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CYP11B1 gene polymorphisms
and susceptibility to ischemic
stroke in a Chinese Han
population

Gaowen Liu and Ying Duan*

Department of Critical Care Medicine, Xianyang Central Hospital, Xianyang, China

Objectives: Ischemic stroke (IS) is themajor cause of death and disability. While

previous studies confirmed that CYP11B1 is closely associated with IS, the

present study aimed to analyze the impact of CYP11B1 gene polymorphisms

on the IS susceptibility.

Methods: The present study genotyped six single nucleotide polymorphisms

(SNPs) (including rs4736312, rs5017238, rs5301, rs5283, rs6410, and rs4534) of

CYP11B1 in peripheral blood samples from IS and control populations. Logistic

regression analysis was used to analyze the association between the SNPs and

IS risk. The multifactor dimensionality reduction (MDR) method was used to

determine the roles of SNP–SNP interactions in IS.

Results: The present study showed that rs5283 was associated with an

increased susceptibility to IS [odds ratio (OR) 1.81, p = 0.012]. On the contrary,

rs6410 had a protective influence on IS risk (OR 0.56, p = 0.020). Stratified

analyses indicated that rs5283 could enhance the risk of IS in subjects aged

>63 years (OR 2.41, p = 0.011), of female gender (OR 3.31, p = 0.001), that do

not smoke (OR 1.64, p = 0.005), and with hypertension (OR 2.07, p = 0.003).

Whereas, rs6410 was related to a lower susceptibility to IS in subjects aged

>63 years (OR 0.43, p = 0.032), of female gender (OR 0.30, p = 0.006), do

not smoke (OR 0.42, p = 0.017), and with hypertension (OR 0.52, p = 0.022).

Besides, rs4736312 reduced the IS susceptibility in non-smokers (OR 0.69, p =

0.031). Rs4534 had a risk-decreasing impact on IS in non-drinking (OR 0.54, p

= 0.016). Moreover, the results of the MDR analysis corroborate that the best

prediction model for IS was rs5283.

Conclusion: This study revealed that CYP11B1 gene polymorphisms strongly

correlated with IS in the Chinese Han population.
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Introduction

Stroke, a common cerebrovascular disease, is the second

leading cause of death and the third leading cause of disability

and death combined worldwide (Feigin et al., 2021). Ischemic

stroke (IS) is the most common type of stroke, accounting for

87% of all stroke cases (Krishnamurthi et al., 2013). In China,

stroke is the major cause of death among adults and accounts

for a huge burden on medical resources (Wang W. et al., 2017).

Stroke-related pain and complications have a phenomenal

impact on the patient’s quality of life (QoL). At the same time,

such complications bring untold misery and burden to the

patient’s family besides imposing a huge burden on the society

at large. Bearing in mind the enormity of treatment to be given

to the afflicted patient, effective prevention and therapeutic

strategies are warranted and are the need of the hour. Stroke is a

multifactorial and complex neurological disorder, including in

its fold and scope a host of conventional risk factors, genetic

factors, and their interactions. The traditional risk factors for

stroke are age, gender, smoking, hypertension, diabetes, obesity,

dyslipidemia, etc. (Johnson et al., 2016; Zhang et al., 2019; Zhuo

et al., 2020). Previous researches showed that there is a close

link between genetic factors and the occurrence of IS (Chauhan

and Debette, 2016; Georgakis et al., 2019). Epidemiological

studies revealed that gene polymorphisms may be involved in

the pathophysiological processes of IS and thereby play a major

role in triggering pathophysiological changes occurring in IS

(Gao et al., 2019). Moreover, recent studies identified many

genetic susceptibility variants which have contributed to the risk

of the onset of stroke, such as ACE (Goyal et al., 2021), ADH1B

(Lin et al., 2021),MTHFR,MTR (Mialovytska and Nebor, 2021),

IL-10 (Rui et al., 2020), CYP2J2 (Wang S. Y. et al., 2017), and

CYP2C8 (Yi et al., 2017).

Cytochrome P450 family 11 subfamily B member 1

(CYP11B1 gene) is located on chromosome 8q24.3 and encodes

the steroid 11 β-hydroxylase, which influences the synthesis

of aldosterone and activates cellular pathways to promote

hypertension and cardiovascular disease (Hussain and Awan,

2018). CYP11B1 genetic variants are involved in the occurrence

and progression of important clinical abnormalities such as

late-life depression (Ancelin et al., 2021), Cushing’s syndrome

(Valassi et al., 2017), hypertensive patients (Hussain et al.,

2020), autism (Deng et al., 2016), and coronary heart disease

(Huang et al., 2022). The CYP11B1 and CYP11B2 genes

share 90–95% sequence identity in their non-coding and

coding regions. CYP11B2 gene polymorphisms were found

to be associated with the occurrence of IS (Munshi et al.,

2010; Yan and Wang, 2012). Taking all these facts together,

we speculated that CYP11B1 gene polymorphisms may have

an important role in the development of IS. However, the

role of CYP11B1 gene polymorphism in IS has not yet

been reported.

In this study, we carried out a case-control study (that

included 550 IS patients and 550 normal populations) to explore

the correlation between CYP11B1 gene polymorphisms and

IS susceptibility in the Chinese Han population. Our study

provides a new biomarker for the prevention and diagnosis

of IS.

Materials and methods

The present study was approved by the Ethics Committee

of the Xianyang Central Hospital. We explained to each

participant the purpose of undertaking this study and also

obtained an informed consent from the concerned participants

before the commencement of the study. In this study, we

randomly recruited 550 patients with IS and age- and sex-

matched 550 healthy populations from the Xianyang Central

Hospital during the same period. The inclusion criteria for the

study required only those patients who were newly diagnosed

as having IS and who should have been confirmed to have

suffered IS by two experienced neurologists based on the test

records of clinical examination, magnetic resonance imaging

(MRI), cerebral scanner, and/ or computed tomography (CT) in

accordance with the diagnostic guidelines for stroke (Liberman

et al., 2016). Patients who possessed any of the exclusion criteria

were ruled out from participation. The exclusion criteria for

the cases were as follows: (1) patients with genetic disease;

(2) patients with a family history of stroke; (3) patients with

any type of cancer, including brain tumor; and (4) patients

with neurological, cardiogenic, and autoimmune diseases. The

control group included a healthy population who had undergone

physical examination. The inclusion criteria stipulated for the

controls were as follows: (1) controls matched to cases for age

and gender and (2) controls with no family history of brain and

neurological diseases. The basic characteristics of all participants

were fetched from medical records and a standardized

demographic questionnaire that included the participant’s health

details such as age, gender, smoking status, alcohol intake,

hypertension status, total cholesterol, triglycerides, high-density

lipoprotein cholesterol (HDL-c), and low-density lipoprotein

cholesterol (LDL-c).

