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This paper describes a bio-inspired radio frequency (RF) scene analysis system based

on cross-correlating the outputs of two single-chip RF spectrum analyzers. The latter

are implemented using digitally-programmable “RF cochlea” chips (in 65 nm CMOS)

that integrate a transmission-line active cochlear model, consisting of 50 parallel

exponentially-spaced stages for analyzing the radio spectrum from 1.0 to 8.3 GHz,

together with an output encoding network. The encoders convert the analog outputs

of all cochlear stages into parallel delta-sigma (1-6) modulated digital signals for

real-time demodulation and analysis by a digital back-end processor. These outputs

can also be multiplied with each other to generate cochlear correlation matrices (known

as cross-correlograms). Simulation results demonstrate the use of cross-correlograms

for wide-range time-delay estimation and real-time multi-source localization at different

frequencies and input signal-to-noise (SNR) ratios. Over-the-air measurement results

from an experimental two-channel RF scene analysis prototype confirm the use of such

time-delay estimates, which are analogous to interaural time differences (ITDs) in the

auditory system, for azimuthal source localization at 3.4 GHz. In addition, differences

in received signal strength at the two cochleas, which are analogous to interaural level

differences (ILD) in biology, are also used to localize RF sources.

Keywords: RF cochlea, spectrum analysis, source localization, cognitive radio, cross-correlograms

1. INTRODUCTION

The mammalian auditory system has the ability to detect, analyze, and segregate multiple sound
sources in noisy environments (Geisler, 1998). This process starts when vibrations of the tympanic
membrane caused by incident sound waves are transduced into motion of the basilar membrane
(BM) within the inner ear (cochlea). The cochlea contains a sophisticated signal processing
system that converts BM motion into a time-varying pattern of neural excitation on the auditory
nerve while consuming only ∼14 µW of power (Sarpeshkar, 2010). Cochlear outputs are further
processed by higher centers in the auditory nervous system to generate the perception of sound,
resulting in exquisite sensitivity and over 120 dB of input-referred dynamic range (Pickles, 2013).

Frequency selectivity and neural phase-locking are two fundamental properties of the peripheral
auditory nervous system. These properties originate in the cochlea and are pervasive in behavioral
and neural responses (Verschooten, 2013). Frequency selectivity refers to the ability to resolve
individual spectral components of complex sounds and is important for the accurate perception
of, for example, speech. Auditory nerve (AN) fibers that innervate inner hair cells (IHCs) along the
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FIGURE 1 | (A) Neural frequency-threshold tuning curves in monkey (macaque) for 9 selected frequencies, adapted from Joris et al. (2011) and Verschooten (2013).

(B) (a): Schematic of the input signals to the two ears when two loudspeakers, separated in azimuth, emit identical sounds with a slight delay (ISI). ITDL and ITDR

signify the interaural time differences between signals from the two source locations for the left and right ears, respectively; (b): Cross-correlation between the two ears

for broad-band outputs from the speakers. Four peaks occur at correlation delays (τ ) corresponding to ±ISI, ITDL, and ITDR. Figure adapted from Keller and

Takahashi (1996).

BM are most sensitive to a particular “characteristic” tonal
frequency. The tuning of AN fibers is classically described
by a frequency-threshold tuning curve (FTC; as shown in
Figure 1A). On the other hand, neural phase-locking is the
property of AN fibers to lock to the instantaneous pressure
fluctuations in the waveform of sounds. Phase-locking is essential
for binaural hearing, i.e., spatial localization of sound sources
in azimuth (left-right), and is also thought to be invoked in
certain aspects of perception, such as pitch, loudness, and speech
perception (Carney, 1994; Moore, 2008).

Spatial localization of sound sources is one of the key aspects
of auditory perception (Popper et al., 2005). The auditory system
of mammals and birds relies on a combination of monoaural and
binaural cues to localize sources, of which the most important
binaural cues are interaural time difference (ITD) and interaural
level difference (ILD). Here ITD is the difference in arrival
time of a sound between two ears, while ILD is the (frequency-
dependent) difference in its intensity (i.e., loudness). The output
of a cross correlation-like computation based on the ITDs (as
shown in Figure 1B) is displayed as neural activity across the
auditory space map in the cochlear nucleus (CN). These peaks
are further processed by higher stages of the auditory pathway
to associate source locations with other properties (frequency,
intensity, temporal structure, etc.), thus generating an auditory
scene map (Bregman, 1994).

