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Autism spectrum disorder (ASD) is a heterogeneous neurodevelopmental

disorder characterized by social impairments and restricted, repetitive

behaviors. Treatment of ASD is notoriously difficult and might benefit from

identification of underlying mechanisms that overlap with those disturbed

in other developmental disorders, for which treatment options are more

obvious. One example of the latter is attention-deficit hyperactivity disorder

(ADHD), given the efficacy of especially stimulants in treatment of ADHD.

Deficiencies in catecholaminergic systems [dopamine (DA), norepinephrine

(NE)] in ADHD are obvious targets for stimulant treatment. Recent findings

suggest that dysfunction in catecholaminergic systems may also be a factor

in at least a subgroup of ASD. In this review we scrutinize the evidence for

catecholaminergic mechanisms underlying ASD symptoms, and also include

in this analysis a third classic ascending arousing system, the acetylcholinergic

(ACh) network. We complement this with a comprehensive review of DA-,

NE-, and ACh-targeted interventions in ASD, and an exploratory search for

potential treatment-response predictors (biomarkers) in ASD, genetically or

otherwise. Based on this review and analysis we propose that (1) stimulant

treatment may be a viable option for an ASD subcategory, possibly defined

by genetic subtyping; (2) cerebellar dysfunction is pronounced for a relatively

small ADHD subgroup but much more common in ASD and in both cases may

point toward NE- or ACh-directed intervention; (3) deficiency of the cortical

salience network is sizable in subgroups of both disorders, and biomarkers

such as eye blink rate and pupillometric data may predict the efficacy of

targeting this underlying deficiency via DA, NE, or ACh in both ASD and ADHD.

KEYWORDS

dopamine, norepinephrine, acetylcholine, cerebellum, Purkinje cells, genetics,
salience network, biomarkers

Frontiers in Neuroscience 01 frontiersin.org

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.1078586
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.1078586&domain=pdf&date_stamp=2023-01-06
https://doi.org/10.3389/fnins.2022.1078586
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnins.2022.1078586/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-16-1078586 December 29, 2022 Time: 15:9 # 2

Koevoet et al. 10.3389/fnins.2022.1078586

Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder characterized by behavioral (including social) deficits
(American Psychiatric Association, 2013). In the DSM-5 the two
foremost criteria for ASD, often referred to as the core deficits,
are social deficits and restricted and repetitive behaviors. In
addition to these core deficits, individuals with ASD suffer from
a wide range of impairments. Examples of such impairments are
deficits in learning (Klinger et al., 2007; Schreibman et al., 2015),
executive function (Craig et al., 2016), language (Tager-Flusberg,
2006; Edgar et al., 2015), aggression (Kanne and Mazurek,
2011), hyperactivity (Lecavalier, 2006), sleeping (Malow et al.,
2006; Deserno et al., 2019), and sensory processing (Marco
et al., 2011). Many view ASD as a very heterogeneous disorder,
partly due to the great variability in the presentation as well
as severity of symptoms (Masi et al., 2017). While high-
functioning groups can – at least in part – effectively participate
in society, low-functioning ASD groups show higher severity of
symptoms (e.g., no verbal communication) and cannot function
independently (Lord et al., 2004; Whitby and Mancil, 2009;
Baghdadli et al., 2012; Masi et al., 2017). Due to the great
heterogeneity of ASD in addition to the complex nature of social
communication and interaction, it is hard to identify effective
biological/pharmacological treatments for ASD. To date, there
are no effective medications that treat the core deficits of ASD
and many treatments tend to focus on other symptoms such as
irritability (Coury, 2010).

As to the underlying neurobiological correlates, ASD has
been linked to impaired function or structure of prefrontal
cortex (PFC; Carper and Courchesne, 2005; Stoner et al.,
2014; Zhu et al., 2015), amygdala (Baron-Cohen et al., 2000),
cerebellum (Becker and Stoodley, 2013; Hampson and Blatt,
2015), insula (Uddin and Menon, 2009; Kosaka et al., 2010),
basal ganglia (Nayate et al., 2005), as well as numerous other
brain regions (Stoner et al., 2014). Others have linked the
dysfunction of broader systems or networks to ASD. Examples
are the broken mirror neuron hypothesis and the dysfunction
of the salience network (SaN; Ramachandran and Oberman,
2006; Uddin and Menon, 2009). However, neither of these
hypotheses have been able to consistently account for the wide
range of underlying neurobiological correlates of ASD [i.e., see
Southgate and Hamilton (2008) for a criticism on the broken
mirror neuron hypothesis; Müller, 2007]. Thus, the focus on
only one or a group of neural structures has not led to a unifying
hypothesis of ASD, as no consistent pathology has emerged
for the disorder – no genetic or neurobiological factors are
very consistently present in ASD, nor are they specific when
compared to other psychiatric disorders (Müller, 2007; Amaral
et al., 2008; de la Torre-Ubieta et al., 2016). Müller (2007)
suggests that ASD should be viewed as a distributed disorder
in which most — if not all — brain networks are affected.
Therefore, examining connectivity between and within brain

regions and neural networks could yield a more comprehensive
picture of the neurobiological deficits underlying ASD.

Connectivity within well-defined networks in relation to
ASD has been an area of great interest (e.g., Mizuno et al.,
2006; Kleinhans et al., 2008; Monk et al., 2009; Anderson
et al., 2011; Wass, 2011; Nair et al., 2013; Uddin et al., 2013;
Kana et al., 2014; Nomi and Uddin, 2015; Duan et al., 2017).
Sridharan et al. (2008) suggest that the SaN is responsible for
switching between the activation of the default-mode network
(DMN) and executive control networks (ECN; Seeley et al.,
2007; Menon and Uddin, 2010). Whereas the DMN is often
regarded as the resting-state network that activates when no task
is being performed, the ECN activates during the performance
of tasks (Seeley et al., 2007; Sridharan et al., 2008; Toro
et al., 2008; Raichle, 2015). Some authors suggest that the
anterior insula, an important structure in the SaN, is aberrantly
connected in ASD (Uddin and Menon, 2009; Ebisch et al.,
2011; Guo et al., 2019). Similar ideas have been proposed for
the DMN and ECN (Murdaugh et al., 2012; Moseley et al.,
2015; Farrant and Uddin, 2016). Nevertheless, results from
over- and under-connectivity investigations are — likely in part
due to methodological problems and the heterogeneity of ASD
cohorts — inconsistent and reproducibility has been limited
(Müller et al., 2011).

Understanding neural connectivity is an important first step
in identifying how the brain effectuates important functions.
However, a connection diagram of the brain should indeed
be seen as a first step, and not as the final answer to
comprehending how nervous systems realize function. One
potential complication, as evidenced in animal studies, is that
connectivity is dynamic and can change over time (Brezina,
2010; Marder, 2012; Bargmann and Marder, 2013). Such
dynamic changes over time occur across several years in
interaction with the environment (Lawrence et al., 2019), but
also within a matter of (milli)seconds (Marder, 2012). Almost
all current human ASD studies have assessed connectivity as
being static within a single functional magnetic resonance
imaging (fMRI) scanning session, while such connections are
likely dynamic (Brezina, 2010; Marder, 2012; Falahpour et al.,
2016). One study did consider these dynamic changes when
studying individuals with ASD. Using fMRI, Falahpour et al.
(2016) compared conventional ‘static’ scanning procedures
with ‘dynamic’ scanning procedures that take into account
physiological change during the scanning period (Allen et al.,
2014). Using the static procedure, previous findings were
replicated: the ASD group showed aberrant connectivity in the
DMN. In contrast, the dynamic scanning procedure showed
that the ASD group not differ from control subjects in peak
connectivity but did show greater intraindividual variability
of functional connectivity during the scanning period. Thus,
connections in ASD are not ‘broken’ but show higher levels
of intraindividual variability across time (Falahpour et al.,
2016; London, 2018). Variability of connectivity, as opposed to
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under- or over-connectivity, may contribute to the pathology
of ASD. It is therefore important to consider what drives the
variability of connectivity. One obvious perspective is the role
of the classic ascending modulating neurotransmitter systems,
or neuromodulatory systems.

Neuromodulation is the altering of activity within a neural
network by electrical, mechanical, or chemical means (Krames
et al., 2009).1 Nervous systems have a wide range of such
neuromodulatory systems (Brezina, 2010; Marder, 2012). This
review focuses on the three classic neuromodulatory systems:
NE from the locus coeruleus (LC), DA from the ventral
tegmental area (VTA) and the substantia nigra pars compacta
(SNc), and acetylcholine (ACh) from the nucleus basalis of
Meynert (NBM; Andeìn et al., 1966; Foote and Morrison,
1987; McCormick, 1989, 1992; Mesulam, 2000; Aston-Jones and
Cohen, 2005a; Stahl, 2008). These ascending projections have
widespread potent and sustained–or more transient (Aston-
Jones and Cohen, 2005b; e.g., Aston-Jones and Cohen, 2005a;
Schutte et al., 2020)–modulatory effects on neurotransmission
in the forebrain (Andeìn et al., 1966; Foote and Morrison,
1987; McCormick, 1989, 1992; Robbins, 2000; Stahl, 2008;
Marder, 2012). In addition, focusing on these three systems
in relation to ASD also provides a window on potential
underlying mechanisms that overlap with those disturbed in
other developmental disorders, for which treatment options
are more obvious. The prime example is attention-deficit
hyperactivity disorder (ADHD), given the efficacy of especially
stimulants in treatment of ADHD (Wilens, 2008; Huss et al.,
2017).