SNP selection and genotyping

The detailed steps that had to be undertaken for the

selection of CYP11B1 single nucleotide polymorphisms (SNPs)

were as follows: (1) We obtained the physical position of the

CYP11B1 gene on the chromosome 8:142872356-142879846

through the human Ensembl GRCh37 database (http://asia.

ensembl.org/Homo_sapiens/Info/Index). In the VCF to PED

Converter window (http://grch37.ensembl.org/Homo_sapiens/
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Tools/VcftoPed), we entered the gene location, selected the

Chinese Han population in Beijing (CHB) population, and

downloaded the PED and info file for the SNPs of CYP11B1.

We obtained 31 SNPs within CYP11B1 from the database.

(2) Then, we used Haploview software for quality control

[minor allele frequency (MAF) > 5%, min genotype > 75%,

r2 < 0.8, and Hardy–Weinberg equilibrium (HWE) > 0.05] to

select the tag-SNP. (3) The call rate of each SNP was >95%.

Other SNPs in the CYP11B1 gene did not meet the above

standards. Finally, six SNPs (including rs4736312, rs5017238,

rs5301, rs5283, rs6410, and rs4534) that met the above standards

were selected for investigation and further study. Genomic DNA

from the peripheral blood samples was extracted using the

DNA kit. The primers for polymerase chain reaction (PCR)

amplification were designed by the Agena Design software.

The six SNPs were detected by the Agena MassARRAY iPLEX

platform following the manufacturer’s protocols. In addition,

the genotyping data were analyzed by the Agena Bioscience

Typer software.

Bioinformatics analysis

Haploreg (Version 4.1) online software was used

to predict the possible functions of the six SNPs

(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.

php).

Statistical analyses

In this study, statistical tests were analyzed by SPSS

software (version 22.0), with a two-tailed test. Student’s t-

test was performed to detect the statistical differences in age,

total cholesterol, triglycerides, HDL-c, and LDL-c between the

case and control groups, respectively. Pearson’s chi-squared

(χ2) test was used to analyze the statistical differences in

gender, smoking status, and alcohol intake. Fisher’s exact

test was carried out to calculate the HWE to detect the

allele frequencies in normal controls. The association of

CYP11B1 gene polymorphisms with IS susceptibility was

evaluated by a logistic regression analysis under allele,

codominant, dominant, recessive, and log-additive models. The

Benjamini and Hochberg’s false discovery rate (FDR) method

was used to correct for multiple comparisons. Besides, the

positive findings about the correlations between SNPs and

IS risk were verified with the false-positive report probability

(FPRP) analysis. Moreover, the MDR method was used to

determine the influence of interactions among SNPs on

IS susceptibility.

TABLE 1 Basic characteristics of participants in this study.

Variables Cases (n = 550) Controls (n = 550) P

Age, years (mean± SD)a 63.01± 7.44 63.71± 10.53 0.203

>63 275 (50%) 270 (49.1%)

≤63 275 (50%) 280 (50.9%)

Genderb 0.355

Male 341 (62%) 326 (59.3%)

Female 209 (38%) 224 (40.7%)

Smoking statusb 0.469

Smoker 283 (51.5%) 271 (49.3%)

Non-smoker 267 (48.5%) 279 (50.7%)

Alcohol intakeb 0.763

Yes 284 (51.6%) 279 (50.7%)

No 266 (48.4%) 271 (49.3%)

Hypertension status

No 165 (30%)

Yes 385 (70%)

Total cholesterol (mmol/l)a 3.93± 0.87 4.74± 0.89 <0.001

Triglycerides (mmol/l)a 1.55± 0.92 1.62± 0.68 0.114

HDL-c (mmol/l)a 1.16± 0.26 1.25± 0.26 <0.001

LDL-c (mmol/l)a 2.05± 0.63 2.58± 0.62 <0.001

HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol.
aStudent’s t-test is used.
bPearson’s X2 test is used.

p < 0.05 indicates statistical significance.

Significant p-values are given in bold.
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Results

Basic characteristics of the study
population

As shown in Table 1, our study involved 550 patients

with IS (341 men and 209 women) and 550 healthy subjects

(326 men and 224 women). The mean age was 63.01 ± 7.44

years for the cases and 63.71 ± 10.53 years for the controls.

The concentrations of total cholesterol, HDL-c, and LDL-c in

patients with IS were significantly lower than those in the control

group (all p < 0.001). In terms of age, gender, smoking status,

alcohol intake, and triglyceride level, there was no significant

difference between the two groups (p = 0.203, p = 0.355, p =

0.469, p= 0.763, and p= 0.114, respectively).

The impact of CYP11B1 gene
polymorphisms on ischemic stroke
susceptibility

We successfully investigated six SNPs (rs4736312,

rs5017238, rs5301, rs5283, rs6410, and rs4534), and the

allele frequency distribution and the potential function of the

SNPs are listed in Table 2. The allele frequencies for each SNP

in the controls were assigned in accordance with the HWE

(all p > 0.05). The association of CYP11B1 polymorphisms

with IS is listed in Table 3. Rs5283 was significantly associated

with an increased susceptibility to IS in allele [OR 1.32, p =

0.003, p (FDR) = 0.020], codominant [GA vs. GG, OR 1.33,

p = 0.026, p (FDR) = 0.153; AA vs. GG, OR 1.81, p = 0.012,

p (FDR) = 0.072], dominant [OR 1.39, p = 0.007, p (FDR) =

0.040], recessive [OR 1.58, p = 0.044, p (FDR) = 0.133], and

log-additive models [OR 1.34, p = 0.003, p (FDR) = 0.016].

Whereas, rs6410 had a risk-decreasing influence on IS in allele

[OR 0.81, p= 0.027, p (FDR)= 0.080], codominant [TT vs. CC,

OR 0.56, p = 0.020, p (FDR) = 0.061], recessive [OR 0.60, p =

0.037, p (FDR)= 0.224], and log-additive models [OR 0.80, p=

0.022, p (FDR)= 0.065].

