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As a non-invasive, low-cost medical imaging technology, magnetic resonance imaging
(MRI) has become an important tool for brain tumor diagnosis. Many scholars have
carried out some related researches on MRI brain tumor segmentation based on deep
convolutional neural networks, and have achieved good performance. However, due to
the large spatial and structural variability of brain tumors and low image contrast, the
segmentation of MRI brain tumors is challenging. Deep convolutional neural networks
often lead to the loss of low-level details as the network structure deepens, and
they cannot effectively utilize the multi-scale feature information. Therefore, a deep
convolutional neural network with a multi-scale attention feature fusion module (MAFF-
ResUNet) is proposed to address them. The MAFF-ResUNet consists of a U-Net with
residual connections and a MAFF module. The combination of residual connections and
skip connections fully retain low-level detailed information and improve the global feature
extraction capability of the encoding block. Besides, the MAFF module selectively
extracts useful information from the multi-scale hybrid feature map based on the
attention mechanism to optimize the features of each layer and makes full use of the
complementary feature information of different scales. The experimental results on the
BraTs 2019 MRI dataset show that the MAFF-ResUNet can learn the edge structure of
brain tumors better and achieve high accuracy.

Keywords: magnetic resonance imaging (MRI), semantic segmentation, convolutional neural network, residual
network, attention mechanism, brain tumor

INTRODUCTION

In daily life, the human brain is the controller of all behaviors and the sender of activity instructions.
As the main part of the human brain, the cerebrum is the highest part of the central nervous
system. Brain health has an important impact on the human body. The brain tumor is one of
the most common brain diseases and can be induced at any age. Therefore, the prevention of
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brain tumors is a significant part of daily health management.
Brain tumors can be divided into glioma, meningioma, pituitary
adenoma, schwannoma congenital tumor, and so on, among
which glioma accounts for the largest proportion. More than
half of gliomas are malignant tumors, among which glioblastoma
is the most common malignant tumor of the brain and
central nervous system, accounting for about 14.5% of all
tumors (Ostrom et al., 2020). According to the World Health
Organization (WHO) criteria, gliomas are classified into four
grades, and the higher the grade, the more likely the tumor is to
be malignant. Among them, grade I and II gliomas are low-grade
gliomas (LGG), while grade III and IV gliomas are high-grade
gliomas (HGG; Louis et al., 2007), which are malignant tumors.
Brain tumors can cause serious damage not only to the brain
but also to other parts of the body, such as vision loss, motor
problems, sensory problems, and even shock in severe cases.
Therefore, early detection of brain tumors and early intervention
are the only way to minimize the impact of brain tumors.

In clinical medicine, brain tumor screening and diagnosis
mainly involve physical examination, imaging examination, and
pathological examination, among which physical examination
is a preliminary diagnosis of the patient’s condition through a
comprehensive physical examination by the doctor. The results
are somewhat accidental, and it is impossible to accurately judge
the condition. However, the pathological examination requires
anesthesia operation to collect samples from patients, which is
complicated, costly, and has certain damage to the patient’s body.
Compared with the previous two methods, medical imaging has
the characteristics of objectivity, accuracy, convenience, and low
cost. It not only overcomes the inaccuracy and subjectivity of
physical examination but also omits the cumbersome collection
of biopsy samples in the pathological examination. And it is
one of the main methods of auxiliary diagnosis for patients
with brain tumors. The medical imaging techniques used to
diagnose brain tumors mainly include magnetic resonance
imaging (MRI) and computer tomography (CT). MRI images
are clearer than CT. Especially for small tumors, the use of
CT technology is prone to miss the diagnosis. And for soft
tissues, the resolution of CT is much lower than that of MRI.
Thus, the results of auxiliary diagnosis and treatment using
MRI will be more accurate. In addition, CT imaging requires
prior injection of radioactive isotopes into the patient, which
can affect the human body to a certain extent. As a non-
invasive and low-cost medical imaging technology, MRI has
become the first choice for brain tumors diagnosis. In this
article, MRI images are utilized as a data carrier to study
the segmentation of glioma, which has the greatest risk of
malignancies in brain tumors.

