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The integrative functional
connectivity analysis between
seafarer’s brain networks using
functional magnetic resonance
imaging data of different states
Yuhu Shi* and Weiming Zeng

College of Information Engineering, Shanghai Maritime University, Shanghai, China

The particularity of seafarers’ occupation makes their brain functional activities

vulnerable to the influence of working environments, which leads to abnormal

functional connectivities (FCs) between brain networks. To further investigate

the influences of maritime environments on the seafarers’ functional brain

networks, the functional magnetic resonance imaging (fMRI) datasets of 33

seafarers before and after sailing were used to study FCs among the functional

brain networks in this paper. On the basis of making full use of the intrinsic

prior information from fMRI data, six resting-state brain functional networks of

seafarers before and after sailing were obtained by using group independent

component analysis with intrinsic reference, and then the differences between

the static and dynamic FCs among these six brain networks of seafarers

before and after sailing were, respectively, analyzed from both group and

individual levels. Subsequently, the potential dynamic functional connectivity

states of seafarers before and after sailing were extracted by using the affine

propagation clustering algorithm and the probabilities of state transition

between them were obtained simultaneously. The results show that the

dynamic FCs among large-scale brain networks have significant difference

seafarers before and after sailing both at the group level and individual

level, while the static FCs between them varies only at the individual level.

This suggests that the maritime environments can indeed affect the brain

functional activity of seafarers in real time, and the degree of influence is

different for different subjects, which is of a great significance to explore the

neural changes of seafarer’s brain functional network.
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Introduction

Compared with the terrestrial environment, the working
and living environment faced by seafarers at sea is quite
different, so it is easy to influence the alterations of seafarers’
brain functional activities (Shi and Zeng, 2017, 2018).Therefore,
it is necessary to explore the effects of this particular maritime
environment on the brain functions of seafarers. Among them,
functional magnetic resonance imaging (fMRI), as an emerging
neuroimaging technology, is widely used in various researches
on brain functional activities based on its superior performance
in brain imaging (Poldrack et al., 2011). For example, Shi et al.
first proposed a method for assessing psychological health of
seafarers based on functional magnetic resonance imaging in
2015. By studying the functional connectivities (FCs) between
the sub-regions of seafarers’ default mode network (DMN),
they realized the binary classification of seafarers without labels
through support vector machine. The statistical differences of
the FCs of DMN between the two kinds of seafarers are further
verified, which has attracted widespread attention from the
industry (Shi et al., 2015b).

In fMRI studies, it is a mainstream method to investigate
the law of cognitive development and neural mechanism of
mental diseases through brain functional connectivities (FCs)
analysis. Most studies on FCs mainly use various statistical
methods to directly explore abnormal FCs and abnormal brain
regions, while it is generally assumed that FCs are temporal-
stationary in these studies, so that FCs are measured over the
entire scan, and the brain network model is constructed as a
static network using the entire period of the human brain time
series data. This assumption provides a simple and convenient
framework to examine large-scale brain networks and explore
the correlation between functional and structural connectivity
(Honey et al., 2009; Calhoun, 2018). For instance, Shirer et al.
used the FCs between ninety functional regions of interest
defined across 14 large-scale resting-state brain networks to
decode the specific subject-driven cognitive states (Shirer et al.,
2012). Moreover, Rosenberg et al. presented a broadly applicable
neuromarker for sustained attention from whole-brain FCs
(Rosenberg et al., 2016).

However, an increasing number of reports suggest that the
FCs in the brain under both resting and task conditions are
not stable, but show complex spatiotemporal dynamics due
to the reasons that the brain undergoes dynamic integration,
coordination, and responses to internal and external stimuli
on multiple time scales (Calhoun et al., 2014; Calhoun and
Adali, 2016; Preti et al., 2017). This phenomenon may mean
that the time-varying dynamic FCs can offer a more complete
description of brain activity than static FCs (Allen et al., 2014;
Breakspear, 2017; Fu et al., 2017). Therefore, it is not enough to
explain the time-varying and dynamic information interaction
of the brain only considering static FCs when constructing the
human brain network model. Instead, we should consider the

dynamic nature of FCs and build a dynamic functional brain
network, so as to better dig out the hidden information in the
brain network, and then reveal the complex and changeable
neural mechanism of the functional brain network (Damaraju
et al., 2014; Yu et al., 2015; Tobia et al., 2017; de Vos et al., 2018;
Shi et al., 2018).