Given that acoustic and electromagnetic wave propagation
involves similar physics (propagation, absorption, and
scattering), it is interesting to consider whether similar scene
analysis principles may be useful for analyzing radio frequency
(RF) environments. In fact, auditory source localization concepts
have clear analogs for RF signals. For example, we recognize that
ITD can be used to estimate the angle of arrival (AOA) (as in
traditional beamformers), while the ILD is a type of differential
received signal strength indicator (RSSI) measurement (Mead
et al., 1991; Chan et al., 2007) that may also be useful for AOA
estimation. Thus, hardware-efficient ITD and ILD estimators for

RF signals would enable energy-efficient RF source localization,
which in turn would be of significant interest for a variety of
spatial processing tasks in wireless systems, including (i) beam
management for MIMO transceivers (Xue et al., 2018), (ii)
dynamic spectrum access (DSA) algorithms for cognitive radio
(CR) networks (Dhope et al., 2013), and (iii) interference/clutter
rejection in radar processors (Chen and Vaidyanathan, 2008; Gu
et al., 2018). The resulting location estimates can be combined
with other source properties (frequencies, modulation types) to
generate so-called “RF scene maps”. Such maps can be used, for
example, by beam management and DSA algorithms within a
CR network to minimize multi-user interference and maximize
user-perceived data throughput.

A wide variety of algorithms have been used for 1D, 2D, or
3D localization of both electromagnetic and acoustic sources,
including delay-and-sum (DAS) or discrete Fourier transform
(DFT)-based linear beamforming, multiple signal classification
(MUSIC) (Schmidt, 1986) and its variants (Zhang and Ng,
2009), and generalized cross-correlation (GCC) (Knapp and
Carter, 1976; Balestrieri et al., 2020). Most of these algorithms
require matrix operations (multiplication, inversion, or eigen
decomposition) that need to be implemented digitally1. As
a result, a complete RF receiver chain and high-speed high-
resolution ADC is required per sensor (i.e., antenna element),
which becomes energy-inefficient for ultra-broadband sensing
and/or large-scale arrays. Hybrid analog-digital beamforming
has been proposed as a hardware-efficient alternative to this
problem (Sohrabi and Yu, 2016). However, while the resulting
linear beamformers are suitable for separating source data
streams (e.g., for MIMO), they are inferior to non-linear
algorithms such as MUSIC or GCC in terms of source
localization accuracy.

1The DAS beamformer is an exception; it can be implemented using analog phase

shifters or delay lines.
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Here, we consider a hardware-efficient hybrid analog-digital
approach to the problem of simultaneously localizing multiple
narrowband RF sources over an ultra-broadband frequency
range using very few (ideally only two) sensors. The system
uses an ultra-broadband “RF cochlea” chip developed in our
prior work (Mandal et al., 2009; Wang et al., 2020). This
chip contains a cochlear pre-filter that extracts a set of
lower-bandwidth RF features from wideband inputs (including
amplitude, phase, and frequency information for spectral
occupancy and modulation recognition) while preserving both
ITD and ILD information. Features from multiple spatially-
separated RF cochleas are then compared to efficiently compute
source locations. In particular, we find ITDs by computing an
outer product of the outputs of two cochleas, which is known
as the stereausis algorithm (Shamma et al., 1989). In particular,
the stereausis algorithm computes interaural differences by
combining ipsilateral inputs at a given characteristic frequency
(CF) with contralateral inputs from locally-off-CF locations.
These operations are hardware-efficient, and experiments with
audio sources suggest that it results in comparable localization
accuracy as MUSIC and other well-known algorithms (Pham
et al., 1999; Julian et al., 2004).

This paper is organized as follows. In section 2, we describe the
system-level design of the cochlea-based RF source localization
system and the simulation results. Measurement results from an
experimental two-channel prototype are presented in section 3.
Finally, section 4 concludes the paper.

2. SYSTEM DESIGN AND SIMULATIONS

2.1. Theoretical Background
The far-field 2D source localization problem (as shown in
Figure 2A) consists of estimating the location of signal source(s)
in both the azimuth plane (angle φ) and the elevation plane (angle
θ) using signals received by an array of N sensors (the N = 2
case is shown in the figure). We simplify this general problem
by making two simplifications. Firstly, we ignore elevation and

only focus on 1D localization in the azimuth plane using N = 2
antennas (as shown in Figure 2A). Secondly, we assume that the
sources are non-overlapping in the frequency domain. Given the
wave velocity in the medium, source locations can now be found
by estimating the time delays between signals received by the
sensor array.