The number of brain tumor patients is increasing with the
development of society, the accelerated pace of life, and the
increase of people’s work pressure. Faster and more accurate
intervention is the key to reduce the mortality rate of brain
tumor-related diseases. During the analysis of the brain images,
accurate identification of tumor area is the premise of subsequent
qualitative diagnosis. However, large spatial and structural
variability and low image contrast are the main problems in brain
tumor segmentation.

Traditional brain imaging diagnosis mainly relies on manual
analysis by professional doctors, which requires a lot of time
and cost. With the huge and increasing amount of medical
image data, the speed of manual analysis is far behind the speed
of data generation. At the same time, due to the professional
knowledge requirements of manual segmentation of brain
tumors, the differences and workload of manual segmentation
results, machine-participated semi-automatic or fully automatic
brain tumor segmentation shows obvious advantages (Gordillo
et al., 2013). In early studies, it was mainly aimed at semi-
automatic segmentation of brain tumors (Gordillo et al., 2013).
The purpose of semi-automatic segmentation research is to
minimize human intervention when machines and humans work
together to achieve the desired segmentation effect. But it is still
affected by differences in human subjective consciousness. The
automatic method exploits the model and prior knowledge to
achieve independent segmentation.

Segmentation methods for brain tumors can be divided
into four categories, which are threshold-based, region-based,
classification-based, and model-based methods (Gordillo et al.,
2013). Dawngliana et al. (2015) combined initial segmentation of
multi-layer threshold with the morphological operation of level
set to extract fine images. Since brain tumors are relatively easy
to identify compared with other brain tissues, the characteristics
of tumor regions can be extracted during the preprocessing
stage, so that brain tumors can be segmented using region-
based methods. Harati et al. (2011) proposed an improved
scale-based fuzzy connectedness algorithm that automatically
selects seed points on the scale. The method performed well
in low-contrast tumor areas. Region-based methods are greatly
affected by image pixel coherence, and noise or intensity
changes may lead to holes or excessive segmentation (Gordillo
et al., 2013). Another relatively similar idea is based on the
prominent characteristics of brain tumors in medical images,
which is to segment brain tumors based on tumor contour
by feature extraction of brain tumor boundary information
(Bauer et al., 2013). Essadike et al. (2018) determined the
initial contour by using a tumor filter in analog optics and
utilized this initial contour to define the active contour model
to determine the tumor boundary. Ma et al. (2018) combined
random forest and active contour models to automatically infer
glioma structure from multimodal volumetric MR images and
proposed a new multiscale patch-driven active contour model
to refine the results using sparse representation techniques.
In addition, due to the different formation mechanisms and
surface features of different brain tumors, many researchers
have studied the texture features of different brain tumors,
and achieve tumor segmentation through voxel classification
or clustering. Among the segmentation methods based on
classification, Fuzzy C-means (FCM) is one of the mainstream
methods because of its advantages in preserving the original
image information. In the early stage, Pham et al. (1997) and
Xu et al. (1997) applied the FCM method to MRI segmentation
(Latif G. et al., 2021). Subsequently, many variants of standard
FCM, such as bias-corrected FCM (BCFCM), enhanced FCM
(EFCM), kernelized FCM (KFCM), and spatially constrained
KFCM (SKFCM) emerged (Latif G. et al., 2021). However,
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FIGURE 1 | Samples of MRI images in four modalities and their ground truth. In the ground truth image, red, green, and yellow stand for tumor core (TC), whole
tumor (WT), and enhance tumor (ET), respectively.

the FCM method is easily disturbed by noise and has a high
computational cost. Model-based methods include parametric
deformable models, geometric deformable models or level sets,
and so on. The above active contour models belong to the
parameter deformable model. However, parametric deformable
models are difficult to deal with topology changes of contour
segmentation and merger naturally, so geometric deformable
models or level sets are introduced (Gordillo et al., 2013). Lee
et al. (2012) exploited the surface evolution principle of geometric
deformation model and level set to achieve medical volume image
segmentation and carried out tests on tumor tissues, but the
computational efficiency of this method was low.