Indeed, neuromodulatory neurotransmitters have been of
particular interest in relation to attention-deficit hyperactivity
disorder (ADHD; Robbins, 2000; Robbins and Arnsten, 2009;
del Campo et al., 2011). ADHD is a neurodevelopmental
disorder characterized by hyperactivity, impulsivity and
inattention (American Psychiatric Association, 2013).
Although ASD and ADHD differ (i.e., age of onset and
typical introverted vs. extraverted profiles), the disorders do
share many similarities. For example, ASD and ADHD show
overlap in genetic risk factors (Ronald et al., 2008; Niklasson
et al., 2009; Geschwind, 2011) and there is a high level of
comorbidity between the two disorders (∼41–78% of ASD
individuals experience ADHD symptoms; Clark et al., 1999;
Simonoff et al., 2008; Murray, 2010; Rommelse et al., 2011;
Antshel et al., 2013; van Steensel et al., 2013; Stevens et al., 2016).
Both disorders also have a higher prevalence in boys than girls
(Barkley, 2006; Bruchmüller et al., 2012; American Psychiatric
Association, 2013; Loomes et al., 2017). Additionally, ASD
and ADHD groups show impaired social cognition and suffer

1 Although some contemporary work uses the term neuromodulation
in relation to transcranial magnetic stimulation, transcranial direct-
current stimulation or implants to modulate neural activity (e.g.,
Sokhadze et al., 2016; Nobusako et al., 2017; Krames et al., 2018), here
we use this term in relation to neurotransmitters in the brain.

comparable deficits in executive functioning (Sinzig et al., 2008;
Caillies et al., 2014; Mazza et al., 2014; Bora and Pantelis, 2016;
Craig et al., 2016). Moreover, accumulating evidence suggests
a considerable overlap in neural correlates between the two
disorders. For example, ASD and ADHD show comparable
diffusion tract results, levels of gyrification and white matter
structure (Aoki et al., 2017; Kushki et al., 2019; Gharehgazlou
et al., 2022).

Dysfunction of the DA and NE systems has often been
suggested as the neurobiological mechanism underlying ADHD
(e.g., Robbins and Arnsten, 2009; del Campo et al., 2011;
Xing et al., 2016; Faraone, 2018). For example, genes coding
important proteins for catecholaminergic neuromodulation
have often been implicated in the disorder and current
ADHD medication such as methylphenidate (MPH) targets
(by blocking reuptake transporters) DA and NE (Stahl, 2013;
Huss et al., 2017; Maia et al., 2017; Faraone, 2018; Myer et al.,
2018; Faraone and Larsson, 2019). When compared to ASD,
similar findings have been reported in regard to connectivity
in ADHD: intraindividual variability of connectivity seems to
be affected (Wang R. et al., 2015; Wang et al., 2018). More
specifically, the DMN seems to show lower intraindividual
variability in connectivity, while the rest of the brain shows
higher intraindividual variability in connectivity (de Lacy and
Calhoun, 2018). In a case study, Salgado et al. (2007) describe a
patient with a brainstem lesion who showed ADHD symptoms
(e.g., inattention). These symptoms could be ameliorated by
MPH (Salgado et al., 2007). This illustrates the important role
of the brainstem catecholamines in ADHD symptoms and
how ADHD medication can help restore neuromodulation (see
Johnston et al., 2014).

If ASD and ADHD are characterized by similar
neuromodulatory disturbances, targeting the same
neurotransmitter systems as current ADHD medication
may prove helpful for the treatment of ASD. To illustrate
more generally, such off-label application of stimulants has
also proven valuable in other contexts such as subpopulations
within major depressive disorder (Candy et al., 2008; Corp
et al., 2014). In this review, catecholaminergic and cholinergic
neuromodulation will be examined in relation to ASD and
ADHD – with a focus on the SaN, cerebellum and genetics (to be
further introduced later). These neuromodulatory systems will
be described in detail and related to the symptomatology of ASD
and ADHD. Subsequently, human trials with pharmacological
agents targeting the catecholaminergic and cholinergic systems
in ASD will be discussed. This will provide insight into which
pharmacological agents could help the treatment of ASD
and whether such treatments could be similar to the current
pharmacological treatment of ADHD. Furthermore, this
approach allows for personalizing treatments based on the
underlying (dys)functioning of neuromodulatory systems,
which is highly compatible with the now established Research
Domain Criteria (RDoC) approach (see Pacheco et al., 2022).
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The locus
coeruleus-norepinephrine
neuromodulatory system

Connectivity of the locus coeruleus

The LC is a bilateral nucleus in the brainstem containing
∼60,000 NE neurons that project throughout almost the entirety
of the brain (Andeìn et al., 1966; Mouton et al., 1994; Aston-
Jones and Cohen, 2005a; Szabadi, 2013; Aston-Jones and
Waterhouse, 2016). Classically, the LC-NE system was thought
to influence the level of arousal and was suggested to be
important in the modulation of whole brain states (Jouvet, 1969;
Berridge and Waterhouse, 2003). The widespread projections
of the system are in line with such an idea. However, recent
evidence shows that individual neurons in LC have idiosyncratic
projections (Chandler et al., 2014; Kebschull et al., 2016).
Furthermore, ensembles of LC-NE neurons can signal specific
neural sites (reviewed in Totah et al., 2018; Chandler et al.,
2019). This challenges the classical idea that the LC-NE system
projects homogenously across neural sites and suggests that the
system may be more flexible than previously thought.

Research in rodents has shown that ACC and prefrontal
areas receive the most abundant LC-NE projections (Schwarz
et al., 2015). Uniquely, insular cortex receives input from both
LC-NE neurons and prefrontal NE neurons (Robertson et al.,
2013). Using viral-genetic tracing methods, Schwarz et al. (2015)
were able to elucidate afferent projections to LC. Afferent
projections come from many sites including cortical areas
and amygdala. Notably, Purkinje cells (PC) in the cerebellum
provide a considerable fraction of the input into LC and do not
project to any LC-NE output sites (Schwarz et al., 2015). In turn,
LC seems to modulate cerebellar associative synaptic plasticity
at climbing fiber-PC synapses (Carey and Regehr, 2009). This
indicates reciprocal neural actions between LC and cerebellum.

Norepinephrinergic neuromodulation
in ASD and ADHD

In an extensive review, London (2018) described how the
LC-NE system may be involved in the symptomatology of
ASD (also see Mehler and Purpura, 2009). Although mostly
based on indirect evidence, LC-NE system dysfunction has
the potential to explain many symptoms and impairments
reported in ASD and ADHD. Potential aberrant LC-NE system
functioning in ASD can explain deficits in learning, attention,
language, sensory processing and emotional functioning, but
can also explain symptoms linked to the autonomic nervous
system and sleeping problems (London, 2018). Individuals with
ADHD show all of the impairments listed above, although these
impairments differ substantially in severity (Cohen et al., 2000;

Bruce et al., 2006; Geurts and Embrechts, 2008; Tonhajzerova
et al., 2009; Konofal et al., 2010; Ghanizadeh, 2011; Musser
et al., 2011; Craig et al., 2016; Gregory et al., 2017; Chevrier
et al., 2019). The impairments mentioned above can be
linked to the LC-NE system (London, 2018), which likely
functions aberrantly in ADHD (Darcq and Kieffer, 2015;
Xing et al., 2016; Faraone, 2018; Faraone and Larsson, 2019).
Thus, potential impaired LC-NE system functioning can
explain a wide range of symptoms and impairments that
are reported in both ASD and ADHD. It is important to
establish if, and in what way, the LC-NE system functions
differently in ASD and ADHD when compared to the
healthy population so that pharmacological targets may be
identified.