Many studies have shown that dynamic FCs analysis can
provide better evidence for pathologic inquiry and auxiliary
diagnosis of clinical diseases as well as the neural basis of
cognitive behaviors (Leonardi et al., 2013; Jia et al., 2014; Li
et al., 2014; Hansen et al., 2015; Anees et al., 2017). For example,
Robinson et al. presented a state-based dynamic community
structure method to detect the time-dependent community
structure in networks of brain regions. After applying the
method, they found that the networks involved in pain,
working memory, and emotion showed distinct profiles of
time-varying connectivity (Robinson et al., 2015). Du et al.
compared the dynamic FCs within DMN between healthy
controls and schizophrenia patients using resting-state fMRI,
and found that schizophrenia showed impaired interaction
among DMN subsystems (Du et al., 2016). Furthermore,
Faghiri et al. examined the relationship between age/maturity
and the dynamics of brain FCs, realizing that dynamic FCs
was an important factor to consider when examining brain
development across childhood (Faghiri et al., 2018). Recently,
dynamic FCs has been used to investigate the brain activity
characteristics of specific occupational groups, such as taxi
drivers and seafarers (Shen et al., 2016; Wang et al., 2017).
In particular, Wang et al.’s study proved that sailors had one
distinct atomic functional connectome compared to non-sailors,
which may be likely linked to sailing experience. But little was
researched on the influence of marine environment on seafarer’s
brain functional activity from the perspective of intrinsic brain
functional networks.

In this study, we are applying fMRI technology to explore
the impact of maritime environment on the seafarer’s functional
brain network before and after sailing, in which the functional
brain networks detection is essential in fMRI data analysis.
Better results can only be obtained in follow-up studies based
on more prepared functional brain networks. Based on the
above consideration, group independent component analysis
(ICA) with intrinsic reference was employed for the functional
brain networks detection by using prior information from fMRI
data itself (Shi et al., 2015a), and then the differences between
the static and dynamic FCs among these brain functional
networks of seafarers before and after sailing were analyzed
from both of group and individual levels, where the dynamic
FCs among these functional brain networks were obtained using
sliding time-window correlation. Subsequently, the dynamic
patterns hidden in the dynamic FCs of seafarers before and after
sailing were extracted by adopting affine propagation clustering
(APC) algorithm and the transition probabilities between them
were obtained simultaneously. The results showed the obvious
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changes between the brains functional connectivity networks of
seafarers before and after sailing, which have a great value on
exploring the neural rules of seafarer’s brain.

Materials and methods

Data acquisition

In this study, 33 seafarers from a shipping company of
Shanghai participated and were collected the resting-state fMRI
data before and after sailing, so the dataset included 66 fMRI
data in total. The average time interval of them before and
after sailing was about ten months. Before the data acquisition,
all the participants were clearly informed about the purpose
of this study and presented the written informed consent in
accordance with the Declaration of Helsinki. In the process of
data acquisition, all participants were instructed to keep the
body motionless, eyes closed, relaxed (do not think anything
systematically) and awake; their ears were stuffed up with
the earplugs in order to reduce effect of the machine noise.
The fMRI data of seafarers were acquired in the Shanghai
Key Laboratory of Magnetic Resonance of the East China
Normal University, and all procedures were approved by
the Independent Ethics Committee of East China Normal
University. The fMRI dataset was acquired on a Siemens 3.0 T
scanner using a gradient echo planar imaging with 36 slices of
whole-brain coverage and 160 volumes, a time of repetition of
2.0 s and a scan resolution of 64 × 64. The in-plane resolution
was 3.75 mm× 3.75 mm, and the slice thickness was 4 mm. The
data obtained through above scheme and parameters has also
been used in (Shi, 2020a).

Data preprocessing

In the experiment, all of the fMRI data were preprocessed
by using the DPARSF software1, and the preprocessing steps
included slice timing, motion correction, spatial normalization
and spatial smoothing with the Gaussian kernel set to 4 mm. In
particular, group ICA (GICA) was implemented using FastICA
algorithm (Shi et al., 2017) in the GIFT software (v2.0e)2.
Moreover, ICASSO (Himberg et al., 2004) with 20 runs of ICA
was used to obtain reliable independent components (ICs),
and minimum description length (Li et al., 2007) was used
to estimate the number of ICs. Furthermore, the location and
display of these networks were assessed by using the MRIcro
software3. The whole above preprocessed process has also been
used in (Shi et al., 2019).