With the rise of deep learning, researchers began to apply
deep networks to the automatic segmentation of brain tumors.
Havaei et al. (2017) proposed a brain tumor segmentation model
based on a deep neural network, which utilized local features
and more global context features to learn the unique features
of brain tumor segmentation. For images, a convolutional
neural network shows obvious superiority. Pereira et al. (2016)
designed a deeper network for glioma segmentation based on
a convolutional neural network, using small kernels. Through
intensity normalization and data enhancement, the segmentation
effect of the network can be improved and the over-fitting can
be avoided while the network parameters are minimized. Among
them, U-Net (Ronneberger et al., 2015), as the classical model of
the convolutional neural network, has outstanding application
effect in medical images, so it is also widely used in MRI
brain tumor segmentation, and there are many modifications
based on U-Net. Latif U. et al. (2021) improved the automatic
segmentation process of brain tumors by introducing size
variability into the convolutional neural network and proposed
a multi-inception-UNET model to improve the scalability of
U-Net. Zhang et al. (2020) proposed a new type of densely
connection inception convolutional neural network on the basis
of U-Net architecture which was applied to medical images,
and conducted experiments in tumor segmentation of brain
MRI. They added the Inception-Res module and the densely
connecting convolutional module to increase the width and
depth of the network, and at the same time led to an increase in
the number of parameters, which slows down the speed of model
training data (Angulakshmi and Deepa, 2021).

In this article, a deep convolutional neural network composed
of a U-Net and a multi-scale attention feature fusion module
(MAFF) is proposed to achieve automatic segmentation of
gliomas in 3D brain MRI images. By using multi-modal MRI
data, high-precision segmentation of three tumor types is
realized. The main contributions of this work are as follows:

(1) We introduce five residual connections to U-Net,
which enhance the feature extraction ability of encoder
blocks, the speed of network convergence, and alleviate
the gradient vanishing problem caused by the deep
network structure.

(2) The proposed MAFF module exploits the attention
mechanism to selectively extract feature information of
each scale, which can gain a global contextual view. The
fusion of useful multi-scale features further improves the
accuracy of brain tumor segmentation.

(3) MAFF-ResUNet performs well on the public BraTs 2019
MRI dataset and has certain competitiveness in the field of
brain tumor segmentation.

MATERIALS AND METHODS

Dataset
We performed our experiments on the MICCAI BraTs 2019 MRI
dataset (Menze et al., 2015; Bakas et al., 2017a,b, 2018). The BraTs
2019 dataset is a collection of MRI data from glioma patients.
There are two types of brain tumors in the dataset: high-grade
glioma (HGG) and low-grade glioma (LGG). The dataset consists
of 256 HGG cases and 76 LGG cases. Each case includes four
3D MRI modalities (T1, T1ce, T2, and Flair) as can be shown in
Figure 1. And the size of each 3D MRI image is 155× 240× 240.
The ground truth of each image is labeled manually by the expert.
There are four types of labels: background (labeled 0), necrosis
and non-enhancing tumor (labeled 1), edema (labeled 2), and
enhancing tumor (labeled 4). The task is to segment three nested
subregions generated by the three labels (1, 2, and 4), named
enhancing tumor (ET, the region of label 4), whole tumor (WT,
the region consists of label 1, 2, and 4) and tumor core (TC, the
region of label 1 and 4).

Preprocessing
In this work, 3D MRI images from 335 cases in the BraTs 2019
dataset are sliced into multiple 2D images, and slices without
tumors are excluded. We use 80% of the generated slices for
training, 10% for validation, and 10% for testing. Compared with
single modal data, multi-modal data provide more characteristic
information for tumor segmentation. To make effective use of
multi-modal image information, we concatenate MRI 2D images
of four modes in the same dimension as model input.