CYP11B1 SNPs associated with risk
factors for ischemic stroke

We further analyzed the impact of CYP11B1 SNPs on risk

factors (gender, age, alcohol intake, smoking, and hypertension)

for patients with IS. As shown in Table 4, age-stratified analysis

indicated that rs5283 was related to an increased risk of IS in

people aged >63 years [allele: OR 1.38, p = 0.015, p (FDR) =

0.089; codominant: GA vs. GG, OR 1.58, p = 0.018, p (FDR) =

0.108, and AA vs. GG, OR 2.41, p = 0.011, p (FDR) = 0.032;

dominant: OR 1.69, p = 0.005, p (FDR) = 0.028; recessive: OR T
A
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TABLE 3 Association between CYP11B1 gene polymorphisms and ischemic stroke susceptibility.

SNP ID Model Allele/Genotype Case N Control N OR (95% CI) p p (FDR)

rs4736312 Allele C 931 911 1

A 169 187 0.88 (0.70–1.11) 0.289 0.577

Codominant AC 153 159 0.92 (0.71–1.20) 0.530 1.060

AA 8 14 0.55 (0.23–1.34) 0.191 0.382

CC 389 376 1

Dominant AC-AA 161 173 0.89 (0.69–1.15) 0.373 0.747

Recessive CC-AC 542 535 1

AA 8 14 0.57 (0.24–1.37) 0.208 0.312

Log-additive – – – 0.87 (0.69–1.10) 0.248 0.497

rs5017238 Allele A 925 912 1

G 173 188 0.91 (0.72–1.14) 0.398 0.478

Codominant AG 149 156 0.92 (0.70–1.20) 0.536 0.804

GG 12 16 0.73 (0.34–1.56) 0.417 0.417

AA 388 378 1

Dominant AG-GG 161 172 0.90 (0.70–1.17) 0.432 0.648

Recessive AA-AG 537 534 1

GG 12 16 0.75 (0.35–1.60) 0.451 0.451

Log-additive – – – 0.90 (0.72–1.13) 0.357 0.428

rs5301 Allele C 924 912 1

T 176 188 0.92 (0.74–1.16) 0.491 0.491

Codominant TC 158 160 0.96 (0.74–1.25) 0.747 0.747

TT 9 14 0.63 (0.27–1.48) 0.289 0.346

CC 383 376 1

Dominant TC-TT 167 174 0.93 (0.72–1.20) 0.587 0.704

Recessive CC-TC 541 536 1

TT 9 14 0.64 (0.27–1.49) 0.300 0.360

Log-additive – – – 0.91 (0.72–1.15) 0.435 0.435

rs5283 Allele G 740 803 1

A 358 295 1.32 (1.10–1.58) 0.003 0.020

Codominant GA 252 225 1.33 (1.04–1.70) 0.026 0.153

AA 53 35 1.81 (1.14–2.86) 0.012 0.072

GG 244 289 1

Dominant GA-AA 305 260 1.39 (1.10–1.77) 0.007 0.040

Recessive GG-GA 496 514 1

AA 53 35 1.58 (1.01–2.47) 0.044 0.133

Log-additive – – – 1.34 (1.11–1.61) 0.003 0.016

rs6410 Allele C 808 761 1

T 292 339 0.81 (0.67–0.98) 0.027 0.080

Codominant TC 234 245 0.85 (0.67–1.09) 0.207 0.620

TT 29 47 0.56 (0.34–0.91) 0.020 0.061

CC 287 258 1

Dominant TC-TT 263 292 0.81 (0.64–1.02) 0.075 0.224

Recessive CC-TC 521 503 1

TT 29 47 0.60 (0.37–0.97) 0.037 0.224

Log-additive – – – 0.80 (0.66–0.97) 0.022 0.065

rs4534 Allele C 660 639 1

T 440 461 0.92 (0.78–1.10) 0.363 0.544

(Continued)
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TABLE 3 (Continued)

SNP ID Model Allele/Genotype Case N Control N OR (95% CI) p p (FDR)

Codominant TC 288 269 1.06 (0.81–1.37) 0.683 0.820

TT 76 96 0.79 (0.55–1.14) 0.206 0.308

CC 186 185 1

Dominant TC-TT 364 365 0.99 (0.77–1.27) 0.916 0.916

Recessive CC-TC 474 454 1

TT 76 96 0.76 (0.55–1.06) 0.109 0.219

Log-additive – – – 0.92 (0.77–1.10) 0.352 0.528

SNP: single nucleotide polymorphism; OR, odds ratio, 95% CI; 95% confidence intervals; FDR, false discovery rate.

p-values were calculated by unconditional logistic regression analysis with adjustment for age, gender, smoking, and drinking.

A p-value of < 0.05 indicates statistical significance.

Significant p-values are given in bold.

1.93, p = 0.047, p (FDR) = 0.282; log-additive: OR 1.56, p =

0.002, p (FDR) = 0.013]. Rs6410 was related to a lower risk

in ischemic stroke aged >63 years under codominant [TT vs.

CC, OR 0.43, p = 0.032, p (FDR) = 0.194] and log-additive

models [OR 0.72, p = 0.031, p (FDR) = 0.094]. When stratified

by gender, it was found that rs5283 showed an enhanced

susceptibility to IS in women [allele: OR 1.87, p< 0.001, p (FDR)

< 0.001; codominant: GA vs. GG, OR 2.24, p < 0.001, p (FDR)

= 0.001, and AA vs. GG, OR 3.31, p = 0.001, p (FDR) = 0.009;

dominant: OR 2.39, p < 0.001, p (FDR) < 0.001; recessive: OR

2.25, p = 0.024, p (FDR) = 0.073; log-additive: OR 1.99, p <

0.001, p (FDR) < 0.001]. However, rs6410 [allele: OR 0.64, p =

0.003, p (FDR) = 0.009; codominant: TC vs. CC, OR 0.67, p =

0.045, p (FDR) = 0.136, and TT vs. CC, OR 0.30, p = 0.006, p

(FDR)= 0.017; dominant: OR 0.60, p= 0.009, p (FDR)= 0.028;

recessive: OR 0.36, p= 0.017, p (FDR)= 0.103; log-additive: OR

0.61, p= 0.002, p (FDR)= 0.006] and rs4534 [recessive: OR 0.58,

p = 0.046, p (FDR) = 0.093] had a protective impact on the risk

of IS in women.