1 http://rfmri.org/DPARSF

2 http://mialab.mrn.org/software/

3 http://www.mricro.com

Brain functional components
acquisition

In this study, the temporal and spatial functional
components functional components at the group level were
firstly decomposed by GICA with intrinsic reference (GICA-IR)
method, and then those corresponding to each subject in the
group were obtained by the way of dual-regression. Supposing
that there are T time points and V voxels for all K subjects in
the group after normalization, and then ICA was implemented
on each subject, which can be defined as:

Xi = MiSi (i = 1, 2, · · · ,K) (1)

where Xi is an T× V fMRI observed data,
Si =

(
s11, s12, · · · , s1Ni

)′
is a Ni × V matrix, and each

row represents an independent component (IC) of subject
i. Mi =

(
m11,m12, · · · ,m1Ni

)
is a T×Ni mixing matrix. Next,

we denoted sini (i = 1, 2, · · · ,K) as the ni st IC, which is the
source of interest for the subject i. The correspondence of
ICs between different subjects can be measured using spatial
correlation, and then principal component analysis is used
to extract the spatial reference signals corresponding to the
components of interest from the K× V matrix R consisted of
all sini (i = 1, 2, · · · ,K):

R =
(
s1n1 , s2n2 , · · · , sKnK

)′
(2)

Then, the eigenvalue λk
(
k = 1, 2, · · · ,K

)
such that

λ1 ≥ λ2 ≥ · · · ≥ λk ≥ 0, and the corresponding eigenvectors
ek
(
k = 1, 2, · · · ,K

)
of covariance matrix C = E

[
RR
′
]

can be
calculated, where ek is a column vector of size K× 1. Finally,
the first principal component r = e

′

1R of size 1× V is selected
as the intrinsic reference for group data analysis in GICA, which
can be defined as:

(X1;X2; · · · ,XK) = MS (3)

where M is a KT× V group mixing matrix, S = (s1, s2, · · · , sN)
′

is a N× V matrix in which each row represents a GIC, and N
denotes the number of GICs. The solving of (3) can be modeled
as a constrained optimization problem as follows:

Maximize J (si) = {E [G (si)]− E [G (v)]}2

Subject to g (si) = ε (si, r)− ξ ≤ 0and h (si) = E
[
s2

i
]
− 1 = 0

(4)
where si is the output signal, J (si) is the contrast function used
to measure the independence of si, G (•) is a non-quadratic
function, v is a Gaussian random variable. r is the reference,
ε (si, r) is a distance criterion, ξ is a threshold parameter which
needs to limit the distance such that the desired output signal
should be the only one satisfying the inequality constraint. The
equality constraint h (si) is used to compel the output signal have
a unit covariance (Shi et al., 2017).
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Functional connectivity analysis

In this section, both static FCs (SFCs) and dynamic FCs
(DFCs) among the functional brain networks of seafarers before
and after sailing are analyzed at the group level and individual
level, respectively, where the brain functional networks
are obtained from section “Brain functional components
acquisition.” Among them, SFCs are computed by using
Pearson correlation, whether between group functional brain
networks or individual functional brain networks, and then
the differences of SFCs between seafarers before and after
sailing are calculated by statistical analysis. In particular,
differences between group levels are measured by the overall
FCs among the group functional brain networks, and differences
between individual levels are measured by the FCs between
each pair of functional brain networks. Meanwhile, the
DFCs between functional brain networks are obtained by
using the sliding time window correlation method for group
level and individual level, respectively, and the difference of
DFCs between each pair of functional brain networks of
seafarers before and after sailing are statistically compared. The
functional connectivity analysis can be implemented on brain
connectivity toolbox4, and the detailed calculation process is
shown as follows:

Firstly, the time courses of the six brain functional
networks obtained from section “Brain functional components
acquisition” are denoted as T1, T2, · · · ,T6, and then the
Pearson correlation coefficient (PCC) between pairwise brain
functional networks are computed as SFCs. Secondly, the
sliding window method with the window-width W of 20TRs
and the step size of 1TR is used to compute the DFCs among
the six brain functional networks, and the time course of
the nth brain functional network in the jth time window
is denoted as DTj

n(1 ≤ n ≤ 6; 1 ≤ j ≤ T−W+ 1 = 141),
so that 141 DFC matrices were obtained, and then
these DFC matrices constituted the DFC matrix set
DFCMS =

{
DFCM1,DFCM2, . . . ,DFCMj, . . . ,DFCM141

}
.