Given sources with non-overlapping spectra, it is natural to

consider architectures that decompose the incoming broadband
RF waveforms from the antennas into non-overlapping
frequency bins (“channels”) and run independent single-

source localization algorithms on each channel. However,
these operations should be performed in the analog domain to
eliminate the need for (i) high-speed digitization of the entire

broad RF bandwidth (which can exceed several GHz for high-end

CR applications), and (ii) power-hungry digital signal processing.
In this case, continuous-time analog filter-banks are a natural
choice for performing the necessary frequency decomposition.
We use fully-integrated single-chip models of the mammalian
inner ear (cochlea) for this purpose, since they behave as

hardware- and power-efficient filter-banks at both audio and
radio frequencies (Sarpeshkar et al., 1998; Mandal et al., 2009;
Wang et al., 2020). These chips mimic the exponentially-tapered

structure of the fluid-filled biological cochlea using either
bidirectional transmission lines or filter cascades.

The outputs of our cochlear models (in the linear regime)
are well-modeled as constant-Q frequency bins, which in turn
resemble those generated by a continuous wavelet transform
(CWT) (Yao and Zhang, 2002). To illustrate the expected

frequency decomposition results, Figure 2B (left panel) shows

the CWT for a three-tone input at 6.3, 3.9, and 1.6 GHz that
is fed into antenna A, In addition, a time-delayed input (with
individual phase shifts of π , −π/3, and 2π/3 rad, respectively)
is fed into antenna B. These time-delays can be estimated by
multiplying and low-pass filtering the two sets of N-element
CWT outputs at each time step, resulting a (possibly time-
varying) N × N 2D matrix we refer to as a cross-correlogram.
Denoting the two complex CWT output vectors as wA and wB,

FIGURE 2 | (A) Geometry for 2D far-field source localization. (B) Continuous wavelet transform (CWT) of signal at sensor A (tones at 6.3, 3.9, and 1.6 GHz) (left), and

the cross-correlogram (right) generated by correlating it with the CWT of signal at sensor B (same frequencies, but with phase shifts of π , −π/3, and 2π/3 rad,

respectively).

Frontiers in Neuroscience | www.frontiersin.org 3 February 2021 | Volume 15 | Article 623316

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wang and Mandal Bio-Inspired Radio-Frequency Source Localization

each element in the cross-correlogram is given by

xAB,i,j(t) = |wA,i(t)||wB,j(t)| cos(1ψAB,i), (1)

where ψA and ψB are the phases of wA and wB, respectively,
and 1ψAB,i ≡

(

ψA,i − ψB,i

)

. Note that this wavelet-based cross-
correlogram algorithm is simply a scale-localized version of the
usual inner product between two signals.

The time-averaged cross-correlogram XAB,av for the three-
tone input signals considered earlier is shown in Figure 2B

(right panel). The good frequency resolution of the CWT results
in localized structures along the main diagonal (i = j) at
specific scales corresponding to the input frequencies ωi, and
their normalized amplitudes xn,i,j = xAB,i,j/(|wA,i(t)||wB,j(t)|)
encode the time delay τi =

(

1ψAB,i

)

/ωi for each component.
Specifically, the time delay is estimated as

τi =
cos−1(xn,i,i)

ωi
. (2)

The ambiguity-free range for this type of time delay
estimation is [0,π/ωi], i.e., half an RF cycle, with maximum
sensitivity d(xn,i,i)/d(1ψAB,i) = 1 around the zero-crossing
(1ψAB,i = π/2). It is interesting to compare this result with
a linear two-element DAS or DFT beamformer, for which
the output amplitudes of the two beams are proportional to
[

cos(1ψAB,i/2)± sin(1ψAB,i/2)
]

. By contrast, Equation (1)
shows that the cross-correlogram is proportional to cos(1ψAB,i).
Clearly, cross-correlograms provide ∼2× higher resolution for
estimating small time delays than linear beamformers. However,
they also remove all common-mode phase information (e.g.,
due to data modulation) present in the two inputs, so data
cannot be recovered from the cross-correlogram (unlike for
linear beamformers).

Finally, note that the off-diagonal elements in XAB,av are
almost zero because of the orthogonality of the CWT outputs.

The benefits of including these off-diagonal terms for delay
estimation will be explained later.