After stratified by smoking and alcohol intake (Table 5), we

found that rs4736312 [allele: OR 0.72, p = 0.045, p (FDR) =

0.091; log-additive: OR 0.69, p = 0.031, p (FDR) = 0.063] and

rs6410 [OR 0.74, p = 0.027, p (FDR) = 0.082; codominant:

OR 0.42, p = 0.017, p (FDR) = 0.104; recessive: OR 0.46, p

= 0.029, p (FDR) = 0.172; log-additive: OR 0.73, p = 0.024,

p (FDR) = 0.073] could decrease the risk of patients that do

not smoke. In addition, rs5283 [allele: OR 1.40, p = 0.012,

p (FDR) = 0.070; codominant: GA vs. GG, OR 1.62, p =

0.008, p (FDR) = 0.051; dominant: OR 1.64, p = 0.005, p

(FDR) = 0.029; log-additive: OR 1.45, p = 0.008, p (FDR) =

0.047] could increase the susceptibility of IS in patients that

do not smoke. Rs4534 was related to decreased susceptibility

in patients that do not consume alcohol under codominant

[TT vs. CC, OR 0.57, p = 0.041, p (FDR) = 0.245] and

recessive models [OR 0.54, p = 0.016, p (FDR) = 1.977].

We further evaluated the correlations between SNPs and IS

complicated with hypertension. As summarized in Table 6,

rs5283 significantly increased the risk of IS complicated with

hypertension in allele [OR 1.34, p = 0.004, p (FDR) = 0.026],

codominant [AA vs. GG, OR 2.07, p= 0.003, p (FDR)= 0.020],

dominant [OR 1.35, p = 0.024, p (FDR) = 0.143], recessive [OR

1.87, p = 0.009, p (FDR) = 0.233], and log-additive models

[OR 1.35, p = 0.004, p (FDR) = 0.022]. Rs6410 had a lower

susceptibility to IS complicated with hypertension [allele: OR

0.80, p = 0.031, p (FDR) = 0.094, codominant: OR 0.52, p =

0.022, p (FDR) = 0.067, recessive: OR 0.56, p = 0.039, p (FDR)

= 0.875, and log-additive: OR 0.78, p= 0.025, p (FDR)= 0.074].

FRPR results

We performed the FPRP analysis to verify the positive data

in the study. As shown in Supplementary Table S1, it was found

that the associations between CYP11B1 gene polymorphism and

IS in the total group and subgroup, almost all of them, were

significant (FPRP < 0.2).

SNP–SNP interactions influenced
ischemic stroke risk

The MDR method was used to analyze the correlation

between SNP–SNP interactions and IS. As presented in Table 7,

rs5283 was the best predictive model for IS (OR 1.39, p =

0.007), with the highest testing accuracy (0.5400) and perfect

cross-validation consistently (CVC) (10/10). The interaction

map showed that rs4534 and rs6410 had a positive synergistic

interaction (0.05%), and the interaction map with negative

percent entropy indicated the redundancy or independence of

each pairwise combination of SNPs (Figure 1).

Discussion

We studied the impact of CYP11B1 SNPs on the IS risk.

We found that rs5283 and rs6410 were closely related to the
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TABLE 4 Correlation of CYP11B1 polymorphisms and ischemic stroke susceptibility stratified by age and gender.

SNP ID Model Allele/

Genotype

>63 years ≤63 years Men Women

OR (95% CI) pa p (FDR) OR (95% CI) pa p (FDR) OR (95% CI) pb p (FDR) OR (95% CI) pb p (FDR)

rs4736312 Allele C 1 1 1 1

A 0.86 (0.62–1.18) 0.345 0.517 0.91 (0.6–1.26) 0.575 1.725 0.85 (0.64–1.13) 0.260 1.558 0.94 (0.65–1.36) 0.746 1.119

Codominant AC 0.82 (0.56–1.22) 0.334 0.668 0.99 (0.67–1.46) 0.946 1.135 0.93 (0.66–1.30) 0.653 1.305 0.89 (0.57–1.37) 0.583 0.874

AA 0.38 (0.08–1.67) 0.198 0.297 0.63 (0.20–2.00) 0.428 0.856 0.40 (0.12–1.31) 0.131 0.785 1.03 (0.25–4.23) 0.968 0.968

CC 1 1 1 1

Dominant AC-AA 0.79 (0.54–1.16) 0.234 0.467 0.95 (0.65–1.39) 0.796 1.591 0.88 (0.63–1.22) 0.439 2.636 0.89 (0.59–1.37) 0.605 0.907

Recessive CC-AC 1 1 1 1

AA 0.40 (0.09–1.75) 0.223 0.335 0.63 (0.20–1.99) 0.430 0.860 0.41 (0.13–1.34) 0.139 0.835 1.06 (0.26–4.35) 0.932 1.118

Log-additive – 0.78 (0.54–1.11) 0.159 0.239 0.92 (0.66–1.29) 0.641 1.282 0.84 (0.63–1.14) 0.263 1.576 0.92 (0.63–1.34) 0.656 0.984

rs5017238 Allele A 1 1 1 1

G 0.89 (0.65–1.22) 0.451 0.541 0.93 (0.67–1.28) 0.655 1.310 0.86 (0.65–1.15) 0.316 0.947 0.97 (0.67–1.41) 0.893 0.893

Codominant AG 0.83 (0.56–1.24) 0.364 0.546 0.98 (0.66–1.46) 0.931 1.396 0.92 (0.66–1.30) 0.648 1.943 0.88 (0.57–1.37) 0.578 1.155

GG 0.55 (0.16–1.91) 0.344 0.413 0.75 (0.27–2.11) 0.590 0.708 0.57 (0.22–1.48) 0.248 0.496 1.36 (0.35–5.21) 0.655 0.983

AA 1 1 1 1

Dominant AG-GG 0.81 (0.55–1.19) 0.282 0.422 0.96 (0.65–1.40) 0.819 1.229 0.88 (0.64–1.23) 0.467 1.400 0.91 (0.60–1.39) 0.671 0.671

Recessive AA-AG 1 1 1 1

GG 0.58 (0.17–2.00) 0.388 0.388 0.76 (0.27–2.11) 0.594 0.713 0.58 (0.22–1.51) 0.265 0.531 1.40 (0.37–5.36) 0.621 0.931

Log-additive – 0.81 (0.57–1.14) 0.225 0.270 0.94 (0.68–1.31) 0.712 0.854 0.86 (0.65–1.15) 0.323 0.970 0.96 (0.65–1.40) 0.812 0.812

rs5301 Allele C 1 1 1 1

T 0.92 (0.67–1.26) 0.590 0.590 0.93 (0.67–1.28) 0.658 0.986 0.91 (0.68–1.21) 0.506 1.012 0.94 (0.65–1.36) 0.752 0.903

Codominant TC 0.87 (0.59–1.28) 0.473 0.568 1.01 (0.68–1.48) 0.976 0.976 0.99 (0.70–1.38) 0.937 1.406 0.89 (0.58–1.37) 0.608 0.729