Among them, the PCC between the time course DTj
x and

DTj
y of brain functional network x and y under the jth sliding

window is calculated as follows:

corrj
x,y =

cov(DTj
x,DTj

y)√
var(DTj

x)

√
var(DTj

y)

(5)

where cov(DTj
x, DTj

y) represents the covariance of DTj
x and

DTj
y . var(DTj

x) and var(DTj
y) represent the variance of DTj

x and
DTj

y, in which 1 ≤ j ≤ 141,1 ≤ x ≤ 6,1 ≤ y ≤ 6.
Furthermore, the DFC matrix DFCMj under the jth sliding

window is composed of PCCs between the time courses of all

4 https://sites.google.com/site/bctnet/

brain functional networks, which are specifically expressed as:

DFCMj =



corrj
1,1 corrj

1,2 · · · · · · . . . corrj
1,6

corrj
2,1 corrj

2,2 · · · · · · . . . corrj
1,6

...
...

...
...

...
...

corrj
u,1 corrj

u,2 · · · corrj
u,v . . . corrj

u,6
...

...
...

...
...

...

corrj
6,1 corrj

6,2 · · · · · · · · · corrj
6,6


(6)

where 1 ≤ j ≤ 141, 1 ≤ u ≤ 6, 1 ≤ v ≤ 6.
Next, the DFC matrix DFCMj (1 ≤ j ≤ 141) in the DFC

matrix set DFCMS is spanned into a column vector DFCVj

(1 ≤ j ≤ 141) with a size of 15× 1 according to the triangular
elements on the row of DFCMj, and then the 141 column vectors
are cascaded according to the window time point from small to
large, forming the DFC vector set DFCVS = [DFCV1,DFCV2,
. . .,DFCVj,. . .,DFCV196 ] with a size of 141× 15. Among them,
DFCVj refers to the DFC vector under the jth sliding window,
which is specifically expressed as:

DFCVj =
[

corrj
1,2, corrj

1,3, · · · , corrj
u,v, · · · , corrj

5,6

]′
(7)

Affine propagation clustering

After obtaining the DFC vectors from section “Functional
connectivity analysis,” APC is used to extract the implicit DFCs
states from the DFCs of all seafarers before and after sailing
as well as the DFCs of seafarers before and after sailing,
respectively. In the APC algorithm, each data point is treated
as an underlying clustering center, and the similarity s (xi, xk)

(such as Euclidean distance) between the data point xi and
xk is calculated, which is called preference parameter when
i = k. The larger the value, the more likely the corresponding
point is to be the candidate clustering center. In addition,
two kinds of information transmission methods between data
points are used: one is responsibility, denoted as α

(
i, k
)
, which

represents the fitness degree of data point xk that can be used
as the center of data point xi; the other is availability, denoted
as α

(
i, k
)
, which represents the fitness degree of data point

xi to choose data point xk as its clustering center. It can be
understood that the sum of responsibility of data point in the
clustering center to other data points and the sum of availability
of other data points to this data point are relatively large, so the
possibility of this data point becoming the clustering center is
relatively large. On the contrary, the sum of responsibility of
data points at the edge of the cluster to other data points and
the sum of availability of other data points to this data point are
relatively small, so the possibility of this data point becoming the
clustering center is relatively small. At the beginning of APC,
the availability is first initialized to 0, that is α

(
i, k
)
= 0, and
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then the responsibility and availability are updated iteratively
according to the following rules (Ren et al., 2014):

r
(
i, k
)
← s

(
i, k
)
− max

k′ s t,k′ 6=k

{
α
(

i, k
′
)
+ s

(
i, k
′
)}

(8)

α
(
i, k
)
← min

0, r
(
k
)
+

∑
i′ s t, i′ /∈{i,k}

max
[

0, r
(

i
′

, k
)]

(9)

α
(
k, k

)
←

∑
i′ s t, i′ 6=k

max
{

0, r
(

i
′

, k
)}

(10)

Finally, the best clustering center can be determined
according to the sum of responsibility and availability of each
data point, which is the DFC state, followed by the comparison
of DFC states from seafarers before and after sailing.

The computation of transition
probability

In addition to the describing the connectivity differences
that distinguish FC states, we can also examine the transitions
between them. We can characterize transition behavior by
considering FC as a Markov chain, a system that undergoes
transitions between a discrete number of states (Allen et al.,
2014). According to the results of APC, the DFC state
corresponding to the DFC of each window can be determined.
Thus, the DFCs corresponding to all windows can be described
as a function that changes with time, and its function value is
the corresponding DFC state. Then, the number of transitions
from one DFC state to another state can be counted according
to the memoryless property of Markov chain, and then divided
by the window width –1 is the transition probability between
these two states.

Results and analysis

In this section, the results of SFCs and DFCs among the
resting-state functional brain networks of seafarers before and
after sailing are presented at the group and individual levels,
respectively. Among them, the window width of 20TRs is
used for the DFC analysis, so it contains 141 DFC networks.
In particular, three different situations are considered when
applying APC algorithm for the extraction of DFC states,
namely obtained them from the DFCs of all seafarers before
and after sailing as well as those of seafarers before and after,
respectively. For presentation purposes, the seafarers before and
after sailing are referred to as presailors and backsailors in the
following, respectively.