2.2. System Architecture
A block diagram of the proposed cochlea-based broadband RF
scene analyzer is shown in Figure 3. Two spatially-separated
broadband antennas sense the local EM field. Each antenna
output is amplified and filtered [resulting in the RF transfer
function HRF(ω)], and then decomposed into a set of N CWT-
like frequency bins by an RF cochlea. The signals in these bins
are denoted by the vectors wA(t) and wB(t), respectively. Low-
complexity on-chip circuits then extract a set of RF features
(including signal amplitude, phase, and frequency) from each
bin. To simplify later processing, wA,B(t) is encoded using polar
coordinates, such that each complex element Aejψ is represented
using separate amplitude (A) and phase (ψ) components.
The chips digitally encode both these components on single
wires: amplitudes using integrated 1-bit 1-6 modulators, and
phases using the phase-locked outputs of integrated injection-
locked frequency dividers (ILFDs). By enabling such “slow-
and-parallel” digitization of lower-bandwidth features, the RF
cochleas significantly improve system-level energy efficiency
compared to conventional real-time signal analyzers that directly
digitize the broadband RF waveform (Wang et al., 2020). Finally,
the digitized CWT-like output vectors wA,B(t) of each cochlea
are analyzed by a digital processor (e.g., the FGPA shown in
Figure 3) to extract relevant features of the scene, including
source frequencies and power levels.

In addition to independently analyzing each cochlea’s output,

Figure 3 shows that the RF scene analyzer also uses a 2D

network of multipliers (known as the stereausis network) to
calculate the outer product of the vectors wA,B(t) generated
by the two cochleas, thus generating the N × N cochlear
cross-correlogram matrix CAB(t). We will show that in many
cases it is sufficient to generate an approximation of CAB(t)

FIGURE 3 | Detailed block diagram of the proposed adaptive radio frequency (RF) scene analysis system. This paper focuses on the highlighted blocks (the

correlation network and correlation decoder).
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by cross-correlating only the relative phases of wA,B(t) (i.e., by
using only the phase-locked ILFD outputs). In this case, the
multipliers in the stereausis network can be replaced by XOR
gates, which act as 1-bit multipliers and thus greatly simplify the
circuit implementation. The digital processor can now extract
features from the cross-correlogram matrix CAB(t) to estimate
relative time delays and source locations, which is the focus of
this paper.

To complete the process of scene analysis, the two sets of
extracted features (from the individual cochleas and the cross-
correlogram, respectively) are fed into machine learning (ML)
algorithms, such as the deep belief networks (DBNs) that were
used for modulation recognition in our previous work (Wang
et al., 2020). Finally, the outputs of these algorithms can be used
to optimize the RF transfer function HRF(ω), e.g., by tuning
the center frequency and/or Q of a band-pass filter (BPF) as
shown in Figure 3. Such ML-driven closed-loop adaptation can
significantly improve the system’s dynamic range (DR) by either
emphasizing desired signals or canceling unwanted signals (i.e.,
blockers) (Wang and Mandal, 2017).

2.3. Architecture of the RF Cochlea Chip
Each digitally-programmable RF cochlea chip (Wang et al.,
2020) includes a transmission-line active cochlear model with
50 exponentially-spaced stages that analyzes the radio spectrum
from 1.0 to 8.3 GHz. Each output is processed by three encoder
circuits that are sensitive to signal amplitude, frequency, and
phase delay between adjacent stages, respectively (as shown in

Figure 4A). The amplitude components of all stages are digitized
in parallel using on-chip 1-6 modulators, as mentioned earlier.
Figure 4B shows the simulated small-signal transfer functions
of the amplitude encoders in several stages to continuous-
wave (CW) inputs from 1.0 to 9.0 GHz. These functions have
asymmetric band-pass shapes with cutoff locations that move
logarithmically toward later stages as the frequency decreases,
resulting in a CWT-like filter bank but with some overlap
between the channels. In particular, the amplitude Vout(n) of the
n-th cochlear stage reaches its maximum at a characteristic or
“best” frequency

ωc(n) = ωc(0) exp (−n/Nnat) , (3)

where Nnat = 24 is a design constant.
Each frequency encoder uses a ring-oscillator-based divide-

by-3 ILFD whose locking range depends on both its free-running
frequency and the amplitude of the injected signal. In particular,
the ILFD in the n-th stage locks to signal components within
Vout(n) that are relatively close to its free-running frequency,
which is designed to approximately match ωc(n). The simulated
locking sensitivity curves of the ILFDs in several stages are shown
in Figure 4C. Each circuit locks when the input power level at
any particular frequency exceeds the plotted value at that point,
and its phase in the locked state tracks that of the injected signal.
Thus, the ILFD outputs encode both signal frequency and phase.
These phase-locking curves are qualitatively similar to those
observed in the mammalian cochlea (see Figure 1A).