It is necessary to preprocess the input image before training.
First, we remove the top 1% and bottom 1% intensities
as Havaei did (Havaei et al., 2017). Then, since images of
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FIGURE 2 | Architecture of the proposed MAFF-ResUNet. In the ground truth image, red, green and yellow stand for tumor core (TC), whole tumor (WT), and
enhance tumor (ET), respectively.

different modes have different contrast and other problems, we
normalize each modal image before slicing. In this work, z-score
normalization is adopted, that is, mean value and standard
deviation are used to standardize each image. The formula is
as follows:

zi =
xi − µ

σ
(1)

where xi is the input image, and zi is the normalized image.
µ represents the mean value of the input image, while σ

denotes the standard deviation of the input image. Finally,
we crop the training image into a size of 160 × 160 to
reduce the black background in the image, which can obtain
effective pixels and reduce the amount of calculation to
some extent.

Proposed Method
Architecture of MAFF-ResUNet
Inspired by U-Net (Ronneberger et al., 2015), ResNet (He
et al., 2016), DAF (Wang et al., 2018), we propose a deep
convolutional neural network with a multi-scale attention
feature fusion module based on attention mechanism for brain
tumor segmentation. Recently, U-Net has achieved excellent
performance in the field of medical image segmentation, which
has the advantage of being able to accept input images of
any size. Figure 2 shows the proposed MAFF-ResUNet, which
adopts U-Net as our basic network architecture. The MAFF-
ResUNet consists of four encoder blocks, four decoder blocks,
an intermediate layer and a MAFF module. Firstly, in the down-
sampling path, we utilize the convolution layer to extract low-
level features of brain tumors, the pooling layer to expand
the receptive field, and residual connections to enhance the
expression ability of encoder blocks. In the up-sampling path,
the up-sampling layer and convolution are used to restore
the image resolution. Skip Connections combine low-level

information with high-level information to reduce the loss of
detailed information.

To further refine the boundaries of the brain tumor, we
employ bilinear interpolation to up-sample the feature maps
of different resolutions from the four decoder blocks to the
same size as the input image and then input them into the
MAFF module. The MAFF module extracts attention features
of different scales and fuses them to improve the segmentation
accuracy of brain tumors and obtain the segmentation results
of brain tumors.

Encoder and Decoder Block
Residual U-Net is built by incorporating residual shortcuts into
U-Net. Inspired by ResNet (He et al., 2016), we utilize five
residual connections in the down-sampling branch, including
four encoder blocks and an intermediate layer. The main function
of these encoder blocks is to extract low-level features. The
introduction of short skip connections is beneficial to obtain
better feature expression and accelerate model convergence. As
can be seen in Figure 3A, each encoder block contains two
3 × 3 convolutions, batch normalization (BN; Ioffe and Szegedy,
2015), Rectified Linear Unit (ReLU) activation function, and
a 2 × 2 max-pooling layer. Each Max-pooling layer reduces
the size of the input feature map to half of the original.
Moreover, the intermediate layer plays the role of connecting
the down-sampling and up-sampling paths. Structurally, the
intermediate layer is similar to the encoder block, but without
the pooling layer.

In the decoding stage, we use four decoder blocks, each of
which contains an up-sampling layer, and two 3× 3 convolutions
(see Figure 3B). Similarly, each convolutional operation is
followed by a BN layer and a ReLU activation layer. The up-
sampling layer restores the size of the feature map by using
the bilinear interpolation. The input of each decoder block is
composed of two parts, one is the output of the previous decoder
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FIGURE 3 | Encoder and decoder block in MAFF-ResUNet (A) encoder block
(B) decoder block.

block, and the other is the output feature map of the same level
encoder block, which makes up for the low-level details lost in the
high-level semantic space.

Multi-Scale Attention Feature Fusion Module
Inspired by DAF (Wang et al., 2018), we propose a MAFF module
to fuse different scale features and improve the accuracy of brain
tumor segmentation. As shown in Figure 4, the MAFF module
accepts feature maps from four different scales, expressed as
Fi ∈ RC ×H ×W (i = 1, 2, 3, 4), where i indicates the feature
map of the i-th level, C is the number of channels, H and W
represent the height and width of Fi, respectively. These four
feature maps are concatenated in the channel dimension and
named Fm ∈ R4C ×H ×W . The low-level feature map contains
abundant boundary information of brain tumors, while the high-
level feature map contains advanced semantic information of
brain tumors.