Molecular genetics

Genetically, some genes have been identified that may
influence the development of the LC-NE system, which may be
affected in ASD and ADHD. Dopamine β-hydroxylase (DBH)
is an enzyme that catalyzes the conversion of DA into NE
(Kaufman and Friedman, 1965; Stahl, 2013). Alterations of
DBH, the gene coding DBH, can lead to a relative increase
in DA levels and a relative decrease in NE levels, which is
highly relevant for LC-NE functioning. DBH seems to play
a role in ADHD (Wigg et al., 2002; Zhang et al., 2004;
Tong et al., 2015; but see Inkster et al., 2004). For example,
DBH gene variant rs129882 was found to be associated with
ADHD in a large sample (Tong et al., 2015). In ASD, DBH
has also been implicated and maternal levels of DBH seem
to play a role (Robinson et al., 2001; Jones et al., 2004;
Yrigollen et al., 2008; Jwaid et al., 2020). Furthermore, in an
ASD sample, DBH was associated with both ASD and ADHD
behaviors (Barrie et al., 2018). Another potentially relevant
NE-related gene is SLC6A2, which codes for the NE reuptake
transporter. Although some studies report associations between
SLC6A2 and ADHD (Bobb et al., 2005; Sengupta et al., 2012;
Hawi et al., 2013), others report no such association (McEvoy
et al., 2002; de Luca et al., 2004). Sengupta et al. (2012)
suggest that sex, subtypes of ADHD phenotypes and specific
haplotype blocks of the SLC6A2 gene are important factors
to consider (see Zhu et al., 2004). Other evidence shows that
SLC6A2 is important in identifying whether MPH can be an
effective treatment for ADHD. Specifically, two polymorphisms,
rs28386840 and rs5569, were found to be associated with
decreased MPH efficacy in ADHD (Yang et al., 2004; Myer
et al., 2018). The one study examining a relation between
SLC6A2 and ASD did not reveal a significant association (Park
et al., 2014). Other work has also pointed toward epigenetic
factors during early development in combination with LC-NE
that may affect ASD symptom onset and severity (Mehler and
Purpura, 2009). More specifically, it has been suggested that
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fever during this early period may restore LC-NE dysfunction,
which in turn is thought to lead to decreased severity of ASD
symptomatology.

Purkinje cells and cerebellum

As stated, PCs in the cerebellum have substantial projections
to the LC (Schwarz et al., 2015). Notably, the lower total number
of PCs or decreased PC density, are some of the most replicable
neurobiological findings in ASD (∼75% of ASD subjects show
dysfunction/decreased number of PCs; Fatemi et al., 2002;
Whitney et al., 2009; Passarelli et al., 2013; Hampson and
Blatt, 2015). Some evidence indicates that PC numbers are also
decreased in ADHD, but more research is necessary (Rout et al.,
2012; Passarelli et al., 2013). As Rout et al. (2012) note, decreased
PC numbers may only be observed in an ADHD subtype
with cerebellar dysfunction as revealed from more global
neuroimaging assessment (see Durston et al., 2011). Currently,
the genetic underpinnings of PCs in ASD are still beginning
to be understood (Hampson and Blatt, 2015). One study by
Rout et al. (2012) reported increased serum levels of antibodies
against glutamic acid decarboxylase 65 (GAD65) in ASD and
ADHD groups when compared to control subjects (GAD65-
antibodies were not present in any of the healthy subjects).
GAD65 is important in γ-aminobutyric acid (GABA) synthesis.
Serum from the ASD and ADHD groups was subsequently
applied to mouse cerebellum, where the antibodies reacted
with PCs. Application of these antibodies ultimately resulted
in PC death (Mitoma et al., 2003; Rout et al., 2012). Increased
antibodies against GAD65 may therefore contribute to PC
dysfunction in ASD and ADHD, but research in larger samples is
required. Aberrant afferent PC projections in ASD and perhaps
ADHD to LC may lead to LC-NE dysfunction. However,
the reverse is also conceivable. As stated, the LC modulates
cerebellar associative synaptic plasticity, which influences PC
firing (Carey and Regehr, 2009). Therefore, anomalous LC-NE
functioning can lead to disturbed PC activity. The last option
is that the reciprocal projections between LC and cerebellum
in both directions are anomalous, which would also indicate
LC-NE and PC/cerebellar dysfunction.

Functional networks

Among its widespread projections, LC innervates two
important nodes of the SaN: ACC and insular cortex (Seeley
et al., 2007; Robertson et al., 2013; Schwarz et al., 2015).
Neuromodulation may play an important role in SaN regulation
since this network shows a high level of dynamic changes
over time when compared to other networks (Chen et al.,
2016). Dysfunction of SaN has been suggested to underlie ASD
and has been implicated in ADHD (Uddin and Menon, 2009;

Aboitiz et al., 2014; Sidlauskaite et al., 2016). Interestingly,
when compared to ECN, DMN and SaN, similar functions have
been proposed for the LC-NE system (Aston-Jones and Cohen,
2005a,b). According to Adaptive Gain Theory, the LC has two
modes. A phasic mode in which phasic activity is relatively high
and tonic activity is moderate and a tonic mode which shows
the reverse pattern. When in phasic mode, metabolic resources
are used to process task-relevant stimuli, and this improves
current task performance. In contrast, when in tonic mode,
metabolic resources are no longer used to focus on the task and
is linked to distractibility. Importantly, in tonic mode, resources
are used to identify salient stimuli in the environment (Aston-
Jones and Cohen, 2005a,b; Aston-Jones and Waterhouse, 2016).
Whereas ECN and LC’s phasic mode are important during
task performance, DMN and SaN can be linked to LC’s tonic
mode. Furthermore, Zerbi et al. (2019) reported altered levels
of intrinsic connectivity within the DMN and SaN in rodents
after LC activation. These data further implicate the role of the
LC-NE system in network modulatory effects.

Altogether, accumulating evidence from genetic, network
and cellular studies is emerging for aberrant functioning of
the LC-NE system in ASD and ADHD. LC-NE dysfunction
may explain numerous symptoms observed in both disorders
and NE could therefore be a potential pharmacological target
for ameliorating such symptoms. However, note that some of
the presented evidence is somewhat indirect and more direct
evidence is needed to precisely identify in what way the LC-NE
system functions aberrantly in ASD and ADHD. One possibility
is that mutual connections between LC and cerebellar PCs are
instrumental in this respect, pointing to a possible efficacy of
NE-directed treatment in a majority of ASD, and perhaps a
minority of the ADHD population.

The dopaminergic
neuromodulatory system

Connectivity of VTA and SNc

The DArgic neuromodulatory system has two important
DArgic nuclei in the brainstem: the SNc and VTA (Mesulam,
2000; Beier et al., 2015). It is important to consider the
differences between these two nuclei. Firstly, the SNc and VTA
have different efferent and afferent projections (Watabe-Uchida
et al., 2012). The SNc mainly innervates dorsal striatum (DS;
Lerner et al., 2015; Morales and Margolis, 2017). Moreover,
evidence shows that the medial SNc and lateral SNc have
independent efferent pathways to medial and lateral DS,
respectively (Lerner et al., 2015). In turn, lateral DS was found to
project to SNc (Watabe-Uchida et al., 2012; Lerner et al., 2015).
VTA was found to project to nucleus accumbens (NAc), PFC
and amygdala (di Michele et al., 2005; Chandler et al., 2013;
Beier et al., 2015, 2019; Morales and Margolis, 2017). Afferent
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projections to VTA come from many areas including NAc,
amygdala and ventral pallidum (Watabe-Uchida et al., 2012;
Beier et al., 2015, 2019).

Dopaminergic neuromodulation in
ASD and ADHD

Recently, the DA system has also been implicated in ASD.
Pavãl (2017) posits that two DArgic pathways play an important
role in the core deficits of ASD: the mesocorticolimbic (MCL)
pathway and the nigrostriatal (NS) pathway. VTA projections
to PFC and NAc make up the MCL-pathway. This pathway is
important in reward processing and shows hypoactivation in
ASD (Dichter et al., 2012b; reviewed in Pellissier et al., 2018).
In ASD, the value of social rewards is thought to be greatly
reduced, which results in a lack of social motivation (Dawson
et al., 2005; Chevallier et al., 2012). Social motivation theory
suggests that a lack of social motivation is the underlying cause
of many social impairments in ASD (Chevallier et al., 2012;
Dichter et al., 2012a). Thus, aberrant MCL-pathway functioning
is thought to underlie the social impairments of ASD (Pavãl,
2017). However, note that others posit that dysfunction of the
Social Brain Network (i.e., inferior frontal gyrus, amygdala
and fusiform face area) can explain impaired social motivation
(Misra, 2014), which would imply that social motivation can be
impaired without MCL-pathway dysfunction. The NS-pathway
consists of SNc projections to DS. This pathway plays an
important role in motor aspects of goal-directed behavior
(Lewis et al., 2007; Howe and Dombeck, 2016). For example,
increased sensitivity of striatal and cerebellar DA D2 receptors
underlies motor impairments in Parkinson’s disease (Rinne
et al., 1990). Both optogenetic and pharmacological stimulation
of the DA D1 receptor in the NS-pathway results in repetitive
and stereotyped autistic-like behavior in mice (Lee et al., 2018).
These data implicate the NS-pathway in the core behavioral
deficit of ASD (Horev et al., 2011; Pavãl, 2017; Lee et al.,
2018). However, accumulating evidence opposes the functional
distinction between the MCL- and NS-pathways (Rossi et al.,
2013; Ilango et al., 2014; Haber, 2016). For example, rodents
will self-administer stimulation to the SNc, implying that this
structure plays a role in reward, although not a part of the
MCL-pathway (Ilango et al., 2014). Nonetheless, even if the
pathways are not functionally distinct, evidence suggests that
DArgic dysfunction may underlie the core symptoms of ASD.