FIGURE 4 | (A) Simplified block diagram of the cochlea-based ultra-broadband RF spectrum analyzer chip (Wang et al., 2020). (B) Simulated small-signal spatial

transfer functions of the amplitude encoders to continuous-wave (CW) inputs at stages {5, 15, 25, 35, 45} (Wang et al., 2020). (C) Simulated input sensitivity curves of

the frequency and phase encoders (divide-by-3 ILFDs) at stages {5, 10, 15, 25, 35}.
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FIGURE 5 | (A) Two 3 GHz sinusoidal inputs at −6 dBm with an ITD of k cycles between them, and (B) the simulated ITD at the injection-locked frequency divider

(ILFD) outputs for stage nbest = 23. Left column: simulation results showing the time-averaged outputs of the cochlear cross-correlogram network (using the

un-encoded cochlear voltages Vout (n)) for ITDs of (C) k = 0, (E) k = 1
4 , and (G) k = 1

2 cycles. Right column: similar cross-correlogram results using the frequency- and

phase-encoded ILFD outputs for the same ITDs, namely (D) k = 0, (F) k = 1
4 , and (H) k = 1

2 cycles. Comparison of the normalized diagonal lines for different ITDs

using (I) the un-encoded cochlear outputs (left column) and (J) the frequency- and phase-encoded outputs (right column).

2.4. Delay Estimation Using Cochlear
Cross-Correlograms
As shown in Figure 3, a 2D network of multipliers is used
to generate the cross-correlogram matrix CAB(t) between two
cochlea chips (denoted cochlea A and cochlea B), each of which
has N = 50 stages. To illustrate the nature of this matrix,
first consider the simplest case of a single CW input source. As
an example, we applied 3 GHz sinusoidal inputs at −6 dBm
to the two cochleas with an ITD of k cycles between them, as
shown in Figure 5A. The resulting outputs (from a transistor-
level simulation in Cadence Virtuoso) of the ILFDs that are
located near the best frequency (nbest = 23 in this case) are shown
in Figure 5B. The input ITD is preserved in the phase-locked
outputs, as expected.

Figures 5C–H shows the simulated time-averaged cross-
correlogram matrices CAB,av for this CW input at different
ITD values. Plots in Figures 5C,E,G correspond to finding the
product of the un-encoded cochlear output voltages Vout(n),
while those in Figures 5D,F,H correspond to finding the product
of the frequency- and phase-encoded outputs of the ILFDs.

Figure 5C shows the case when ITD is 0, i.e., the two cochlea

chips receive identical inputs. The resultant correlation matrix
CAB,av (using the un-encoded cochlear outputs) is positive and
non-zero along the diagonal line, with a peak magnitude around
the “best” position (nbest = 23) for this frequency. We also

observe off-diagonal peaks that are symmetrically distributed
about the diagonal; these reflect the correlation between two
propagating waves (on the two cochlear transmission lines) at
different spatial shifts. Also, note that both diagonal and off-
diagonal terms become very close to zero for nA,B > 30;
this is due to the low-pass nature of the cochlear transfer
functions. Figures 5E,G show CAB,av for non-zero ITDs of k =
1
4 and 1

2 cycles, respectively2. Clearly, non-zero ITD results in
patterns that are asymmetric with respect to the diagonal. For
positive ITD, the peak along the diagonal is shifted downward
(toward cochlea A). Figure 5I compares normalized values of
CAB,av along the diagonal for different ITDs. These values vary
periodically between [−1, 1] as the delay increases (with a period
of k = 1 cycle), as expected for a cross-correlogram. Thus, the
ambiguity-free range for time delay estimation is again [0,π/ωi]
(i.e., k = 1/2 RF cycles).

Next, we consider calculating cross-correlograms using the
frequency- and phase-encoded outputs. In this case the ILFDs
only keep track of the input phase when the input power level
exceeds the sensitivity curve for each stage (i.e., that ILFD
is locked). Otherwise, the ILFDs are free-running and their
time-averaged cross-correlogram tends to zero. As a result, this

2Positive ITD values imply that the inputs to cochlea B are delayed compared to

cochlea A.
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matrix (denoted by CLocked
AB,av ) is only non-zero over a small region

around the best frequency where the ILFDs are locked; in other
words, the time delay information becomes highly localized. This
property is visible in Figures 5D,F,H, which show CLocked