Figure 1 shows six classical resting-sate brain functional
networks obtained by GICA-IR for presailors and backsailors
at the group level, included default mode network (DMN),
visual network (VIN), lateral visual network (LVN), auditory
network (AUN), executive control network (ECN), and working
memory network (WMN), as shown in (A) and (B). The SFC
maps among these six brain functional networks corresponding
to the two groups of seafarers are also presented, and the
statistical results of SFCs between the two groups are obtained
through the paired T-test with a confidence level of 95%. It
can be seen clearly from the figure that there is no significant
difference between the SFCs of presailors and backsailors from
the perspective of SFC analysis at the group level, which means
that the SFCs among the six brain functional networks have
no significant changes before and after sailing, i.e., marine
environmental factors may not have a significant impact
on them.

Figure 2 shows the DFC networks among the six resting-
state brain functional networks of seafarers before and after
sailing at the group level, as well as the statistical test results
of DFCs corresponding to each pair of brain networks between
presailor and backsailor groups. According to the results of
paired T-test results with a confidence level of 95% after
false discovery rate (FDR) correction in the figure, there are
significant differences in the DFCs between seafarers before and
after sailing for each pair of the six resting-state brain functional
networks involved in this study. This indicates that the FCs
among the six resting-state brain networks have significant
dynamic changes between the seafarers before and after sailing,
which is inconsistent with the results of SFCs in Figure 1, so
it is necessary to carry out further in-depth analysis, as shown
in Figure 3.

Figure 3 presents the DFC states extracted by APC from
the DFCs of all seafarers before and after sailing among the
resting-state brain networks as well as those of presailors and
backsailors extracted from the DFCs of seafarers before and after
sailing at the group level, respectively. At the same time, we
also present the number and ratio of DFCs contained in each
DFC state, as shown in (A), (C) and (D), respectively. Figure 3B
shows the proportion of DFCs contained in each state of (A)
for seafarers before and after sailing respectively, as well as the
statistical results after paired T-test with a confidence level of
95% between them. Figure 3E shows the correlations among the
three groups of DFC states in (A), (C) and (D), respectively. As
you can see from the figure that the DFC states obtained from
the DFCs of three groups of different subjects corresponds to
different FC situations between brain networks, reflecting the
dynamic process of brain functional activities.

In addition, there is a high correlation between the DFC
states extracted from the DFCs of all seafarers before and after
sailing and the DFC states extracted from the DFCs of seafarers
before and after sailing, respectively, as shown in Figure 3E. For
example, state 1 in (A) and state 1 in (C), state 2 in (A) and state
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FIGURE 1

Six resting-state brain functional networks for seafarer before and after sailing at the group level, included DMN, VIN, ECN, AUN, LVN, and WMN
which were shown in (A,B), respectively, as well as the SFC maps of the two groups corresponding to the six brain functional networks and the T
statistical test results between them.

4 in (C), state 3 in (A) and state 5 in (C), state 1 in (A) and state
2 in (D), state 2 in (A) and state 4 in (D), state 3 in (A) and
state 3 in (D), and state 4 in (A) and state 1 in (D). It indicates
that the dynamic characteristics of the brain network depicted
by the total DFCs of two groups of seafarers and the DFCs of
each group of seafarers are highly consistent. On the contrary,
there is a weak correlation between the DFC states extracted
from DFCs of seafarers before and after sailing separately, which
the special living environment on the sea has a certain effect
on the brain functional activities of seafarers, thus affecting the
dynamic connectivity between brain functional networks. This
is consistent with the results that the DFC states obtained from
the DFCs of seafarers before and after sailing contains significant
different number and proportion of DFCs for seafarers before
and after sailing, as shown in Figure 3B.