It is generally accepted that dysfunction of the DA system
plays a vital role in ADHD pathology (Levy and Swanson, 2001;
Faraone et al., 2005; Tripp and Wickens, 2009; Faraone and
Mick, 2010; Purper-Ouakil et al., 2011; Faraone, 2018). DA
dysfunction in ADHD has been linked to deficits in executive
functions and learning (Swanson, 2003; Silvetti et al., 2013)
but also to inattention, hyperactivity and impulsivity (Swanson,
2003; Genro et al., 2010). The development of SN and VTA

connectivity has been shown to be disturbed in ADHD (Tomasi
and Volkow, 2012). Furthermore, dysfunction of the MCL-
pathway has been associated with ADHD-behaviors (Stark et al.,
2011) and the NS-pathway has been linked to hyperactivity
in the disorder (Genro et al., 2010). These data indicate
dysfunction of the MCL- and NS-pathways in ASD and ADHD.

Molecular genetics

Irregularities in genes that are involved in the development
of the DA system have been identified in ASD and ADHD.
SLC6A3 is a gene that codes for the DA reuptake transporter,
which has a high density in striatum and NAc (Brooks,
2016; Salatino-Oliveira et al., 2018). This gene has often been
implicated in ADHD (Gizer et al., 2009; Faraone et al., 2014;
Faraone and Larsson, 2019). For example, a meta-analysis
reported a relation between a polymorphism of the SLC6A3
and increased DA transporter presence in striatal areas as
determined by positron emission topography (PET; Faraone
et al., 2014). This polymorphism has also been linked to ADHD
in adults (Franke et al., 2010). With respect to ASD, although
some contradictory results regarding SLC6A3 involvement have
been reported (e.g., Makkonen et al., 2008), most studies
indicate that SLC6A3 is associated with the disorder (Hamilton
et al., 2013; Nguyen et al., 2014). Genes coding the different
DA receptors in relation to ASD and ADHD have also been
investigated. Strong evidence suggests DRD4 and DRD5 are
associated with ADHD, while weaker evidence suggests an
association between ADHD and receptor genes DRD1 and
DRD2 (Gizer et al., 2009). Moreover, multiple studies report
DRD3 to have no association with ADHD (Faraone et al., 2005;
Genro et al., 2010). In ASD, many DA receptor genes have been
implicated. DRD1, DRD2, DRD3, DRD4, and DRD5 have all
been associated with the disorder (Hettinger, 2009; Gadow et al.,
2010; Taurines et al., 2011; Staal et al., 2012; Nguyen et al., 2014).
Furthermore, associations between polymorphisms in DRD3,
DRD4 and repetitive behaviors in ASD have been reported
(Gadow et al., 2010; Staal et al., 2012). This directly links DA
dysfunction to ASD symptomatology. Taurines et al. (2011)
compared the mRNA expression of DRD4 and DRD5 between
ASD, ADHD and control groups. The data showed lower DRD4-
mRNA in ASD and ADHD groups. Moreover, the ASD group
showed lower DRD5-mRNA when compared to the ADHD
and control groups (Taurines et al., 2011). Additionally, recent
work has underlined the potential importance of epigenetic
factors in ADHD (Pineda-Cirera et al., 2019). Methylation of
multiple genes (ARTN, PIDD1, and C2orf82) were found to
be linked to expression of these genes, mainly in cerebellum,
subcortical regions and frontal cortex, and this was predictive
of ADHD. Importantly, these genes have been implicated in
fetal and postnatal neurodevelopment including NAc, pointing
toward involvement of epigenetic factors in the dysfunction
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of the DA system in ADHD (Pineda-Cirera et al., 2019).
Altogether, genetic factors seem to contribute to dysfunction of
the DA system in both ASD and ADHD. Although identified
genetic loci in the DA system are shared between the two
disorders, there are also important differences such as the role
of DRD3.

Functional networks

As discussed, the SaN has been implicated in ASD
and ADHD symptomatology. The SN has been shown to
be connected with the SaN in humans using diffusion
tensor imaging (Zhang et al., 2017). Additionally, functional
connectivity between SN, VTA and SaN nodes has been reported
in an fMRI study (Seeley et al., 2007). In an extensive review,
the importance of the DA system in SaN functioning has been
described (Peters et al., 2016). The authors suggest that cortico-
striatal-thalamic loop circuits can regulate SaN functioning
(Alexander et al., 1986; Peters et al., 2016; McCutcheon et al.,
2019). More specifically, VTA and rostral SN pars reticularis
innervate thalamic and striatal areas, which subsequently
modulate cortical nodes of the SaN (del Campo et al., 2011;
Haber, 2016; Peters et al., 2016). In line with this, deep brain
stimulation of NAc and SN was found to boost activity in
cortical SaN nodes (Alexander et al., 1986; Peters et al., 2016). In
turn, a PET study showed that repetitive transcranial magnetic
stimulation of dorsal lateral PFC increased DArgic transmission
in caudate nucleus and thalamus (Strafella et al., 2001). This
shows that SaN nodes and subcortical areas can reciprocally
activate one another (Alexander et al., 1986; Peters et al., 2016).
Functionally, the DA system and SaN have been proposed to
have similar roles. Contemporary studies suggest that DArgic
modulation not only influences reward learning and goal-
directed behavior, but also plays a role in directing attention
toward salient stimuli in the environment (Horvitz, 2000; Koob
and Volkow, 2010; Kroemer et al., 2014; Peters et al., 2016).
Together, this illustrates the importance of the DA system in SaN
functioning.

In sum, dysfunction of the DA system likely contributes
to the symptomatology in ASD and ADHD. Whereas there
is strong evidence for the relation between DA dysfunction
and ADHD, such evidence is relatively still emerging for
ASD. Nevertheless, genetic evidence strongly implicates DA
dysfunction in both disorders as DBH, SLC6A3 and DA receptor
genes have been implicated in ASD and ADHD. Moreover,
the influence of the DA system on the SaN can help explain
symptomatology in ASD and ADHD. Importantly, the DA
system can be targeted by available pharmacological treatments,
which could improve the future treatment of ASD. Further
research should focus on elucidating exactly how the DA system
is altered in ASD and ADHD, so that specific targets within the
system may be identified.

The nucleus basalis-acetylcholine
neuromodulatory system

Connectivity of the nucleus basalis

The NBM is an important cholinergic nucleus positioned
in the basal forebrain and has widespread projections across
the brain (Mesulam et al., 1983; Mesulam and Geula, 1988;
McCormick, 1989; Mesulam, 2000; Liu et al., 2015). There
are two types of cholinergic receptors: nicotinic (nAChR) and
muscarinic receptors (mAChR; Jensen et al., 2005; Stahl, 2013;
Fuenzalida et al., 2016). Comparable to the LC-NE system, the
cholinergic system has classically been thought to modulate
arousal (Szerb, 1967; Phillis, 1968; Aston-Jones and Cohen,
2005a). More recently, this system has been implicated in
memory and attentional functions (Mesulam, 2000; Arnold
et al., 2002; Liu et al., 2015; Mueller et al., 2017), but also in
cognitive flexibility and social communication (Ragozzino et al.,
1998; Karvat and Kimchi, 2014; Wang L. et al., 2015; Liu et al.,
2018). No viral-tracing genetic studies have been performed to
precisely examine the topography of the NBM. Nonetheless,
the connections of the NBM have been examined, primarily
in animal studies. NBM has widespread cortical projections,
which are relatively more ventral when compared to the DA and
NE systems (Mesulam et al., 1983; Mesulam and Geula, 1988;
Kenemans and Ramsey, 2013; Liu et al., 2015). Furthermore,
NBM has been shown to be connected to frontal areas and visual
cortex (Nagasaka et al., 2017; Huppeì-Gourgues et al., 2018).
Additionally, connections between the NBM and ventral striatal
areas have been described (Shu et al., 2019). Also, NBM and
amygdala have reciprocal projections to one another (Woolf and
Butcher, 1982; Mesulam et al., 1983; Mesulam, 2000; Aitta-aho
et al., 2018).