The direct concatenation of different scale feature maps
will certainly bring a little noise. The segmentation results
obtained by directly exploiting Fm cannot effectively utilize
the complementary information of features at different levels.
Therefore, we use the attention feature block (AFB) to get the
attention map Ai of each level and then multiply it with the
mixed feature map Fm to obtain the redefined feature map Fri ∈

RC ×H ×W of each scale. Specifically, we do the following for Fi:

Ai = fs
(
fup
(
g
(
fcatFi, f1×1 (Fm)

)))
(2)

where f1 ×1 is a 1 × 1 convolution followed by BN and ReLU
function, fcat, fup, and fs denote the operations of concatenation,
up-sampling, and softmax function, respectively. The g(x) is an
attention feature module composed of convolution and average
pooling, which can be formulated as:

g(x) = f1 ×1(fp(f3 ×3(fp
(
f3 ×3 (x)

)
))) (3)

where f3 ×3 is a convolution layer with the filter size of 3 × 3,
and fp represents the operation of average pooling. Besides, BN
and parametric satisfaction linear Unit (PReLU; He et al., 2015)
activation function are adopted after each convolution layer in
the attention feature block. The PReLU can be obtained by:

PReLU (x) = max (0, x)+ a∗min(0, x) (4)

where a is a learnable parameter.
Then, the output of g(x) is fed to a softmax layer to obtain the

attention map after the up-sample. The mathematical expression
of the softmax function is given as:

Softmax
(
xj
)
=

exj∑N
n =1 exn

, j = 1, 2, . . . , n (5)

According to the Ai, we can selectively extract brain tumor-
related feature information from the original feature map
by performing a matrix multiplication between Ai and Fm.
The output maps are, respectively, concatenated with Fi,
and the convolution operation is performed to obtain the
redefined feature maps.

In the end, the redefined feature maps of each layer
containing both low-level and high-level information are fused,
averaged, and then fed to a sigmoid function to obtain the final
segmentation result.

Loss Function
In a specific task, the choice of a suitable loss function has
a significant influence on the experimental results. The loss
function is utilized to express the degree of difference between
the predicted value and the label value. During the training
process, the model continuously fine-tunes the weight and
bias of the network to minimize the loss function value and
improve the performance of the model. In this article, for
the brain tumor segmentation task, our loss function consists
of binary cross-entropy loss (BCE) and Dice loss. The Dice
loss mainly applies the Dice coefficient, which is a similarity
measurement function. The Dice loss takes the responsibility for
the prediction of the brain tumor globally, while the BCE loss
is responsible for the classification of each pixel. They can be
expressed as:

LossBCE
(
pk, gk

)
= −

1
n

∑
k

(gk ∗ log
(
pk
)
+
(
1− gk

)
∗ log(1− pk))

(6)

Lossdice
(
pk, gk

)
= 1− Dice(pk, gk) = 1−

2
∣∣pk ∩ gk

∣∣+ ε∣∣pk∣∣+ ∣∣gk∣∣+ ε
(7)

where n is the number of samples, pk and gk denote the
prediction of the proposed model and the ground truth,
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FIGURE 4 | Multi-scale attention feature fusion (MAFF) module.

TABLE 1 | Comparison of segmentation results (mean ± SD) between the proposed MAFF-ResUNet and existing deep convolutional neural networks.