TT 0.52 (0.14–2.02) 0.346 0.346 0.63 (0.20–2.02) 0.440 0.660 0.51 (0.17–1.52) 0.223 0.669 1.03 (0.25–4.24) 0.966 1.159

CC 1 1 1 1

Dominant TC-TT 0.84 (0.57–1.23) 0.377 0.452 0.97 (0.67–1.41) 0.875 0.875 0.94 (0.68–1.31) 0.725 1.450 0.90 (0.59–1.37) 0.629 0.755

Recessive CC-TC 1 1 1 1

TT 0.55 (0.14–2.09) 0.377 0.452 0.63 (0.20–2.01) 0.436 0.654 0.51 (0.17–1.51) 0.224 0.672 1.06 (0.26–4.35) 0.932 1.118

Log-additive – 0.83 (0.59–1.18) 0.298 0.298 0.94 (0.67–1.31) 0.710 1.065 0.90 (0.67–1.21) 0.504 1.008 0.92 (0.63–1.35) 0.679 0.814

rs5283 Allele G 1 1 1 1

A 1.38 (1.07–1.79) 0.015 0.089 1.26 (0.97–1.63) 1.000 1.000 1.05 (0.83–1.33) 0.692 0.831 1.87 (1.40–2.52) <0.001 <0.001
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TABLE 4 (Continued)

SNP ID Model Allele/

Genotype

>63 years ≤63 years Men Women

OR (95% CI) pa p (FDR) OR (95% CI) pa p (FDR) OR (95% CI) pb p (FDR) OR (95% CI) pb p (FDR)

Codominant GA 1.58 (1.08–2.30) 0.018 0.108 1.22 (0.86–1.74) 0.271 0.814 1.01 (0.73–1.39) 0.955 1.146 2.24 (1.48–3.37) <0.001 0.001

AA 2.41 (1.23–4.73) 0.011 0.032 2.00 (1.00–3.99) 0.051 0.303 1.22 (0.66–2.23) 0.527 0.632 3.31 (1.58–6.90) 0.001 0.009

GG 1 1 1 1

Dominant GA-AA 1.69 (1.18–2.42) 0.005 0.028 1.31 (0.93–1.84) 0.123 0.739 1.04 (0.76–1.41) 0.818 1.227 2.39 (1.61–3.53) <0.001 <0.001

Recessive GG-GA 1 1 1 1

AA 1.93 (1.01–3.68) 0.047 0.282 1.82 (0.93–3.56) 0.082 0.489 1.21 (0.67–2.18) 0.523 0.784 2.25 (1.11–4.56) 0.024 0.073

Log-additive – 1.56 (1.18–2.08) 0.002 0.013 1.32 (1.00–1.74) 0.050 0.297 1.06 (0.83–1.35) 0.651 0.976 1.99 (1.46–2.72) <0.001 <0.001

rs6410 Allele C 1 1 1 1

T 0.81 (0.63–1.06) 0.126 0.378 0.81 (0.62–1.05) 0.109 0.652 0.95 (0.75–1.20) 0.645 0.967 0.64 (0.47–0.86) 0.003 0.009

Codominant TC 0.79 (0.55–1.15) 0.218 0.655 0.80 (0.56–1.15) 0.224 1.344 1.00 (0.73–1.37) 0.986 0.986 0.67 (0.45–0.99) 0.045 0.136

TT 0.43 (0.20–0.93) 0.032 0.194 0.59 (0.30–1.16) 0.123 0.369 0.83 (0.44–1.54) 0.550 0.824 0.30 (0.13–0.70) 0.006 0.017

CC 1 1 1 1

Dominant TC-TT 0.73 (0.51–1.05) 0.092 0.277 0.76 (0.54–1.08) 0.124 0.372 0.97 (0.72–1.32) 0.855 0.855 0.60 (0.41–0.88) 0.009 0.028

Recessive CC-TC 1 1 1 1

TT 0.48 (0.23–1.02) 0.056 0.169 0.65 (0.34–1.25) 0.198 0.593 0.83 (0.45–1.52) 0.541 0.541 0.36 (0.16–0.83) 0.017 0.103

Log-additive – 0.72 (0.54–0.97) 0.031 0.094 0.78 (0.60–1.03) 0.078 0.234 0.95 (0.74–1.22) 0.690 0.828 0.61 (0.44–0.83) 0.002 0.006

rs4534 Allele C 1 1 1 1

T 0.85 (0.67–1.09) 0.194 0.388 1.00 (0.79–1.27) 0.993 1.192 0.99 (0.80–1.23) 0.940 0.940 0.83 (0.63–1.09) 0.170 0.341

Codominant TC 0.96 (0.65–1.42) 0.835 0.835 1.07 (0.73–1.57) 0.714 1.428 1.07 (0.76–1.51) 0.684 4.106 1.01 (0.66–1.54) 0.963 0.963

TT 0.62 (0.35–1.10) 0.103 0.206 0.95 (0.58–1.58) 0.857 0.857 0.91 (0.57–1.47) 0.708 0.708 0.59 (0.33–1.05) 0.074 0.148

CC 1 1 1 1

Dominant TC-TT 0.87 (0.60–1.28) 0.487 0.487 1.04 (0.73–1.49) 0.824 0.989 1.03 (0.75–1.43) 0.839 1.006 0.89 (0.59–1.32) 0.552 1.103

Recessive CC-TC 1 1 1 1

TT 0.64 (0.38–1.07) 0.088 0.177 0.92 (0.58–1.44) 0.703 0.703 0.87 (0.57–1.34) 0.537 0.645 0.58 (0.34–0.99) 0.046 0.093

Log-additive – 0.83 (0.63–1.08) 0.163 0.326 0.99 (0.78–1.27) 0.956 0.956 0.98 (0.78–1.23) 0.850 0.850 0.81 (0.61–1.07) 0.139 0.278

OR, odds ratio, 95% CI; 95% confidence intervals; FDR, false discovery rate.

The pa values were calculated by logistic regression analysis adjusted by gender, smoking, and drinking. The pb values were calculated by logistic regression analysis adjusted by age, smoking, and drinking.

A p-value of <0.05 indicates statistical significance.

Significant p-values are given in bold.
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TABLE 5 Correlation of CYP11B1 polymorphisms and ischemic stroke susceptibility stratified by smoking and drinking.