AB,av with

the same ITDs as before (0, 14 , and
1
2 cycles). Also note that since

the ILFDs have wide locking range, the effects of mismatches
between the two cochleas will be removed from CLocked

AB,av as long
as they remain locked to the input signals. And the phase shift
between stages reaches its peak value (70◦ ∼ 80◦ over 1 GHz
∼ 9 GHz) near the CF of each transfer function. These phase
shift curves have very similar shapes for all 50 cochlear stages,
with some small deviations from scale-invariant behavior. These
deviations result in minor differences (<2%) between the peaks
of the resulting cross-correlation curves, which can be removed
by post-calibration. Also note that since the ILFDs have wide
locking range, the effects of mismatches between the two cochleas
will be removed fromCLocked

AB,av as long as they remain locked to the
input signals.

Figure 5J compares values of CLocked
AB,av along the diagonal

for different ITDs. Since the ILFD outputs only encode phase
information, all the locked stages have similar cross-correlogram
values, as visible in the figure. Interestingly, the ambiguity-free
range for ITD estimation in this case is [0, 3π/ωi] (i.e., k = 3/2
RF cycles), which is 3× larger than before. This is because the
phase of each locked ILFD encodes the onset time of its input
(see Figures 5A,B for an example). The maximum ITD that can
be encoded in this way is 1/2 output cycles, which corresponds to
3/2 input (i.e., RF) cycles for a divide-by-3 ILFD. Using a divide-
by-M ILFD allows this range to be further extended to M/2 RF
cycles, but at the cost of a more complicated circuit and lower
output bandwidth.

2.5. Tracking of Moving Sources
One of the key advantages of the proposed source localization
method is real-time computation. Since the matrices CAB,av and
CLocked
AB,av can be efficiently computed in parallel using the sterausis

network, basic information for each source (frequency and ITD)
can be estimated within a few ILFD output cycles. As a result, we
can track objects that are moving rapidly in (frequency, AOA)
space. The ITD 1T (and resulting phase shift 1ψ) for an AOA

of φ is given by

19 = ω1T = ω

(

d

c

)

sin(φ), (4)

where d is the distance between the antennas and c is the velocity
of light. Thus, the rate of change of ITD for a moving source
(range r, transverse velocity v) is given by

d(1ψ)

dt
= −ω

(

d

r

)

(v

c

)

cos(φ). (5)

For example, Figure 6A shows a rapidly moving source, whose
frequency increases from 2 to 5 GHz as ITD (which encodes
AOA) varies from 0 to π rad. In particular, every 50 ns the
frequency and ITD increase by 0.25 GHz and 15◦, respectively.
From Equation (5), these values correspond to v ≈ 8.3× 105 m/s
for a 3 GHz source at r = 1 m and φ = 0, given d =

10 cm. The estimated frequencies and ITDs using CLocked
AB,av (for

an estimation rate = 10 ns/frame and input SNR = 20 dB) are
plotted in Figure 6B. The actual and estimated source trajectories
are in good agreement, confirming that even such rapidly moving
sources can be readily tracked by the network.

2.6. Theoretical Bounds on Time Delay
Estimation
The accuracy of time delay estimation using the proposed
approach is limited by the relevant Cramer-Rao lower bound
(CRLB). The latter defines the minimum variance of the
estimated time delay as a function of the signal and noise power
spectra, and is given by Carter (1987):

σ 2 ≥

(

2T

∫ B

0

(

2π f
)2

(

SNR(f )2

1+ 2 · SNR(f )

)

df

)−1

, (6)

where T is the integration time, B is the signal bandwidth,
and SNR(f ) is the (possibly frequency-dependent) signal-to-noise
ratio. Using Equation (4), the time variance σ 2 can also be
transformed into best-case AOA estimation error around a given
source position φ (Julian et al., 2004):

σφ,min =
σmin

1Tmax sin(φ)
, (7)

FIGURE 6 | Simulation showing tracking of a rapidly moving source with frequencies and ITDs increasing from 2 to 5 GHz and 0 to π rad, respectively: (A) actual

trajectory, and (B) estimated trajectory for SNR = 20 dB. (C) Calculated Cramer–Rao lower bound (CRLB) for the angle of arrival (AOA) estimation (in degrees) at

3 GHz as a function of source position φ for various input power levels.
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where 1Tmax ≡ d/c. For convenience, we denote σφ,min as the
CRLB for AOA estimation.