FCN32s FCN16s FCN8s U-Net MAFF-ResUNet

IoU (%) WT 72.9 ± 0.3 77.8 ± 0.4 80.8 ± 0.2 85.6 ± 0.4 86.5 ± 0.08

TC 80.1 ± 0.07 82.1 ± 0.3 84.4 ± 0.07 88.4 ± 0.4 88.5 ± 0.3

ET 66.7 ± 0.6 73.1 ± 0.2 77.7 ± 0.05 85.8 ± 0.4 86.4 ± 0.3

SEN (%) WT 85.0 ± 1.0 87.8 ± 0.8 88.6 ± 0.4 91.1 ± 0.4 91.93 ± 0.1

TC 87.6 ± 0.4 89.7 ± 0.3 90.5 ± 0.05 92.6 ± 0.3 93.4 ± 0.1

ET 75.5 ± 0.5 82.3 ± 0.4 85.0 ± 0.2 91.8 ± 0.3 92.5 ± 0.1

PPV (%) WT 81.7 ± 0.6 85.3 ± 0.3 88.3 ± 0.08 92.0 ± 0.09 92.5 ± 0.1

TC 89.9 ± 0.6 90.1 ± 0.4 92.1 ± 0.2 94.4 ± 0.06 93.9 ± 0.3

ET 82.4 ± 0.3 85.0 ± 0.3 88.7 ± 0.06 92.27 ± 0.7 92.34 ± 0.4

DSC (%) WT 81.9 ± 0.3 85.2 ± 0.3 87.3 ± 0.2 90.5 ± 0.3 91.2 ± 0.06

TC 85.4 ± 0.1 86.8 ± 0.2 88.6 ± 0.1 91.7 ± 0.3 91.8 ± 0.3

ET 73.0 ± 0.6 79.4 ± 0.2 83.4 ± 0.09 89.8 ± 0.4 90.2 ± 0.3

HD (mm) WT 2.92 ± 0.005 2.68 ± 0.01 2.49 ± 0.01 2.20 ± 0.001 2.16 ± 0.005

TC 1.73 ± 0.005 1.64 ± 0.006 1.56 ± 0.003 1.41 ± 0.01 1.39 ± 0.006

ET 1.79 ± 0.01 1.64 ± 0.004 1.49 ± 0.004 1.23 ± 0.02 1.20 ± 0.005

Bold indicates the maximum value of IoU, SEN, PPV, DSC, and the minimum value of HD among these methods.

respectively;
∣∣pk ∩ gk

∣∣ represents the intersection between pk
and gk;

∣∣pk
∣∣ and

∣∣gk
∣∣ are the number of pixels in pk and gk,

respectively. ε stands for the smoothing coefficient, and the value
is set to 1.0 × 10−5 .

The total loss is described as:

Loss = αLossBCE + βLossdice (8)

where α and β represent the weight. We empirically set the weight
α as 0.5, and the weight β as 1.

EXPERIMENTS AND RESULTS

Training Details
The proposed MAFF-ResUNet is conducted on the PyTorch
framework with an NVIDIA GeForce RTX 3090. In this
experiment, we use adaptive moment estimation (Adam)
(Kingma and Ba, 2014) as the optimizer. The initial learning
rate is 0.0003, momentum is 0.90, and weight decay is set to
0.0001. We utilize poly police to decay the learning rate in the
progress of training, as employed by Mou et al. (2019) and

Frontiers in Neuroscience | www.frontiersin.org 6 November 2021 | Volume 15 | Article 782968

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-782968 November 24, 2021 Time: 14:28 # 7

He et al. Brain Tumor Segmentation

FIGURE 5 | Visualized predicted images of different models. In the ground truth image, red, green and yellow represent tumor core (TC), whole tumor (WT), and
enhance tumor (ET), respectively.

