yasuda et al., 2011). The results revealed the four
phases of neuronal reduction post-resuscitation: (1) lag phase
when very little neuronal loss was observed (day 0–2), (2)
exponential phase when neuron reduced exponentially (day 2–
7), (3) deceleration phase when the rate of reduction became
lower (day 7–14), and (4) stationary phase when the additional
neuronal loss was no longer observed (after day 14). From
this point of view, it’s reasonable to evaluate the long-term
neurological outcome in the deceleration phase or stationary
phase. This seems to contradict the conclusion we reached in
the “NDS” section. In fact, this study only assessed neuronal loss
in the CA1 region of hippocampus, while NDS involves brain
function in many regions. More research is needed to explore
the relationship between NDS and neuronal reduction.

Human studies have shown that the hippocampus and basal
ganglia are more sensitive to hypoxia/ischemia injury, which
may serve as sentinels for post-CA ischemic pathology (Haglund
et al., 2019). The degree of hypoxia/ischemia injury to the
hippocampus and cerebellum is also slightly higher than to
the cerebral cortex and thalamus (van Putten et al., 2019).
Further, cortical, basal ganglia, and cerebellar slices are more
time-consuming to prepare compared with hippocampal slices
(Haglund et al., 2019). Thus, evaluating neurologic injury by
hippocampal slices may be more feasible overall.

5.4. EEG monitoring

Following neurologic examination, EEG is commonly
used to assess neurologic prognosis in hypoxic/ischemic
encephalopathy. Through continuous, non-invasive bedside
monitoring of neuronal electrical activity, with neurologic
function assessment based on specific waveform characteristics,
EEG plays an important dynamic monitoring role. Sustained
isovoltage, low-voltage, or low-burst suppression patterns of
EEG activity within the first 24 h predict a poor prognosis,
whereas rapid return to continuous patterns within 12 h is
strongly associated with better neurologic outcome (Hofmeijer
and van Putten, 2016). Chen et al. (2019) used EEG to predict
neurologic outcomes after resuscitation in hydrogen-treated
rats, showing that this group had shorter EEG burst time
and better neurologic prognosis compared with the control
group.

However, the volume of information from conventional
EEG precludes efficient interpretation. A solution to this issue,
amplitude integrated EEG (aEEG) quantifies EEG temporal
and spatial data. Alpha and beta rhythms decrease during
ischemia in rats, while reperfusion promotes their recovery
(Lu et al., 2001). At present, this method is mainly used to
monitor neonatal neurologic function. More research is needed
to explore aEEG manifestations in patients recovering from CA.

Rat EEG must be implanted and mounted via intracranial
electrodes. Electrodes are placed with reference to the rat brain
atlas and, distinct from the 16-lead EEG used in humans,
3–5 leads are used in rat models. The conventional method
is to insert subdermal needles into the skull surface (Wang
et al., 2021a) or implant screw electrodes via drilling (Shoaib
et al., 2022). The traditional exposed intracranial electrode
combined device is then embedded atop the rat head outside
the scalp. However, traditional bare intracranial electrodes
cause discomfort, influencing animal activity and eating, and
interfering with experiments. Researchers have now developed
intracranial electrodes that are implanted beneath the scalp,
where they are better protected. Signals collected this way are
consistent with the traditional method but do not affect animal
food or water intake (Benovitski et al., 2022).

5.5. Biomarker—neuron-specific
enolase

Biomarkers are simple to detect and commonly used
in clinical practice for convenient monitoring. Likewise, in
animal experiments, serum or plasma biomarkers are often
used to detect and evaluate neurologic injury. Most commonly
used, neuron-specific enolase (NSE), is the only guideline-
recommended biomarker for prognosis of neurologic function
in CPR (Sandroni et al., 2014). It is released by damaged
neurons into circulation through the blood–brain barrier
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(Steinberg et al., 1983). Though continuously rising NSE is a
strong predictor of poor neurologic function prognosis (Schrage
et al., 2019), a cutoff value has yet to be established. In patients
with CA, 72-h NSE level >33 ug/L (Youden index: 0.469) is
associated with poor neurologic prognosis (Daubin et al., 2011).

Neuron-specific enolase is also widely used to monitor
neurologic outcome post-CA in animal models. Rat model NSE
release increases significantly after both CA and CPR (Qiu
et al., 2017). Within the literature, NSE levels vary. Twenty-
four hours post-resuscitation in an 8-min ACA rat model,
Wang et al. (2020) found NSE levels of 0.35 ± 0.14 ng/ml,
while Qiu et al. (2017) reported ∼6 ng/ml. NSE levels can
even differ between experiments within the same report [e.g.,
post-resuscitation NSE was ∼100 and 10 ng/ml in successive
experiments (Han et al., 2020)]. Thus, rat NSE levels may
be dissimilar to those of humans, and the model’s normative
threshold has yet to be determined. Nevertheless, rat NSE
changes after neurologic damage, which can be used to indicate
and evaluate neurologic deficit in research. NSE levels can
confirm successful establishment of a CA model or test the
effectiveness of an intervention (e.g., by testing for changes in
NSE values between experimental and control groups).

Neuron-specific enolase has other limitations. It is also
present in red blood cells, so hemolysis of blood samples may
significantly affect NSE levels (Scolletta et al., 2012). Its reliability
is also affected by sample storage and measurement methods
(Rundgren et al., 2014).