The calculated CRLB for a single source (at 3 GHz) as a
function of position φ and various input power levels is shown
in Figure 6C. Here SNR(f ) was estimated from transistor-level
simulations, we have assumed that T = 1 ns and B = 10 GHz,
and the outputs weremeasured at stage n = 25. It is observed that
CRLB decreases as the input power level increases, as expected. It
is possible to achieve< 0.6◦ estimation error in the range φ =[5◦,
90◦] for a−20 dBm input. Restricting the range to φ =[45◦, 90◦]
further reduces the error to< 0.1◦.

2.7. Off-Diagonal Information in the
Cross-Correlogram
The limited ambiguity-free range for delay estimation using
CAB,av constrains the antenna separation d to small values. In
particular, we need d ≤ λmin/4 to obtain full AOA coverage
[−π/2,π/2], where λmin = c/fmax is the wavelength of the
maximum input frequency fmax. However, such small separation
degrades AOA estimation error, since Equation (7) shows that
the CRLB σφ,min ∝ 1/d. Thus, there is a fundamental trade-off
between ambiguity-free range and accuracy.

The standard approach to relaxing this trade-off is to compute
additional products wA,i(t)wB,i(t + τ ) for each element on the
diagonal of the cross-correlogram, where τ is a variable time
delay parameter (known as the lag). The full cross-correlation
vector xAB,i,i(τ ) is approximated by time-averaging K such
product terms, and finally ITD is estimated as the lag where

xAB,i,i(τ ) reaches its maximum. Unfortunately, this computation
is expensive in terms of hardware: each element in CAB,av now
requires its own delay line and a set of K ≫ 1 multipliers.

Fortunately, the fact that each cochlea behaves as a
transmission line allows the sterausis network to directly
compute approximations to xAB,i,i(τ ), i.e., eliminates the need for
additional area-intensive delay lines (in fact, this was the original
motivation for the stereausis algorithm) (Shamma et al., 1989).
The process can be explained as follows. Finite wave velocity
on the cochlear transmission line results in a group delay τg
of several RF cycles before a wave reaches its peak Vout,max,
which occurs at the “best” stage nbest . As a result, cochlear stages
before the peak (i.e., n < nbest) contain approximate copies of
Vout,max, but with smaller time delays. Multiplying these copies
with Vout,max for the other cochlea yields an approximation to
xAB(τ ). Thus, cross-correlation vectors can be estimated from the
off-diagonal components of CAB,av.

The group delay for all 50 stages in our cochlear model

(normalized to cycles of the input frequency) is shown
in Figure 7A. The maximum group delay occurs near the

characteristic frequency ωc(n) of each stage. An average of τg ≈

5.5 cycles is observed for all stages around their characteristic
frequencies. To study how this delay is exploited by the stereausis
network, consider pulsed input signals A and B at 3 GHz with
an ITD of k cycles (as shown in Figure 7B). The corresponding
cross-correlogram CAB,av with k = 5 is shown in Figure 7C.
The peaks are shifted away from the diagonal and toward cochlea
A, and maximized around stage nbest = 30. The shift decreases

FIGURE 7 | (A) Normalized group delay (in cycles) of our cochlear model as a function of input frequency and stage number n. (B) Pulsed input signals A and B at

3 GHz with an ITD of k cycles; here T is the RF period. The corresponding cross-correlogram matrices for (C) k = 5, (D) k = 3, and (E) k = −3. (F) Estimated

asymmetry parameter γ as a function of the time delay (i.e., ITD) in cycles.
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when ITD is reduced to k = 3 (Figure 7D), and the maximum
also moves to nbest = 25. The resulting pattern is reflected about
the diagonal when the ITD becomes negative. Thus, the peaks in
Figure 7E (k = −3) are shifted toward cochlea B.

Thus, ITD over a broad range can be efficiently calculated
by quantifying the asymmetry of the cross-correlogram matrix
CAB,av with respect to the main diagonal (Julian et al., 2004). A
suitable asymmetry parameter γ can be defined as the weighted
difference between upper and lower triangular elements:

γ =
∑

i<j

(j− i)× c2AB,i,j −
∑

i>j

(i− j)× c2AB,i,j. (8)

Figure 7E shows the calculated value of γ (after normalization to
the [−1,1] range) for the pulsed inputs shown in Figure 7B. The
value of γ is approximately linear with ITD over the range [−4, 4]
cycles, thus significantly relaxing the range-accuracy trade-off for
AOA estimation.