Elhassan et al. (2021). It can be defined as in Eq. (9), where
iter represents the number of iterations, max_iter denotes the
maximum number of iterations, and power is set to 0.9. During
training, the batch size is 16.

lr = lrinit × (1−
iter

max_iter
)power (9)

Evaluation Metrics
To effectively evaluate the performance of the proposed model,
we adopt intersection-over-union (IoU), sensitivity, and positive
predictive value (PPV), which are commonly used metrics for
image segmentation. The IoU can be calculated using Eq. (10).
(P∩ G) is the number of positive pixels which values are the
same in both P and G, while (P∪ G) stands for the union of P
and G. Sensitivity is defined as the ratio of correctly classified
positive samples to the total positive samples in ground truth

“G,” as shown in Eq. (11). It can be employed to measure the
sensitivity of the model to segmentation targets. PPV represents
the proportion of correctly classified positive samples to all
positive samples in predicted “P,” which can be formulated as in
Eq. (12). |P| is the number of positive pixels in P, while |G| is the
number of positive pixels in G. The IoU, sensitivity, and PPV are
all ranging from 0 to 1. The closer they are to 1, the better the
segmentation result is:

IoU(P,G) =
(P∩ G)

(P∪ G)
(10)

SEN(P,G) =
(P∩ G)

|G|
(11)

PPV(P,G) =
(P∩ G)

|P|
(12)
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Furthermore, as two commonly used metrics for brain
tumor segmentation, the Dice similarity coefficient (DSC) and
Hausdorff distance (HD) are also applied for the qualitative
analysis in this experiment. The DSC is utilized to calculate how
similar two samples are, and can be given as:

DSC(P,G) =
2 × |P∩ G|
|P| + |G|

(13)

The DSC is sensitive to the internal padding of the mask.
Compared with the DSC, the HD is more sensitive to the
segmented boundary. It represents the maximum Hausdorff
distance between the labeled boundary and the predicted
boundary, defined as:

HD (P,G) = max
{
dPG, dGP

}
= max

{
max
p∈P

min
g∈G

(
p, g

)
, max

g∈G
min
p∈P

(g, p)
}

(14)

where p and g represent the points in the predicted area and the
ground truth area, respectively.

Performance Comparison
We compare the proposed MAFF-ResUNet with different
networks, including FCN (Long et al., 2015) and U-Net
(Ronneberger et al., 2015). For the FCN network, we will use
three models with different network depths: FCN8s, FCN16s,
FCN32s. As shown in Table 1, the various metrics of FCN
in the brain tumor segmentation task are lower than that
of other models. Compared with FCN, U-Net with encoder-
decoder structure has stronger feature extraction capabilities, and
the model performance is significantly improved. The MAFF-
ResUNet proposed in this article, except for the PPV metric of
TC slightly lower than U-Net, other metrics have improved.

Moreover, we evaluate the performance of the proposed model
from a more intuitive perspective. Figure 5 shows the comparison
of the prediction image between the proposed approach in this
article and other methods. The figure contains four different
cases, and shows the original MRI images of flair modality, the
prediction results of each model, and ground truth images. Since
FCN8s has the best performance among the three FCN networks,
we only use the prediction results of FCN8s for comparison. By
comparison, we can find that the proposed method in this article
is significantly better than U-Net and has obvious advantages
in the segmentation of brain tumor contours and edge details.
It shows that the introduction of the MAFF module makes the
brain tumor segmentation results have richer edge information.
Besides, there are fewer pixels mistakenly classified by the MAFF-
ResUNet. The predicted images of the MAFF-ResUNet are more
similar to manually annotated images.

CONCLUSION

In this article, we propose a deep convolutional neural network
for MRI brain tumor segmentation, named MAFF-ResUNet. This
network takes advantage of the encoder-decoder structure. The
introduction of residual shortcuts in the encoder block, combined

with skip connections, enhances the global feature extraction
capability of the network. In addition, for the output feature maps
of different levels of decoder blocks, the attention mechanism is
utilized to selectively extract important feature information of
each level. Then the multi-scale feature maps are fused to obtain
the segmentation. The proposed method is verified on the public
BraTs 2019 MRI dataset. Experimental results show that the
MAFF-ResUNet is better than existing deep convolutional neural
networks. From the perspective of predicted images, the proposed
method can effectively exploit multi-scale feature information
and maintain most of the edge detail information. Therefore,
the MAFF-ResUNet method proposed in this article can achieve
high-precision automatic segmentation of brain tumors and can
be used as an auxiliary tool for clinicians to perform early
screening or diagnosis and treatment of brain tumors.
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