Figure 4 shows the state transition probabilities between the
DFC states in Figures 3A,C,D, where (A) and (B) represent
the state transition probability among the DFC states in
Figure3A for seafarers before and after sailing, while (C) and
(D) represent the transition probability between the DFC
states in Figures 3C,D for seafarers before and after sailing,

respectively. As you can see from the figure that the DFC
states obtained from the DFCs of all seafarers before and
after sailing at the group level present different state transition
situations between seafarers before and after sailing, as shown
in Figures 4A,B, respectively. For example, the probability of
maintaining their own state is relatively balanced in presailor
group, and the transition probabilities between different DFC
states are relatively small; while the probability of different states
remaining in their own state varies greatly backsailor group,
in which the probability of state 4 is the largest, indicating
that the brain functional connectivity network corresponding
to this state plays an important role in seafarers’ navigation at
sea. When DFC states are extracted from the DFCs of seafarers
before and after sailing, the corresponding state transition
situations show certain similarity. For example, state 1 has
a high probability of maintaining in its own state. At the
same time, it also shows some differences that the transfer
probability between different DFC states is relatively large for
seafarers before and after sailing, and this may be the result of
rapid changes in the brain functional activity in the complex
environment at sea.
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FIGURE 2

The DFC networks among the six resting-state brain networks of seafarers before and after sailing at the group level, as well as the statistical test
results of differences between them. The asterisk indicates that there is a significant difference with a confidence level of p < 0.05.

FIGURE 3

(A) The maps of four DFC states (State1-State4) extracted from the DFCs of presailors and backsailors at the group level, and the digits in
parentheses on the top of each subfigure represent the number of DFCs contained in this state for presailors (PS) and backsailors (BS),
respectively; (B) The histogram of proportion of the DFCs number corresponding to presailors and backsailors contained in each state of (A),
respectively; (C) The maps of five states (State1-State5) extracted from the DFCs of presailors at the group level, and the digits in parentheses on
the top of each subfigure represent the number and ratio of DFCs contained in this state; (D) The maps of four DFC states (State1-State4)
extracted from the DFCs of backsailors at the group level, and the digits in parentheses on the top of each subfigure represents the number and
ratio of DFCs contained in this state; (E) the correlation diagram between the three groups of DFC states in (A,C,D).
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FIGURE 4

(A,B) represent the transition probability among DFC states for presailors and backsailors, where the DFC states extracted from the DFCs of all
seafarers before and after sailing. (C,D) represent the transition probability among DFC states for presailors and backsailors, respectively, where
the DFC states extracted from the DFCs of seafarers before and after sailing, respectively. Note that transition probability is color-mapped on a
log-scale.

Figure 5 shows the SFCs of each seafarer before and
after sailing among the brain functional networks at the
individual level, and the statistical results of the SFCs difference
corresponding to each pair of brain functional networks
between seafarer before and after sailing. According to the
results of paired T-test with a confidence level of 95% after FDR
correction, the SFCs between DMN and the four brain networks
of VIN, ECN, AUN and LVN, as well as the SFCs between
ECN and LVN have significantly difference between seafarers
before and after sailing. It indicates that the SFCs among
several resting-state brain networks are significantly influenced
by the maritime environment factors for some seafarers, which
demonstrate the differences among individual subjects, so need
more in-depth analysis.

Figure 6 shows the DFC states extracted by APC from
the DFCs of all seafarers before and after sailing among the
sixresting-state brain networks as well as those of presailors and
backsailors extracted from the DFCs of seafarers before and after
sailing at the individual level, respectively. At the same time, we
also present the number and ratio of DFCs obtained in each
state, as shown in (A), (C) and (D), respectively. Figure 3B
shows the proportion of DFCs obtained in each state of (A)

for seafarers before and after sailing, respectively, as well as
the statistical results after T-test with a confidence level of 95%
between them. Figure 3E shows the correlation among three
groups of DFC states in (A), (C) and (D), respectively.

It can be seen from the figure that the results are roughly
similar to the results at the group level shown in Figure 3,
except that the number of DFC states extracted from the DFCs
of seafarers before and after sailing and the DFCs of seafarers
before sailing are different due to individual differences and
different DFCs quantity. In addition, the number of DFCs
contained in state 3 is larger for both seafarers before and
after sailing when using the DFCs of seafarers before and
after sailing to derive DFC states at the individual level, which
illustrates that this state reflects a kind of major brain functional
connectivity network in seafarers’ brain functional activities.
Moreover, there are significant differences between seafarers
before and after sailing, indicating that the various influences
of seafarers suffered at sea are mainly reflected in the brain
functional connectivity network corresponding to this state,
which plays an important role in seafarers’ career.