SNP ID Model Allele/Genotype Smoking Non-smoking Drinking Non-drinking

OR (95% CI) pa p (FDR) OR (95% CI) pa p (FDR) OR (95% CI) pb p (FDR) OR (95% CI) pb p (FDR)

rs4736312 Allele C 1 1 1 1

A 1.09 (0.79–1.50) 0.615 0.615 0.72 (0.52–0.99) 0.045 0.091 0.95 (0.70–1.30) 0.769 1.538 0.81 (0.58–1.13) 0.207 0.311

Codominant AC 1.05 (0.72–1.52) 0.813 0.813 0.74 (0.50–1.09) 0.128 0.257 1.02 (0.70–1.47) 0.934 1.120 0.75 (0.51–1.12) 0.163 0.326

AA 1.40 (0.29–6.67) 0.672 0.672 0.36 (0.11–1.16) 0.086 0.258 0.24 (0.05–1.22) 0.085 0.254 0.88 (0.29–2.71) 0.829 0.994

CC 1 1 1 1

Dominant AC-AA 1.06 (0.73–1.53) 0.763 0.763 0.70 (0.48–1.01) 0.059 0.176 0.96 (0.67–1.37) 0.802 2.406 0.76 (0.52–1.12) 0.170 0.511

Recessive CC-AC 1 1 1 1

AA 1.38 (0.29–6.56) 0.684 0.820 0.39 (0.12–1.25) 0.113 0.339 0.24 (0.05–1.20) 0.083 0.248 0.95 (0.31–2.90) 0.928 0.820

Log-additive – 1.07 (0.76–1.51) 0.708 0.708 0.69 (0.50–0.97) 0.031 0.063 0.89 (0.64–1.24) 0.490 0.980 0.81 (0.58–1.13) 0.218 0.327

rs5017238 Allele A 1 1 1 1

G 1.11 (0.81–1.53) 0.513 0.616 0.74 (0.53–1.02) 0.063 0.076 0.97 (0.71–1.32) 0.829 1.244 0.84 (0.60–1.17) 0.302 0.362

Codominant AG 1.05 (0.72–1.54) 0.796 1.195 0.73 (0.50–1.08) 0.120 0.359 1.03 (0.71–1.50) 0.863 1.725 0.74 (0.49–1.10) 0.138 0.415

GG 1.41 (0.43–4.65) 0.569 0.854 0.46 (0.16–1.37) 0.165 0.198 0.40 (0.12–1.36) 0.144 0.287 1.15 (0.40–3.27) 0.793 1.190

AA 1 1 1 1

Dominant AG-GG 1.07 (0.74–1.56) 0.708 1.062 0.70 (0.48–1.02) 0.066 0.132 0.97 (0.68–1.39) 0.870 1.305 0.77 (0.53–1.14) 0.189 0.378

Recessive AA-AG 1 1 1 1

GG 1.39 (0.43–4.56) 0.584 0.876 0.50 (0.17–1.49) 0.214 0.320 0.40 (0.12–1.34) 0.137 0.274 1.24 (0.44–3.51) 0.683 1.403

Log-additive – 1.09 (0.78–1.52) 0.623 0.747 0.72 (0.51–1.00) 0.047 0.070 0.91 (0.66–1.26) 0.558 0.837 0.84 (0.60–1.18) 0.315 0.378

rs5301 Allele C 1 1 1 1

T 1.16 (0.84–1.59) 0.372 0.558 0.74 (0.53–1.02) 0.061 0.091 0.98 (0.72–1.33) 0.891 1.069 0.86 (0.62–1.20) 0.381 0.381

Codominant TC 1.10 (0.76–1.60) 0.609 1.217 0.77 (0.52–1.13) 0.184 0.276 1.02 (0.71–1.48) 0.901 1.352 0.83 (0.56–1.22) 0.336 0.504

TT 1.75 (0.39–7.75) 0.462 0.923 0.36 (0.11–1.17) 0.090 0.135 0.37 (0.09–1.49) 0.161 0.241 0.91 (0.30–2.78) 0.864 0.864

CC 1 1 1 1

Dominant TC-TT 1.13 (0.78–1.63) 0.530 1.060 0.72 (0.50–1.05) 0.089 0.134 0.97 (0.68–1.39) 0.877 1.052 0.83 (0.57–1.22) 0.341 0.409

Recessive CC-TC 1 1 1 1

TT 1.70 (0.38–7.49) 0.485 0.970 0.39 (0.12–1.26) 0.114 0.229 0.37 (0.09–1.47) 0.156 0.031 0.95 (0.31–2.91) 0.935 0.540

Log-additive – 1.14 (0.81–1.61) 0.452 0.678 0.72 (0.51–1.00) 0.047 0.056 0.92 (0.66–1.28) 0.603 0.723 0.86 (0.62–1.21) 0.388 0.388

rs5283 Allele G 1 1 1 1

A 1.25 (0.96–1.62) 0.098 0.586 1.40 (1.08–1.81) 0.012 0.070 1.15 (0.89–1.49) 0.286 0.859 1.51 (1.17–1.96) 0.002 0.011

Codominant GA 1.14 (0.80–1.63) 0.460 1.379 1.62 (1.13–2.32) 0.008 0.051 0.91 (0.64–1.30) 0.617 1.852 2.00 (1.39–2.89) <0.001 0.001

AA 1.90 (0.95–3.82) 0.071 0.424 1.76 (0.92–3.34) 0.086 0.172 2.20 (1.07–4.52) 0.032 0.190 1.69 (0.90–3.19) 0.102 0.204

GG 1 1 1 1
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TABLE 5 (Continued)

SNP ID Model Allele/Genotype Smoking Non-smoking Drinking Non-drinking

OR (95% CI) pa p (FDR) OR (95% CI) pa p (FDR) OR (95% CI) pb p (FDR) OR (95% CI) pb p (FDR)

Dominant GA-AA 1.23 (0.87–1.73) 0.238 1.426 1.64 (1.16–2.32) 0.005 0.029 1.03 (0.74–1.44) 0.862 1.723 1.95 (1.37–2.76) <0.001 0.001

Recessive GG-GA 1 1 1 1

AA 1.79 (0.91–3.51) 0.093 0.280 1.39 (0.75–2.58) 0.296 0.355 2.29 (1.14–4.62) 0.020 1.413 1.21 (0.66–2.21) 0.540 0.179

Log-additive – 1.26 (0.96–1.66) 0.099 0.593 1.45 (1.10–1.90) 0.008 0.047 1.17 (0.89–1.53) 0.266 0.798 1.55 (1.18–2.04) 0.002 0.010

rs6410 Allele C 1 1 1 1

T 0.88 (0.68–1.15) 0.357 0.714 0.74 (0.57–0.97) 0.027 0.082 0.84 (0.65–1.08) 0.171 1.024 0.78 (0.60–1.03) 0.075 0.225

Codominant TC 0.88 (0.62–1.26) 0.482 2.891 0.82 (0.58–1.17) 0.281 0.337 0.84 (0.59–1.20) 0.336 2.014 0.87 (0.61–1.24) 0.441 0.530