Cholinergic neuromodulation in ASD
and ADHD

Cholinergic neuromodulation is also altered in ASD.
Cholinergic neurons in the NBM have been shown to be altered
in size, number and structure in ASD (Kemper and Bauman,
1998). Moreover, decreased levels of the ACh precursor choline
have been reported in ASD (Sokol et al., 2002; Friedman et al.,
2006). Furthermore, epibatidine - a marker for α4β2-nAChRs
(Jensen et al., 2005) – shows altered binding in frontal, parietal,
striatal and cerebellar regions in ASD groups (Perry et al., 2001;
Lee et al., 2002; Martin-Ruiz et al., 2004; Ray et al., 2005; Deutsch
et al., 2010; Mukaetova-Ladinska et al., 2010; Marotta et al.,
2020). Notably, decreased cerebellar binding of α4-nAChRs
may lead to PC loss (Lee et al., 2002). Additionally, multiple
preclinical ASD mouse models appear to suffer cholinergic
deficits (Artoni et al., 2019; Marotta et al., 2020). For example,
the BTBR mouse model for ASD is an inbred mouse strain
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that is characterized by a deletion within the Itpr3 gene (Meyza
and Blanchard, 2017). BTBR mice show repetitive behaviors,
impairments in social communication and aberrant nicotinic
cholinergic neurotransmission (Wang L. et al., 2015). Nicotine
administration in BTBR mice ameliorated these characteristic
ASD-like behaviors (Wang L. et al., 2015). Another study
in BTBR mice reported similar effects when donepezil – an
acetylcholinesterase inhibitor - was administered (Karvat and
Kimchi, 2014). Although mAChRs have not been investigated
extensively in relation to ASD, one study did report a 30%
decrease in M1 receptor binding in ASD (Perry et al., 2001; Lee
et al., 2002; Mukaetova-Ladinska et al., 2010). More research is
necessary to understand potential dysfunction of the muscarinic
system in ASD.

The cholinergic system has also been implicated in ADHD.
Compared to healthy subjects, there is a larger percentage
of smokers among the ADHD population, accompanied with
lower percentages of quitting smoking (Pomerleau et al., 1995;
Moolchan et al., 2000). This increase of consuming nicotine-
containing substances could be a form of self-medication among
ADHD individuals (Levin and Rezvani, 2002; but this could
also be due to elevated impulsivity in ADHD, see Sousa et al.,
2011) – similar ideas have been proposed for schizophrenia
(Kumari and Postma, 2005). As discussed briefly, individuals
with ADHD show a wide range of impairments such as
decreased inhibition, impulsivity and executive functioning.
Impaired cholinergic neurotransmission has been suggested to
play a role in these cognitive deficits in ADHD (Potter et al.,
2006, 2014). For example, one placebo-controlled study showed
that nicotine administration improved performance on the
Stroop task and also decreased stop-signal reaction time (SSRT)
in ADHD subjects (Potter and Newhouse, 2004). Logemann
et al. (2014) could not replicate the nicotinic effect on SSRT
in healthy subjects, but strong responders to nicotine did show
an enhanced stop-P3 electroencephalogram component when
nicotine was administered (Kenemans, 2015). The nicotinic
system has also been suggested to be involved in impulsivity,
further underlining the importance of the cholinergic system
in ADHD (Ohmura et al., 2012). Similar to ASD, mAChRs
have not yet been thoroughly investigated in relation to ADHD.
Nonetheless, mAChRs do appear to have decreased binding
capacity in ADHD (Johansson et al., 2013). Together, more
research is needed to elucidate the role of mAChRs in ADHD.

Molecular genetics

Based on an analysis of genome-wide association study data,
cholinergic receptor genes have been identified as candidate
genes in ASD (Lee et al., 2012). Specifically, CHRNA7 [coding
the α7-nAChR (Jensen et al., 2005)] has been associated
with ASD, as has been CHRFAM7A (Bacchelli et al., 2015) – an
exclusively human and highly polymorphic hybrid gene

consisting of a duplicated portion of CHRNA7 fused to exons
A-E of FAM7A (Gault et al., 1998; Wall et al., 2009; Pinto et al.,
2010; Casey et al., 2012; Huguet et al., 2013; Bacchelli et al., 2015;
Gillentine and Schaaf, 2015; Gillentine et al., 2017). CHRNA7
has also been implicated in ADHD (Gillentine and Schaaf, 2015;
Sinkus et al., 2015; Valbonesi et al., 2015; Gillentine et al., 2017;
Baccarin et al., 2020), but not all studies have not replicated
this finding (Kent et al., 2001; Faraone et al., 2005; Ross, 2012).
CHRFAM7A has also been associated with ADHD (Williams
et al., 2012; Baccarin et al., 2020), but replication is required
to confirm this association. Another gene, CHRNA4, codes for
the α4-nAChR and has been identified as a candidate gene for
ASD, but this gene seems to only play a role in specific cases (i.e.,
combinations with other genes or pathologies; Moessner et al.,
2007; Wall et al., 2009; Oikonomakis et al., 2016). Conversely,
evidence for the involvement of CHRNA4 in ADHD is strong,
as multiple studies have reported an association of ADHD with
the gene (Todd et al., 2003; Lee et al., 2008; Wallis et al., 2009;
Faraone and Mick, 2010; Mastronardi et al., 2016). Moreover,
CHRNA4 has been linked to attentional problems and to SaN
functioning (Todd et al., 2003; Sadaghiani et al., 2017).

Functional networks

The cholinergic system may play a role in SaN functioning.
Striatum, ACC and insula have the highest density of α4β2-
nAChRs in the brain as determined by PET (Gallezot et al.,
2005; Picard et al., 2013). As stated, these areas are crucial
SaN nodes (Seeley et al., 2007; Peters et al., 2016). Sadaghiani
et al. (2017) reported that CHRNA4 polymorphism rs1044396
increased activity in ACC, insula and anterior prefrontal
areas. Of note, rs1044396 showed no activity-altering effects
in DMN and ECN (Sadaghiani et al., 2017). As mentioned
previously, the cholinergic system seems to be involved in
inhibiting responses (Logemann et al., 2014; Kenemans, 2015).
Nicotine administration improves performance on stopping
tasks in ADHD (Potter and Newhouse, 2004; Potter et al.,
2006). Interestingly, Peters et al. (2016) reported that stopping
and SaN show a remarkable overlap in activated brain areas.
Kenemans and Ramsey (2013) posit that the cholinergic system
is involved in salience detection (Furey et al., 2008). For
example, when physostigmine, an acetylcholinesterase inhibitor,
is administered, visual cortex showed enhanced activity to the
first (and novel) trial, but not to subsequent trials (Furey et al.,
2000). Furthermore, amygdala has also been suggested to be
involved in salience detection (Sander et al., 2003; Kenemans
and Ramsey, 2013). Amygdala is innervated by both the
NBM as well as non-NBM cholinergic nuclei in the brainstem
(Aitta-aho et al., 2018). In turn, amygdala innervates multiple
neuromodulatory nuclei such as NBM, LC, VTA and SNc
(Cardinal et al., 2002; Watabe-Uchida et al., 2012; Beier et al.,
2015, 2019; Schwarz et al., 2015). These connections of the
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amygdala allow this structure to modulate activity of multiple
neuromodulatory nuclei which modulate SaN functioning.

In sum, cholinergic neurotransmission is affected by genetic
and molecular factors in both ASD and ADHD. The direct
genetic and molecular influences of nAChRs within the SaN
as well as the indirect influences via the amygdala make
the cholinergic system crucial for proper SaN functioning.
Therefore, dysfunction of the cholinergic system may underlie
SaN dysfunction in ASD and ADHD. Dysfunction in salience
detection can explain a myriad of symptoms in these disorders
and normalizing this system may be a viable target for
pharmacological interventions.

Pharmacological interventions in
ASD

As reviewed, the catecholaminergic and cholinergic
systems play a role in ASD and ADHD symptomatology.
Pharmacological interventions can target these systems which
may help alleviate symptoms (Stahl, 2013). Currently, the
atypical antipsychotics risperidone and aripiprazole are the
only FDA approved medications for ASD and these drugs are
generally prescribed to treat irritability (Bonnot and Holzer,
2012). In practice however, other off-label medications such as
stimulants are prescribed to treat ASD (Murray et al., 2014). It
is important to consider how prescribed medications affect ASD
symptomatology and if these medications are tolerable within
the ASD population. Table 1 shows all current randomized
and placebo-controlled pharmacological trials in human
ASD subjects. Only drugs targeting the catecholaminergic
and cholinergic–and sometimes serotonergic–systems are
considered.

Norepinephrinergic interventions
in ASD

Propranolol

Propranolol blocks NE β1 and β2 receptors in both the
central and autonomic nervous systems (Mansur et al., 1998;
Meyer and Quenzer, 2013). Multiple placebo-controlled studies
have reported improvements in ASD, including normalization
of facial scanning, enhanced (non-)verbal communication and
improved social functioning (Beversdorf et al., 2013, 2014;
Zamzow et al., 2014, 2016, 2017). Notably, one study showed
that the effect of propranolol on verbal problem solving speed
was mediated by heart rate variability and baseline anxiety
measures (Zamzow et al., 2017). London et al. (2020) reported
propranolol to lower aggressive and self-injurious behaviors,
but the study was not placebo controlled. Additionally, while

in some studies anxiety was unaffected, others reported a
decrease in anxiety (Sagar-Ouriaghli et al., 2018). Furthermore,
in one study propranolol administration boosted functional
connectivity in the DMN in both control and ASD groups,
while another study reports increased functional connectivity
in language areas in the left hemisphere in ASD (Narayanan
et al., 2010; Hegarty et al., 2017). Intraindividual variability
of functional connectivity was not assessed in these studies.
Although studies have investigated the effects of propranolol on
specific symptoms of ASD (i.e., facial scanning and language),
the core deficits (i.e., social impairments and repetitive and
restricted behavior) have not often been assessed (but see
Beversdorf et al., 2013; Beversdorf et al., 2014). Additionally,
most propranolol trials have small sample sizes and do not
directly assess outcome measures that are clinically relevant,
such as irritability, ADHD symptomatology and stereotypical
behavior. Since most of these studies were not full clinical trials
but instead single dose pharmacological studies (Beversdorf
et al., 2013, 2014; Zamzow et al., 2014, 2016, 2017), it is necessary
to conduct double-blind placebo controlled trials to properly
assess the possible effects of propranolol on the core deficits
of ASD and to assess propranolol’s potential effects in clinical
treatments.