5.6. MRI

Recently, MRI, especially diffusion weighted imaging
(DWI), has become vital for predicting post-resuscitation
neurologic injury. Compared with computed tomography, MRI
is more sensitive to ischemic injury. During CA, ischemia
and hypoxia lead to cell edema, which DWI can detect post-
resuscitation. The apparent diffusion coefficient (ADC) value
is an important quantitative index used to evaluate the extent
and severity of cerebral ischemia injury (Solar et al., 2022).
Decreased ADC values reflect diffusion of water molecules,
indicating cell membraned damage (Norris et al., 2020). Wallin
et al. (2018) performed post-CA MRI in 46 patients with
acute hypoxic/ischemic injury, showing that reduced ADC
values were more common in patients with poor prognosis.
Animal experiments also increasingly apply MRI. Drabek et al.
(2014) used arterial spin labeling MRI to show global and
regional CBF differences between ACA- and VF-induced CA
in rats. Wei et al. (2020) further explored the ability of MRI
markers, showing that higher CBF and cerebral metabolic rate of
oxygen (CMRO2) predict better early neurologic function post-
resuscitation. Similar to clinical research, compared to sham,
ADC is significantly lower in ACA rats post-resuscitation Liu
et al., 2022).

5.7. Microdialysis

Microdialysis is a continuous intercellular fluid recording
technology used to assess dynamic changes in biochemical
mediums. Because extracellular fluid is the neuronal survival
environment, it reflects changes in brain function and
metabolism through biochemical substances like glucose, lactic
acid, pyruvic acid, and glutamate (Hutchinson et al., 2015).
Pyruvate is metabolized to lactate by anaerobic digestion
during hypoxia, so the lactate to pyruvate ratio (L/P ratio)
is used as a marker of this activity (Hlatky et al., 2004;
Tisdall and Smith, 2006). Glutamate is another indicator of
hypoxia/ischemia (Hlatky et al., 2004). Glycerol is considered a
marker of hypoxia/ischemia and cell membrane rupture (Tisdall
and Smith, 2006). Therefore, microdialysis can also be used
in neurologic monitoring post-resuscitation, to quickly and
accurately reflect brain metabolism changes. Clinical studies
have shown that lactate and pyruvate levels increase post-
resuscitation, and more so in those with cerebral performance
category (CPC) scores from 3 to 5 than those with CPC scores
from 1 to 2 (Molstrom et al., 2021). Microdialysis technology
has also been applied in animal models (Pan et al., 2018; Putzer
et al., 2018). In rat CA model, central nervous glucose decreases
during CA, then increases significantly post-resuscitation.
Moreover, L/P ratio and glutamate increase markedly post-
resuscitation in a VF-induced CA model (Schober et al., 2016),
consistent with assumptions. Microdialysis has also shown post-
resuscitation neurologic outcome predictive accuracy. Further, a
VF-induced CA rat model study showed that microdialysis can
be used to discriminate between survivors and non-survivors
8 min post-CPR, and that non-survivors tend to have elevated
brain glutamate levels (Hosmann et al., 2016).

5.8. Multimodality neural monitoring

The neurologic assessment methods mentioned above have
their own advantages and disadvantages. NDS is simple and
simple and easy to implement, but it lacks objectivity to
some extent. Behavioral assessments need to be performed in
rats with normal motor function. Histopathology can evaluate
nerve function from a microscopic perspective, which is
applicable to basic science research but not clinical practice.
EEG and microdialysis can be used to analyze dynamic
neurologic function. Serum biomarkers are easy to operate,
but there is no unified standard detection method and cut-
off value. Imaging examination is limited by the time limit
of detection and cannot provide dynamic information. Not
a single index can accurately evaluate neurologic function.
Multimodality neural monitoring (MNM) is the combination
of neural monitoring techniques (Riviello and Erklauer, 2021),
including hemodynamic parameters and invasive and non-
invasive methods described above. The 2021 guidelines of
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FIGURE 2

Multimodal neural monitoring diagram. NDS, neurologic deficit score; NSE, neuron-specific enolase; EEG, electroencephalogram; MRI,
magnetic resonance. Created with BioRender.com.

the European Resuscitation Council and European Society of
Intensive Care Medicine emphasize use of combined methods
to evaluate neurologic outcomes (Nolan et al., 2021a), as this
approach is more accurate than single methods for guiding
treatment (Anetakis et al., 2022; Huang et al., 2022). In animal
experiments, MNM can also be used to accurately evaluate
neurologic function and explore better joint prognostic models.
Figure 2 illustrates MNM.

6. Conclusion

Cardiac arrest is a major public health issue, and the CA
animal model is a good vehicle to pursue more knowledge
about CA. Over recent decades, many researchers have been
devoted to establishing an ACA rat model. The ultimate goal of
animal research is to simulate clinical scenarios, to facilitate the
successful transfer of research findings to clinical practice. For
the complexity of cardiac arrest patients, no single animal model
can perfectly represent them, therefore, designing models to
meet different CA populations or scientific questions is needed.
But these approaches must be transparent and reproducible to
allow the investigators to judge the generalizability of the results.

The rats provide an excellent animal model of
cardiovascular system and nervous system for its cost-
based advantages and sufficient tissue for subsequent testing.

Current CA models lack the post-resuscitation management
and comorbidities which are needed to mimic clinical practice
better. Oxygen therapy and hypothermia therapy are proposed
as commonly used post-resuscitation management. It is
suggested to consider post-resuscitation management measures
when designing animal models. At present, animal models
comorbid other related diseases are still scarce. It may be time
to develop animal models with co-morbidities. The neurologic
function is a vital indicator to evaluate whether the model is
successful or whether interventions work. Common neurologic
function assessments in animal experiments are reviewed, and
it is suggested that researchers adopt a variety of methods to
evaluate neurologic deficits in animal models.

A standard model establishment can help experiment
homogenization. Although many factors must be considered
in model construction, developing an ACA/CPR rat model is
relatively simple and can meet experimental research needs.
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