Figure 7 shows the state transition probabilities between the
DFC states in Figures 6A,C,D, where (A) and (B) represent
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FIGURE 5

The SFCs among the six resting-state brain functional networks of seafarers before and after sailing at the individual level and the statistical
analysis results of SFCs between seafarers before and after sailing for each pair of brain networks. The asterisk indicates that there is a significant
difference with a confidence level of p < 0.05.

the state transition probability among the DFC states in
Figure 6A for seafarers before and after sailing, while (C)
and (D) represent the transition probability between the DFC
states in Figures 6C,D for seafarers before and after sailing,
respectively. As you can see from the figure that state 3
extracted from the DFCs of all seafarers before and after
sailing at the individual level has a higher probability on their
own status for seafarers before and after sailing, as shown in
Figures 7A,B, respectively, which means that the corresponding
brain functional connectivity network play an important role in
the process of sailors at sea. Although the transition probabilities
between different DFC states are relatively small, they are
varying greatly between seafarers before and after sailing. This
may be due to the reason that there are great differences when
extracted the DFC states from DFCs of seafarers before and after

sailing at the individual level, respectively. Firstly, the number of
DFC states is different. Seafarers before sailing contain six states,
while seafarers after sailing only contain four states. Among the
six DFC states corresponding to seafarers before sailing, states 4
and 5 show a high probability of staying in their own state, while
only state 2 show a high probability of staying in their own state
for seafarers after sailing.

Discussion

The previous studies using 88 seafarers before sailing
showed that seafarers had significant differences in brain
functional connectivity activity compared with non-seafarers,
which may be due to the living and working environment faced
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FIGURE 6

(A) The maps of five DFC states (State1-State5) extracted from the DFCs of presailors and backsailors at the individual level, and the digits in
parentheses on the top of each subfigure represent the number of DFCs contained in this state for presailors (PS) and backsailors (BS),
respectively; (B) The histogram of proportion of the DFCs number corresponding to presailors and back-sailors contained in each state of (A),
respectively; (C) The maps of six states (State1-State6) extracted from the DFCs of presailors at the individual level, and the digits in parentheses
on the top of each subfigure represent the number and ratio of DFCs contained in this state; (D) The maps of four DFC states (State1-State4)
extracted from the DFCs of back-sailors at the individual level, and the digits in parentheses on the top of each subfigure represents the number
and ratio of DFCs contained in this state; (E) the correlation diagram between the three groups of DFC states in (A,C,D).

by seafarers at sea (Shi and Zeng, 2017; Shi, 2020a,b; Shi et al.,
2021b). However, since these seafarers had returned to land for
a period of rest, whether these differences fully reflected the
changes caused by the above environmental factors? In fact,
by compared and analyzed the brain functional connectivity of
seafarers before and after sailing at the voxel level, and found
that there were significant differences between them (Poldrack
et al., 2011; Shi et al., 2021a). This suggested that the differences
in brain FCs of seafarers after returning to land for a period of
rest cannot fully reflect the influences of maritime environments
on the brain functional network of seafarers. In other words,
some influences of maritime environmental factors on seafarers’
functional brain activities can be reversed, while others may
have long-term effects, thereby reshaping the occupational brain
plasticity of seafarers (Wang et al., 2017; Shi et al., 2019; Wu
et al., 2020). However, this difference has not been considered
at the level of large-scale brain network, which is exactly what
this paper studies.

The 33 cases of brain imaging data involved in this study
were obtained for the same seafarers before and after sailing.
The difference was that they had worked at sea for an average
of 10 months, so they had to face the special living and working
environment at sea. According to previous studies (Poldrack
et al., 2011; Shi et al., 2021a), these factors would affect their

brain functional activities. Of course, this is a small amount of
data, which is a limitation of this study. Therefore, it needed
to obtain more such data to further expand and validate the
findings of this paper. In addition, compared with DFCs, SFCs
conducts the correlation analysis on the whole time series, so its
sensitivity to time change is weaker than that of DFCs, which
may be why there is no significant difference in SFCs among
the brain networks between seafarers before and after sailing
at the group level. However, the further study of this paper
at the individual level found that these SFCs have significant
differences between seafarers before and after sailing, which is
consistent with the analysis results of DFCs.

The window length is a difficult parameter to select
when using sliding window correlation method for dynamic
functional connectivity analysis. If the selected window length is
too short, it may increase the risk of introducing false fluctuation
changes in DFCs analysis (Hutchison et al., 2013; Leonardi
and Van De Ville, 2015; Zalesky and Breakspear, 2015), and
the reliability of DFCs calculation appears to have too few
samples simultaneously. Conversely, if the window length is too
long, it is very likely that the DFC change modes of interest
cannot be detected. According to previous studies, the implied
cognitive status of DFCs can be correctly identified when the
window length is 30s-60s (Shirer et al., 2012), so only the results
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FIGURE 7

(A,B) represent the transition probability among DFC states for presailors and backsailors, where the DFC states obtained from the DFC matrices
of all seafarers before and after sailing. (C,D) represent the transition probability among DFC states for presailors and backsailors, respectively,
where the DFC states obtained from the DFC matrices of seafarers before and after sailing, respectively. Note that transition probability is
color-mapped on a log-scale.

on the window length of 40s were presented in this study.
In this study, the FCs between six large-scale brain networks
of seafarers before and after sailing are statistically analyzed,
and it is found that there are significant differences between
them, especially for DFCs. There are significant differences
in DFCs between brain networks whether at the group level
or at the individual level. This indicates that the FC patterns
between brain functional networks have significantly variations
during the voyage compared with those before sailing, and such
variations will inevitably lead to changes in the potential stable
patterns implied in DFCs, thus presenting different DFC states.
This is why APC is used to mine different number of states from
the DFCs of seafarers before and after sailing.