Atomoxetine

Atomoxetine is a selective norepinephrine reuptake
inhibitor, effectively enhancing NErgic transmission (Ettinger,
2011). Multiple studies have investigated whether atomoxetine
can ameliorate ADHD symptoms in ASD groups. All currently
reviewed studies report beneficial effects of atomoxetine on
hyperactivity, inattention and impulsive behavior (Arnold et al.,
2006; Harfterkamp et al., 2012, 2013, 2014). One limitation of
the current ASD atomoxetine trials is that most studies have
investigated the effect of atomoxetine on ADHD symptoms
in ASD, but ASD symptoms have often not been assessed
(but see Harfterkamp et al., 2014). However, in a non-placebo
controlled trial, Jou et al. (2005) report an improvement of
general behavior (e.g., less deviant) after atomoxetine treatment
when compared to before starting the treatment. Additionally,
one trial reported that atomoxetine can decrease stereotypical
behaviors in ASD (Harfterkamp et al., 2014). In conclusion,
although atomoxetine seems to alleviate ADHD symptoms in
ASD, it remains unclear whether atomoxetine can aid in the
treatment of ASD symptomatology.

Clonidine and guanfacine

Clonidine and guanfacine are α2 receptor agonists and
operate mainly presynaptically (on autoreceptors; Meyer and
Quenzer, 2013). Two double-blind placebo-controlled trials
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TABLE 1 Overview of human RCTs targeting DA, NE and/or ACh in ASD.

Drug References Participants Agea Outcome measures Effect size (dav)b

Propranolol Beversdorf et al., 2008 18 total: 9 ASD, 9 control 29.3 (9.9) Verbal problem solving 0.41

Beversdorf et al., 2011 28 total: 14 ASD, 14 control 18.9 (4.2) Semantic verbal fluency; letter fluency 0.43; n.s.

Beversdorf et al., 2013 –c –c Social functioning sig.c

Beversdorf et al., 2014 –c –c Social functioning sig.c

Bodner et al., 2012 27 total: 14 ASD, 13 control 18.9 (2.4) Working memory 0.72

Zamzow et al., 2014 28 total: 14 ASD, 14 control 18.3 (2.7) Mouth fixation; eye fixation 0.54; n.s.

Zamzow et al., 2016 20 ASD 21.4 (4.6) Conversational reciprocity 0.40

Zamzow et al., 2017 18 ASD 21.4 (4.6) Verbal problem solving speed; accuracy 0.41; n.s.

Atomoxetine Arnold et al., 2006 16 ASD 9.3 (2.9) Hyperactivity; social withdrawal; hyperactive/impulsive
symptoms

0.40; 0.34; 1.27

Harfterkamp et al., 2012, 2014 97 ASD (all children) 10.0 (2.8) ADHD total; inattention; hyperactive/impulsive
symptoms; Hyperactivity; stereotypy

1.09; 0.66; 1.12; 1.01; 0.79

Clonidine
(transdermal)

Fankhauser et al., 1992 9 ASD 12.9 (9.6) Global Improvement rating; social relationships, affectual
reactions, sensory responses

1.39; 1.54; 0.54; 1.33

Clonidine (oral) Jaselskis et al., 1992 8 ASD –d Hyperactivity; irritability; stereotypy; inappropriate speech 0.32; 0.64; 0.24; 0.30

Guanfacine Handen et al., 2008 11 ASD (all children) 7.3 (1.4) Global rating of improvement; hyperactivity rated by
parents; hyperactivity rated by teachers

1.33; 1.04; 1.34

Scahill et al., 2015; Politte et al., 2018 62 ASD (all children) 8.5 (2.3) Home situation; obsessive-compulsive symptoms;
hyperactivity; stereotypy; inappropriate speech;
inattention; ADHD rating

0.74; 0.57; 1.21; 0.29; 0.28; 0.97; 1.45

Methylphenidate Handen et al., 2000 13 ASD with ADHD
symptoms (all children)

7.4 (1.7) Hyperactivity; inappropriate speech 1.34; 0.77

Pearson et al., 2013 24 ASD with ADHD
symptoms (all children)

8.8 (1.6) Hyperactivity; irritability; inappropriate speech; CGI total
rated by parents; rated by teachers

0.86; 0.62; 0.41; 1.00; 1.35

Quintana et al., 1995 10 ASD with ADHD
symptoms

8.5 (1.3) Hyperactivity; irritability 0.63; 0.69

Research Units on Pediatric
Psychopharmacology Autism Network
[RUPPAN], 2005

66 ASD with ADHD
symptoms

7.5 (3.3) Hyperactivity rated by parents; rated by teachers 0.40; 0.48

Haloperidol Anderson et al., 1989 45 ASD (all children) 4.5 (1.2) Discrimination learning; CPRS total; withdrawal;
stereotypy; fidgetiness; hyperactivity; CGI total; temper
outbursts

n.s.; rest sig.d
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TABLE 1 (Continued)

Drug References Participants Agea Outcome measures Effect size (dav)b

Campbell et al., 1982; Anderson et al.,
1984

40 ASD (all children) 4.6 (–d) Discrimination learning; CPRS total; CGI total 0.46; rest sig. d

Remington et al., 2001 36 ASD 16.3 (6.4) Hyperactivity; CARS total; irritability; social withdrawal;
irritability; inappropriate speech

sig.d ; rest n.s

Risperidone Luby et al., 2006 24 ASD (all children) 4.0 (1.0) CARS total 0.62

McCracken et al., 2002; McDougle
et al., 2005

101 ASD (all children) 8.8 (2.7) Hyperactivity; irritability; stereotypy; inappropriate
speech; Ritvo total; sensory motor behaviors; affectual
reactions; sensory responses

1.05; 1.44; 0.66; 0.33; 0.94; 0.74;
0.88; 0.79

McDougle et al., 1998 31 ASD (all adults) 28.1 (7.3) CGI total; repetitive behavior; aggression (all after 12
weeks); sensory motor behaviors; affectual reactions; Ritvo
total

0.41; 0.29; 0.39; 0.19; 0.45; 0.15

Nagaraj et al., 2006 39 ASD (all children) 5.0 (1.7) CARS total; CGAS total sig.d ; 1.06

Shea et al., 2004 77 ASD (all children) 7.5 (2.3) Hyperactivity; irritability; social withdrawal; inappropriate
speech; conduct problems; insecure/anxious; overly
sensitive

0.81; 0.61; 0.38; 0.28; 0.36; 0.14; 0.32

Troost et al., 2005 24 ASD (all children) 9.1 (2.3) Relapse of irritability 0.68

Aripiprazole Findling et al., 2014 41 ASD (all children) 10.4 (2.8) Relapse of irritability n.s.

Ichikawa et al., 2017 93 ASD (all children) 10.1 (3.2) Hyperactivity; irritability; CGAS total; CGI total 0.71; 0.58; 0.35; 1.03

Marcus et al., 2009 218 ASD (all children) 9.7 (3.1) Hyperactivity; stereotypy; inappropriate speech; CGI total 0.86; 0.49; 0.31; 0.77

Owen et al., 2009 75 ASD (all children) 9.2 (2.9) Hyperactivity; irritability; CGI total; stereotypy;
inappropriate speech

all sig.d

Varni et al., 2012 316 ASD (all children) 9.5 (3.1) Quality of life; emotional functioning; social functioning;
cognitive functioning

0.68; 0.48; 0.61; 0.45

Olanzapine Hollander et al., 2006 11 ASD (all children) 9.0 (2.5) CGI total; irritability; aggression all n.s.

Desipramine Gordon et al., 1992 7 ASD (all children) 9.6 (4.4) Hyperactivity; CPRS total; NIHM obsessive-compulsive
rating score

0.72; n.s.; n.s.

Gordon et al., 1993 12 ASD –c Hyperactivity; autistic symptoms; anger;
compulsive/ritualized behaviors

sig.c ; rest n.s.

Clomipramine Gordon et al., 1992 7 ASD (all children) 9.6 (4.4) CPRS total; NIHM obsessive-compulsive rating score 4.00; 1.13

Gordon et al., 1993 12 ASD –c Hyperactivity; autistic symptoms; anger;
compulsive/ritualized behaviors

all sig.c
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TABLE 1 (Continued)

Drug References Participants Agea Outcome measures Effect size (dav)b

Sanchez et al., 1996 8 ASD (all children) 6.4 (1.4) CGI total; CPRS total all n.s.