TT 0.83 (0.41–1.72) 0.622 0.747 0.42 (0.21–0.86) 0.017 0.104 0.61 (0.31–1.23) 0.166 0.200 0.51 (0.25–1.05) 0.068 0.203

CC 1 1 1 1

Dominant TC-TT 0.87 (0.62–1.23) 0.443 1.329 0.75 (0.53–1.05) 0.096 0.115 0.81 (0.58–1.13) 0.214 1.283 0.81 (0.57–1.14) 0.224 0.336

Recessive CC-TC 1 1 1 1

TT 0.89 (0.44–1.79) 0.735 0.735 0.46 (0.23–0.92) 0.029 0.172 0.67 (0.34–1.31) 0.236 1.080 0.54 (0.27–1.10) 0.090 0.048

Log-additive – 0.90 (0.68–1.19) 0.445 0.890 0.73 (0.55–0.96) 0.024 0.073 0.81 (0.62–1.07) 0.135 0.811 0.79 (0.60–1.04) 0.093 0.279

rs4534 Allele C 1 1 1 1

T 0.85 (0.69–1.12) 0.299 0.896 0.97 (0.76–1.23) 0.785 0.785 1.01 (0.79–1.28) 0.960 0.960 0.84 (0.66–1.08) 0.171 0.343

Codominant TC 1.05 (0.71–1.54) 0.807 0.968 1.02 (0.70–1.48) 0.929 0.929 1.01 (0.69–1.47) 0.979 0.979 1.07 (0.73–1.57) 0.715 0.715

TT 0.68 (0.40–1.14) 0.143 0.428 0.88 (0.52–1.48) 0.622 0.622 1.03 (0.62–1.72) 0.901 0.901 0.57 (0.33–0.98) 0.041 0.245

CC 1 1 1 1

Dominant TC-TT 0.94 (0.66–1.36) 0.759 0.911 0.98 (0.69–1.40) 0.924 0.924 1.01 (0.71–1.45) 0.949 0.949 0.93 (0.65–1.34) 0.696 0.696

Recessive CC-TC 1 1 1 1

TT 0.66 (0.41–1.05) 0.078 0.465 0.87 (0.54–1.40) 0.560 0.560 1.03 (0.65–1.62) 0.900 0.928 0.54 (0.33–0.89) 0.016 1.977

Log-additive – 0.86 (0.67–1.11) 0.240 0.719 0.95 (0.74–1.23) 0.709 0.709 1.01 (0.79–1.30) 0.911 0.911 0.82 (0.63–1.05) 0.120 0.239

OR, odds ratio, 95% CI; 95% confidence intervals; FDR, false discovery rate.

The pa-values were calculated by logistic regression analysis adjusted by age, gender, and drinking. The pb-values were calculated by logistic regression analysis adjusted by age, gender, and smoking.

A p < 0.05 indicates statistical significance.

Significant p-values are given in bold.
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TABLE 6 The relationship between CYP11B1 polymorphisms and the risk of ischemic stroke complicated with hypertension.

SNP ID Model Allele/Genotype Case N Control N OR (95% CI) p p (FDR)

rs4736312 Allele C 658 911 1

A 112 187 0.83 (0.64–1.07) 0.149 0.299

Codominant AC 100 159 0.84 (0.62–1.12) 0.235 0.469

AA 6 14 0.59 (0.22–1.55) 0.283 0.566

CC 279 376 1

Dominant AC-AA 106 173 0.82 (0.61–1.09) 0.167 0.334

Recessive CC-AC 379 535 1

AA 6 14 0.62 (0.23–1.63) 0.330 0.672

Log-additive – – – 0.82 (0.63–1.06) 0.129 0.259

rs5017238 Allele A 654 912 1

G 114 188 0.85 (0.66–1.09) 0.194 0.291

Codominant AG 98 156 0.84 (0.63–1.14) 0.263 0.394

GG 8 16 0.68 (0.29–1.62) 0.388 0.466

AA 278 378 1

Dominant AG-GG 106 172 0.83 (0.62–1.11) 0.202 0.303

Recessive AA-AG 376 534 1

GG 8 16 0.72 (0.30–1.69) 0.448 0.580

Log-additive – – – 0.84 (0.65–1.08) 0.176 0.264

rs5301 Allele C 653 912 1

T 117 188 0.87 (0.68–1.12) 0.275 0.330

Codominant TC 103 160 0.87 (0.65–1.16) 0.342 0.411

TT 7 14 0.69 (0.27–1.74) 0.433 0.433

CC 275 376 1

Dominant TC-TT 110 174 0.85 (0.64–1.14) 0.278 0.333

Recessive CC-TC 378 536 1

TT 7 14 0.72 (0.29–1.81) 0.484 0.009

Log-additive – – – 0.86 (0.66–1.11) 0.241 0.289

rs5283 Allele G 516 803 1

A 254 295 1.34 (1.10–1.64) 0.004 0.026

Codominant GA 168 225 1.24 (0.94–1.64) 0.122 0.733

AA 43 35 2.07 (1.27–3.36) 0.003 0.020

GG 174 289 1

Dominant GA-AA 211 260 1.35 (1.04–1.76) 0.024 0.143

Recessive GG-GA 342 514 1

AA 43 35 1.87 (1.17–2.98) 0.009 0.233

Log-additive – – – 1.35 (1.10–1.66) 0.004 0.022

rs6410 Allele C 568 761 1

T 202 339 0.80 (0.65–0.98) 0.031 0.094

Codominant TC 164 245 0.85 (0.65–1.11) 0.231 0.692

TT 19 47 0.52 (0.29–0.91) 0.022 0.067

CC 202 258 1

Dominant TC-TT 183 292 0.79 (0.61–1.03) 0.085 0.255

Recessive CC-TC 366 503 1

TT 19 47 0.56 (0.32–0.97) 0.039 0.875

Log-additive – – – 0.78 (0.63–0.97) 0.025 0.074

rs4534 Allele C 464 639 1

T 306 461 0.91 (0.76–1.10) 0.348 0.348

(Continued)
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TABLE 6 (Continued)

SNP ID Model Allele/Genotype Case N Control N OR (95% CI) p p (FDR)

Codominant TC 192 269 0.96 (0.72–1.29) 0.804 0.804

TT 57 96 0.81 (0.54–1.20) 0.290 0.434

CC 136 185 1

Dominant TC-TT 249 365 0.92 (0.70–1.21) 0.566 0.566

Recessive CC-TC 328 454 1

TT 57 96 0.82 (0.58–1.18) 0.292 0.599

Log-additive – – – 0.91 (0.75–1.10) 0.337 0.337

OR, odds ratio, 95% CI; 95% confidence intervals; FDR, false discovery rate.