In order to explore the difference of stable DFC modes
implied in the DFCs of seafarers before and after sailing,
we extracted the potential DFC modes separately from the
DFCs of all seafarers before and after sailing as well as those
of themselves in the process of dynamic brain functional
connectivity analysis, and then deeply analyze the DFC modes
obtained from these three situations as well as the correlation

between them. Moreover, it is different from the previous
studies that usually adopt k-means clustering to obtain DFC
modes, the APC algorithm was adopted to extract dynamic
brain functional mode in this study. Since APC can determine
the number of clustering adaptively, it overcomes the problem
that the traditional k-means clustering method needs to select
the number of categories in advance, thus reducing the adverse
impact of subjective factors on extracting DFC modes.

The six resting state functional brain networks mentioned
in this study (DMN, VIN, AUN, ECN, LVN, and WMN)
are all related to the most basic cognitive functions of brain.
Among them, DMN is associated with self-reflection, logical
reasoning, emotional cognition, and interpersonal skills. While
VIN and LVN play an important role in the recognition and
judgment of basic features such as size, shape, color and
position of objects, as well as the processing and feedback of
complex objects. In comparison with non-seafarers, seafarers
will face a variety of noises when navigating at sea and need
to mobilize more auditory related areas, which will inevitably
have some impact on their AUN. ECN is closely related to
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cognitive stimulation activities, such as making plans, making
decisions, distinguishing right from wrong, responding to new
situations, and overcoming habitual behaviors. It needs to be
coordinated with the visual and auditory networks to play
an important regulatory role in the networks associated with
attention. WMN is primarily responsible for temporarily storing
information that can be used for processing, which is important
for guiding higher-level cognitive behavior such as reasoning
and decision-making.

The results of this paper showed that there are significant
differences between seafarers before and after sailing in the
DFCs among the above six large-scale brain networks, both at
the group level and at the individual level, and the number of
potential DFC states in seafarers’ DFCs after sailing is less than
that before sailing. For example, there are both four DFC states
implied in the DFCs of seafarers after sailing at the group level
and individual level, while there are five and six DFC states
implied in the DFCs of seafarers before sailing at the group
level and individual level, respectively. Moreover, the DFCs of
seafarers after sailing are more concentrated in one of the DFC
states, such as State3 at the individual level. This may be because
seafarers are more focused during sea navigation and need to be
ready to deal with emergencies at any time, and the patterns of
processing information between brain networks are more stable.
Of course, this effect may be different for each seafarer, which
is consistent with the fact that the SFCs among brain networks
show significant differences between seafarers before and after
sailing at the individual level.

In this paper, we analyzed the functional connectivity
between the large-scale brain networks of seafarers before and
after sailing by fMRI data, and found that they have significantly
changed before and after sailing, especially for DFCs, which
were significantly different both at the group level and the
individual level. Combined with previous studies (Shi and Zeng,
2017; Shi, 2020a,b; Shi et al., 2021b), the authors concluded
that the influences of maritime environment on seafarers’ brain
functional activities are time-dependent, some of which may
cause permanent effects, while others can be recovered after a
period of time. However, it contained many influencing factors
due to the complex maritime environment, and the amount of
data obtained at present is not large, so it is not possible to
give definite conclusion for the moment. It can only serve as a
preliminary exploration to lay a foundation for further in-depth
research in the future, which is also the direction of our efforts.

Conclusion

In this paper, on the basis of making full use of the intrinsic
prior information of fMRI data, the SFCs and DFCs between
the rsBFNs of seafarers before and after sailing are analyzed by
GICA-IR method. The DFCs patterns hidden in the DFCs of
seafarers before and after sailing are discovered by using the

APC algorithm, and the probabilities of state transition between
them are also obtained. The results show that the variations
of seafarers’ functional brain connectivity networks before and
after sailing may be time-dependent. It is of a great significance
to explore the influence of marine environment on seafarers’
brain functional networks.
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