Remington et al., 2001 36 ASD 16.3 (6.4) CARS total, hyperactivity; irritability; social withdrawal;
irritability; inappropriate speech

all n.s.

Tianeptine Niederhofer et al., 2003 12 ASD (all children) 7.3 (3.3) Hyperactivity; irritability; inappropriate speech;
inappropriate eye contact

0.24; 0.47; 0.60; 0.18

Wichers et al., 2021 38 total: 19 ASD, 19 control 30 (11) Sustained attention; inhibition/stopping all n.s.

Donepezil Chez et al., 2003 17 ASD (all children) 6.8 (1.9) Expressive speech; receptive speech 0.19; 0.20

Handen et al., 2011 31 ASD (all children) 11.6 (.d) Executive functioning n.s.

Rivastigmine Chez et al., 2004 32 ASD –c Expressive speech; overall autistic behavior all sig.c

Galantamine Niederhofer et al., 2002 20 ASD (all boys) 7.4 (1.2) Hyperactivity; irritability; inadequate eye contact;
inappropriate speech

0.32; 0.55; 0.22; 0.55

DMXB-A Olincy et al., 2016 2 ASD 50 and 24 years old Inattention; social dysfunction No statistical testing performed due
to low sample size

Transdermal
nicotine

Lewis et al., 2018 8 ASD 24.0 (2.6) Hyperactivity; irritability; social withdrawal; stereotypy;
inappropriate speech; aggression

all n.s.

Mecamylamine Arnold et al., 2012 18 ASD (all children) 7.4 (2.6) Hyperactivity; irritability; social withdrawal; stereotypy;
inappropriate speech; repetitive behaviors; social
responsiveness

all n.s.

aData presented as Mean (SD).
bEffect size calculated using the following formulas:

√
Cohen′s dav =

(MPostPlacebo−MPrePlacebo)−(MPostDrug−MPreDrug )

((SDPostPlacebo+SDPrePlacebo+SDPosrDrug+SDPreDrug )/4) or
√

Cohen′s dav =
(MPlacebo−MDrug )

((SDPlacebo+SDDrug )/2) . See Lakens (2013).
cArticle could not be accessed. Whenever possible, relevant information was retrieved from abstract.
dRelevant information to perform calculations was not provided.
n.s, non-signifiant; sig., significant; CARS, Childhood Autism Rating Scale; CGAS, Children’s Global Assessment Scale; CGI, Clinical Global Impression; CPRS, Children’s Psychiatric Rating Scale; NIHM, National Institute of Mental Health; Ritvo,
Ritvo-Freeman real life rating scale; RUPPAN, Research Units on Pediatric Psychopharmacology Autism Network.
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have assessed the potential therapeutic effects of clonidine – a
net NE antagonist – in ASD. One trial showed that oral
clonidine may help treat hyperactivity, irritability, stereotypy
and inappropriate speech (Jaselskis et al., 1992). Another study,
using transdermal clonidine, administration reported beneficial
effects on global improvement, social relationships, affectual
reactions and sensory responses (Fankhauser et al., 1992). These
trials seem promising for clonidine as a treatment option, but
they are limited by their small sample sizes, as well as the side
effect profile of the drug (i.e., irritability and sedation).

Lastly, α2 receptor agonist guanfacine has recently been
investigated in ASD, in part due to the recent interest in
extended-release guanfacine and ADHD trials investigating
the drug. Guanfacine seems to have a myriad of positive
effects in ASD. The two existing trials report beneficial effects
on hyperactivity, stereotypy, inappropriate speech, inattention,
ADHD-behaviors, global ratings of improvement, compulsive
behaviors as well as an improved home situation (Handen et al.,
2008; Scahill et al., 2015; Politte et al., 2018). Adverse effects
were limited (i.e., drowsiness) and tolerability was generally high
(Scahill et al., 2015; Politte et al., 2018). It is important to note
that both clonidine and guanfacine can show net NE agonistic
or antagonistic effects based on the dose (Svensson et al., 1975).
Future studies - and potentially clinicians – should take this
dose-dependent effect into account since this may affect efficacy
and tolerability of these substances.

Dopaminergic interventions:
Stimulants and (a)typical
antipsychotics in ASD

Stimulants

Individuals with ADHD are commonly prescribed
stimulants such as MPH or amphetamines (Murray et al.,
2014), which both block DA and NE reuptake, along with some
other agonistic mechanisms for especially amphetamines. MPH
also reportedly lowers ADHD symptoms such as hyperactivity,
inattention and impulsivity in ASD (e.g., Quintana et al., 1995;
Pearson et al., 2013). Nonetheless, individuals with ASD have
a lower chance of responding to MPH and suffer from adverse
effects more often than ADHD individuals (Handen et al.,
2000; Research Units on Pediatric Psychopharmacology Autism
Network [RUPPAN], 2005). McCracken et al. (2014) showed
that efficacy and tolerability of MPH in ASD is mediated by
genes: DRD1, ADRA2, COMT, DRD3, DRD4, SLC6A3, SLC6A4,
DRD2, and DRD3. Similar genes mediate the efficacy of MPH
in ADHD, as SLC6A3, DRD4, and COMT have been implicated
(Myer et al., 2018). Although MPH increased social skills
and the clinical global impression in ASD in some studies, a
meta-analysis showed that MPH does not significantly affect

the core deficits of ASD (Sturman et al., 2017). However, this
could be due to the low number of studies assessing the core
deficits or genetic mediation of efficacy and tolerability of MPH
(McCracken et al., 2014).

Antipsychotics

Haloperidol is a typical antipsychotic that mainly
antagonizes DArgic neurotransmission by blocking the
DA D2 receptor. Administration of haloperidol was found
to decrease hyperactivity in two reports (Anderson et al.,
1989; Remington et al., 2001). Furthermore, compared to
placebo haloperidol beneficially impacted global impression
and children’s psychiatry rating scale scores in two studies
(Campbell et al., 1982; Anderson et al., 1984; Remington
et al., 2001). Inconsistent results are found when examining
discrimination learning. One trial reports a significant, albeit
modest, increase in discrimination learning (Campbell et al.,
1982; Anderson et al., 1984), while another trial reports no
such effects (Anderson et al., 1984). Although, in one study
haloperidol decreased ASD symptoms such as withdrawal
and stereotypy (Anderson et al., 1989), these effects were not
replicated in a later trial (Remington et al., 2001).

The atypical antipsychotics risperidone and aripiprazole
seem to share therapeutic effects in ASD, along with partial
overlap in their pharmacodynamic profiles (5-HT2A antagonism
for both, but partial D2 agonism for aripiprazole versus D2 (as
well as α1) antagonism for risperidone). Both drugs decrease
hyperactivity and irritability and both drugs seem to benefit
the clinical global impression (Aman et al., 2010; Cohen et al.,
2013; Table 1). Additionally, the drugs have overlapping side
effects such as weight change, altered appetite, drowsiness
and sedation. A trial comparing risperidone to aripiprazole in
ASD revealed that the efficacy and tolerability are comparable
(Ghanizadeh et al., 2014). Nonetheless, differences between
the effects of risperidone and aripiprazole are also reported.
While risperidone has been found to reduce aggression and
autistic behaviors (McDougle et al., 1998; Luby et al., 2006;
Nagaraj et al., 2006), aripiprazole improved quality of life (Varni
et al., 2012). Although these atypical antipsychotics may reduce
overall autistic behaviors in some studies, adverse effects are
often problematic and these medications are not tolerable in
many individuals (Orsolini et al., 2016). Genetic studies may
help identify genes that mediate efficacy and tolerability of
atypical antipsychotics in the treatment of ASD. Note that one
trial investigating another atypical antipsychotic, olanzapine,
showed no significant therapeutic effects (Hollander et al.,
2006). Lastly, none of the reviewed studies have assessed the
effects of MPH or typical antipsychotics on the DA MCL- and
NS- pathways in ASD. Investigating such effects in ASD may
provide insight into the potential therapeutic effects of these
agents on the core deficits of the disorder (Pavãl, 2017).
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Cholinergic interventions and
tricyclic antidepressants in ASD

Cholinergic agents

Drugs targeting the cholinergic system in ASD have not
been extensively researched. Many of these agents enhance
cholinergic transmission by inactivating the acetylcholine-
esterase enzyme (donepezil, rivastigmine) or by additional direct
agonism of the nicotine receptor (galantamine; Stahl, 2008). The
most researched cholinergic drug in relation to the disorder is
donepezil. Donepezil reportedly increased both receptive and
expressive speech, but did not influence executive functioning or
overall autistic behaviors when compared to placebo (Chez et al.,
2003; Handen et al., 2011). One placebo-controlled galantamine
study has been conducted which reports improvements in
hyperactivity, irritability, eye-contact and inappropriate speech
(Niederhofer et al., 2002; also see Ghaleiha et al., 2014 where
galantamine was added to the existing prescribed medication).
Rivastigmine seems to improve expressive speech and overall
autistic behaviors, but not enough research has been conducted
to properly assess how these agents may benefit future treatment
(Chez et al., 2004). A relatively new drug DMXB-A, an α7-
nAChR agonist, improved neurocognition in schizophrenia
(Olincy et al., 2006). In a sample of only two adults with ASD, the
drug decreased inattention and decreased social dysfunction in
one of these subjects (Olincy et al., 2016). Transdermal nicotine
administration showed no significant effects in a placebo-
controlled trial (Lewis et al., 2018; Table 1). The nicotinic
antagonist mecamylamine also showed no significant effects
in a placebo-controlled trial (Arnold et al., 2012; Table 1). As
stated, cholinergic drugs have only been scarcely researched in
relation to ASD. Double-blind placebo-controlled studies are
necessary to understand how these agents can potentially aid
future treatment of ASD.