The p-values were calculated by logistic regression analysis adjusted by age, gender, smoking, and drinking.

p < 0.05 indicates statistical significance.

TABLE 7 Best models to predict ischemic stroke by MDR.

Model Testing bal. acc. CVC OR (95% CI) p

rs5283 0.5400 10/10 1.39 (1.10–1.76) 0.007

rs6410, rs4534 0.5327 10/10 1.46 (1.15–1.85) 0.002

rs5017238, rs5301, rs5283 0.5036 5/10 1.51 (1.19–1.91) <0.001

rs5017238, rs5283, rs6410, rs4534 0.4982 5/10 1.56 (1.23–1.99) <0.001

rs5017238, rs5301, rs5283, rs6410, rs4534 0.5055 7/10 1.58 (1.24–2.01) <0.001

rs4736312, rs5017238, rs5301, rs5283, rs6410, rs4534 0.5055 10/10 1.58 (1.24–2.01) <0.001

The model with the maximum testing accuracy and maximum CVC was considered the best model.

The p-values were validated by 1,000 permutation tests. Significant p-values are given in bold.

Bal. Acc., balanced accuracy; CVC, cross-validation consistently; MDR, multifactor dimensionality reduction.

risk of IS. To the best of our knowledge, this study is the first

of its kind to reveal an association between the CYP11B1 gene

polymorphisms and the risk of stroke in the Han population.

Rs5283, rs6410, rs4736312, and rs4534 are located on the

second exon, the first exon, the 3′ UTR, and the first exon

of the CYP11B1 gene, respectively. Our study showed that

rs5283 increases the risk of IS significantly, whereas rs6410

played a protective role in IS. However, Zhang et al. (2010)

reported that rs6410 was associated with an increased risk of

primary hyperaldosteronism. This difference may be caused by

the type of disease. The incidence of stroke is proportional to

age, with ∼75% of stroke occurring in patients above 64 years

(Mackay et al., 2004). The average age of the participants was

63 years; thus, we stratified the age group by 63 years. We

found that rs5283 was associated with an increased susceptibility

to IS in people aged >63 years. On the contrary, rs6410

decreased susceptibility to IS in people aged >63 years. Yang

et al. (2020) reported that rs6068816 enhanced the IS risk in

people aged >64 years. Cai et al. (2020) showed that rs4646

could increase the IS risk in people aged >64 years. Besides,

rs2074633 and rs28688791 enhanced the risk of stroke in people

aged <60 years (Wang et al., 2019). Taking various points

from the above, we speculate that the association of CYP11B1

gene polymorphisms with IS susceptibility may rely on age.

In addition, we observed that rs5283 and rs6410 were closely

related to IS risk in women. Some studies showed that SNPs

were related to IS susceptibility but influenced by gender (Xu

et al., 2017; Gu et al., 2018; Yuan et al., 2021). Besides, sex

differences are very important to influence the occurrence of

IS (Bushnell et al., 2018). Thus, we guess that CYP11B1 genetic

variants impact on the risk of IS relying on gender. Smoking

and hypertension are risk factors for IS. We also analyzed

the correlation between CYP11B1 polymorphisms and IS risk

stratified by smoking and hypertension. We observed that

rs5283 could enhance the risk of IS in patients that do not smoke

and those with hypertension. Rs6410 was related to decreased

susceptibility to IS risk in patients that do not smoke and

those with hypertension. In addition, rs473631 polymorphism

reduced IS risk in patients that do not smoke. Similar to our

results, Aysun et al. revealed that genetic variants determine

IS risk influenced by hypertension and smoking (Türkanoglu

Özçelik et al., 2018). Tu, Yang, and Diakite showed that SNPs

were related to the susceptibility of IS with hypertension (Diakite

et al., 2016; Tu et al., 2020; Yang et al., 2020). Cheng et al. (2017)

showed that the interactions between SNPs and smoking turned

out to be significant in IS. Based on the above, we concluded

that gene polymorphisms together with age, gender, smoking,

and hypertension are very significant risk factors for IS.

Function prediction found that rs5283 and rs4736312

were related to the regulation of deoxyribonuclease (DNAse),
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FIGURE 1

The SNP–SNP interaction map. Values in nodes represent the information gains of the individual attributes (main e�ects). Values between nodes

are information gains of each pair of attributes (interaction e�ects). Orange with positive percent entropy indicates a strong synergistic

interaction. Light range, blue, and green with negative percent entropy indicate redundancy or independence.

motifs changed, and selected expression quantitative trait loci

(eQTL) hits. Rs6410 influences the regulation of promoter

histone marks, enhancer histone marks, motifs changed, GRASP

(Genome-Wide Repository of Associations Between SNPs and

Phenotypes) QTL hits, and selected eQTL hits. Besides, rs4534

contributed to the regulation of promoter histone marks,

DNAse, motifs changed, and enhancer histone marks, which

have given that these SNPs had some molecular functions in

IS. Studies showed that SNPs participate in the occurrence

of human diseases by regulating the expression of the gene

(Alvarez-Madrazo et al., 2013; Song et al., 2020). We estimate

that CYP11B1 gene polymorphism may affect the occurrence

of the disease by regulating its expression, and molecular

experiments have to be carried out to verify it.

There are a few disadvantages in our study. First, SNPs

in CYP11B1 may influence the occurrence of IS by regulating

the expression of CYP11B1, but we have not detected a

similar trait in the current study, so, this aspect merits future

investigation. Second, the functional experiments of CYP11B1

gene polymorphisms in patients with IS are still lacking

in clarity and require further investigation and an in-depth

study. Despite these limitations, our study is the first to

explore the roles of CYP11B1 gene polymorphisms in patients

with IS.

Conclusion

In summary, our study provided evidence that

CYP11B1 gene polymorphisms influence IS susceptibility

in the Chinese Han population, which has given

a new biomarker for the diagnosis and prevention

of IS.
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