Tricyclic antidepressants

Tricyclic antidepressants (TCAs) enhance especially NE
transmission, but also 5-HT transmission; in both cases this
is effectuated through reuptake blocking and thought to
underly the antidepressant effect. Of note, they also block
muscarinic ACh receptors which accounts for most of their
undesired side effects (Kenemans, 2017). TCAs have also been
investigated in relation to ASD. Across two trials, desipramine
seemed to decrease hyperactivity but compulsive and autistic
behaviors remained unaffected (Gordon et al., 1992, 1993). In
contrast, the same trials showed that clomipramine did decrease
ASD symptoms, compulsive behaviors and also hyperactivity
(Gordon et al., 1992, 1993). However, other clomipramine
trials did not replicate such effects (Sanchez et al., 1996;
Remington et al., 2001). Another TCA, tianeptine, seems to
decrease hyperactivity, irritability, inappropriate speech and

inappropriate eye contact (Niederhofer et al., 2003). A recent
fMRI study showed that tianeptine did not behaviorally affect
sustained attention or inhibition/stopping in ASD, but the drug
did normalize ECN activation during tasks (Wichers et al.,
2021). Overall, although some trials report beneficial effects of
TCAs in ASD, most trials show little to no significant therapeutic
effects of this class of medications.

Discussion

As reviewed, dysfunction of catecholaminergic and
cholinergic neuromodulation play a role in the symptomatology
of ASD and ADHD (Faraone et al., 2005; Potter et al.,
2006; Faraone and Mick, 2010; Pavãl, 2017; London, 2018).
Importantly, the dysfunction of these neuromodulatory systems
seem to share similarities - as well as differences - between both
disorders at the level of genetics, functional networks and at the
cellular level that may provide guidance for the development of
biological/pharmacological treatment options.

Accumulating evidence suggests overlapping genetic
contributions to potential dysfunction of the catecholaminergic
and cholinergic systems in ASD and ADHD (Faraone et al.,
2005; Nguyen et al., 2014; Bacchelli et al., 2015; Faraone and
Larsson, 2019). However, note that many of the reported
studies concerning the genetics of the catecholaminergic and
cholinergic systems have limited effects. This in turn may be
directly related to the effectiveness of either NE- or DA- or
ACh-directed interventions in either population. Therefore,
more specific, personalizing biomarkers may be useful in
designing intervention strategies especially in relation to ASD.
One further clue is that there are also differences in the genetic
associations (DRD3, specific for ASD, and SLC6A2, specific for
ADHD).

One further difference between ASD and ADHD in the
dysfunction of neuromodulatory systems is the role of PCs.
PC functioning is affected by especially by NE and ACh
neuromodulatory systems, and has been implicated in ASD
pathology, but less strongly in ADHD (Rout et al., 2012).
Therefore, targeting PCs may be suitable for ASD, and a specific
ADHD subgroup (see Durston et al., 2011). Given the role of
the NE and ACh systems in PC function, it seems useful to
further investigate NE- and ACh-targeting agents as effective
treatments in ASD. Trials so far have yielded promising results,
especially for the NE-reuptake inhibitor atomoxetine, for α2
agonist guanfacine and for ACh-esterase inhibitors. As said, a
similar strategy could be beneficial for a subgroup within the
ADHD population. Personalizing or biomarking this subgroup
could perhaps be effectuated using specific assessments for
cerebellar dysfunction. For ASD, especially drugs targeting
the cholinergic system have been under-examined, while
accumulating neurobiological evidence suggests that these drugs
can potentially help treatment (Lippiello, 2006; Mukaetova-
Ladinska et al., 2010). Furthermore the efficacy of propranolol
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in ASD on verbal problem solving seems to be mediated
by heart rate variability and baseline anxiety measures,
further underlining the need for personalizing treatments
(Zamzow et al., 2017; Beversdorf, 2020). Additionally, future
pharmacological trials should consider the core deficits of ASD,
as these deficits are currently not often assessed. Future studies
should also investigate the neurobiological effects of these agents
in ASD patients, as preliminarily done for propranolol and
tianeptine (Narayanan et al., 2010; Hegarty et al., 2017; Wichers
et al., 2021). For example, the intraindividual variability of
connectivity can be assessed to see how pharmacological agents
may influence this potential underlying mechanism of ASD
pathology (Falahpour et al., 2016).

As for stimulants, MPH is a generally effective medication
in ADHD, but only few studies have assessed its effects on core
ASD deficits. The efficacy and tolerability of MPH are mediated
by genetic factors in both ASD and ADHD groups (McCracken
et al., 2014; Myer et al., 2018). As mentioned, while some MPH
trials show some improvements in ASD symptomatology, a
meta-analysis showed that MPH does not significantly influence
the core deficits of ASD (Sturman et al., 2017). However, as
supported by the genetic mediation studies (McCracken et al.,
2014; Myer et al., 2018), MPH may only be effective in specific
ASD subgroups. One clue is the association between MPH
effectiveness and varieties of the DRD3 and SLC6A2 genes,
in both ASD and ADHD populations. Other biomarkers may
also be predictive in ASD. For example, pupillometry measures
have been used in ASD to identify dysfunction of the LC-NE
and NBM-ACh systems (Lynch, 2018; Artoni et al., 2019; de
Vries et al., 2021). In addition, future research could investigate
the value of eye blink rate to assess DA functioning in ASD
(Jongkees and Colzato, 2016). Alternatively subgroups could
be created based on cognitive functioning (i.e., attention or
working memory), which has proved useful in identifying and
predicting ADHD severity as well as its prognosis (Musser and
Raiker, 2019; Pacheco et al., 2022). Pupillometry, eye blink rate
and cognitive functioning, in combination with gene studies,
may help identify which pharmacological treatment may be
most effective for a specific individual.

In line with this personalization of treatments, adopting
the RDoC approach may prove useful (Pacheco et al.,
2022). Classifying disorders not categorically, but instead on
a continuous scale based on traits (or other biomarkers)
may prove more useful in investigating and understanding
these disorders. Such an approach has already been found
to be fruitful in both cognitive as well as imaging studies
(Aoki et al., 2017; Kushki et al., 2019; Musser and Raiker,
2019; Gharehgazlou et al., 2022; Pacheco et al., 2022). In
these studies the continuous approach could help predict
severity of symptoms as well as neural underpinning more
effectively than when adopting the classical categorical approach

(Aoki et al., 2017; Kushki et al., 2019; Musser and Raiker,
2019; Gharehgazlou et al., 2022; Pacheco et al., 2022). Future
research should incorporate this approach by at least including
a continuous measure of ASD/ADHD traits.

The current review has some limitations. First, not all
potentially important neuromodulatory substances have been
examined. Although not considered here, the histaminergic,
serotoninergic and opioid systems have been implicated in ASD
pathology (Eissa et al., 2018; Pellissier et al., 2018). Also, the
current review has examined the neuromodulatory systems as
more or less independent, while these systems interact. For
example, the dorsal raphe nuclei project to VTA, and VTA
projects to the LC (Beier et al., 2015; Morales and Margolis,
2017). Moreover, NE reuptake transporters also clear DA from
synapses in frontal areas (Madras et al., 2005). This illustrates
how these systems are connected to one another and that
the interactions between these systems should be investigated
further (Marder, 2012).

Altogether, DA, NE, and ACh are important systems in
ASD and ADHD symptomatology. Although the dysfunction
of these systems show overlap between the disorders, there
are also differences such as PC/cerebellar functioning and
the involvement of specific genes (DRD3, SLC6A2). Current
medications prescribed for ADHD are effective in ADHD
groups, but there is currently not enough evidence to
suggest that these medications can consistently and effectively
alleviate core symptoms in ASD groups. NErgic agents,
MPH, and cholinergic agents should be investigated further
using double-blind placebo-controlled trials to confirm the
potential therapeutic value of these agents and to assess
their neurobiological effects in ASD. Lastly, biomarkers
such as pupillometry, eye blink rate, cognitive functioning
and genetics should be investigated in relation to ASD to
identify which medications may be most effective for a
specific individual.
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