2.8. Localization in Complex Environments
Binaural processing is known to improve sound perception
in complex acoustic environments (Mead et al., 1991). Unlike
earlier correlation-based binaural localization algorithms, which
generally localize only the strongest source at any given time,
the proposed cochlea-based system has N = 50 parallel output
channels that can be used to simultaneously localize multiple
sources. However, these sources have to be far enough apart

in the frequency domain to generate distinct peaks and/or
phase-locked regions in the cochlear outputs. Note that CLocked

AB,av
has sharp and well-separated peaks due to the on/off nature
of phase-locking. The widths of the peaks (i.e., the phase-
locked regions) do increase with input power level, which
limits the ability to localize multiple weak sources in the
presence of strong blockers. However, the peaks have very
similar amplitudes because all the ILFDs generate logic-level
signals. On the other hand, the cochlear transfer functions are
broader and have different peak gains (as shown in Figure 4B),
which result in different peak amplitudes within CAB,av. Thus,
ILFD-based cross-correlograms are more suitable for analyzing
multi-source environments.

Figure 8A shows the phase-encoded cross-correlogram
CLocked
AB,av in response to the simultaneous presentation of 2, 3,

and 4.5 GHz CW sources, all with an ITD of 0. The resulting
patterns from each source are well-separated and thus can
be easily localized in parallel. The blue curve in Figure 8B

shows the values along the diagonal for the same input. Three
peaks are clearly visible: stages 13∼16, 22∼24, and 36∼38 are
phase-locked to the sources at 4.5, 3, and 2 GHz, respectively.
The ITD vector for these sources is now changed to a non-trivial
value, namely [π ,π/3,π/2], and the resulting diagonal elements
in CLocked

AB,av are shown as the blue curve in Figure 8B. Finally,
the amplitudes of the three peaks are used to estimate AOA;
the result is φ =[185.4◦, 67.6◦, 90.7◦], which has an average
error of 4.9%.

FIGURE 8 | Simulation results showing the ILFD-based cross-correlogram generated by a three-tone input: (A) 4.5, 3, and 2 GHz with all ITDs equal to 0; (B) the

corresponding normalized diagonal line (blue line), compared with the diagonal line with non-zero ITDs, namely [π ,π/3,π/2] (red line). (C) Time domain waveforms of a

QAM8-modulated cochlea input and the resulting ILFD output during a symbol transition. (D) Modified Allen deviation of a single stage output (for averaging time

τ = 5.12 ns) estimated each 25 ns when the cochlea receives a QAM16 input with a symbol rate of 20 MS/s; (E) Measured power spectrum of an input signal

consisting of two modulation types (PSK4 and QAM8), and (F) its ILFD-based cross-correlogram.
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Since the ILFDs (which are analogous to phase-locked
auditory neurons) have wide locking and tracking bandwidths,
the proposed cross-correlogram based source localization
approach is not restricted to narrowband CW inputs, and
can readily handle typical digitally-modulated wireless signals.
To demonstrate this point, MATLAB was used to generate
the frequency-time spectra of wideband signals based on one
of several common digital modulation schemes (e.g., QAM8,
QAM16, PSK4, etc.), and the parallel ILFD outputs kept under
observation. When a phase shift occurs in the cochlear input
(e.g., due to a symbol transition), the output of a locked ILFD
will lock to the new input phase within a couple of cycles (as
shown in Figure 8C for the case of QAM8). However, when
the new symbol has low enough input amplitude, the ILFD can
become transiently unlocked. In this case the modified Allen
deviation σA(τ ) of the locked outputs (which can be easily
measured using a frequency counter) increases significantly as
shown in Figure 8D for the case of QAM16. In this case, the
figure shows that σA(τ ) increases by approximately 10× between
the locked and unlocked states (from∼ 4× 10−3 to∼ 4× 10−2,
respectively). Thus, greater source localization accuracy can be
ensured by monitoring σA(τ ) and comparing it with a threshold
to reject such unlocked intervals before the cross-correlogram
is computed.

It is also possible to simultaneously localize multiple
modulated sources. For example, Figure 8E considers the case
when the scene contains two spatially-separated modulated
sources (in this case, PSK4 at 4.5 GHz with a phase shift
of 0 rad, and QAM8 at 3.0 GHz with a phase shift of π/3
rad). The resulting diagonal elements of the ILFD-based cross-
correlogram are shown in Figure 8F. The two modulated signals
are locked over different cochlear stages (stages 13∼16 and
24∼25, respectively), thus allowing the two sources to be
independently demodulated and localized.

3. EXPERIMENTAL RESULTS

3.1. Performance of the RF Cochlea Chip
The RF cochlea chip was fabricated in 65 nm CMOS, as
shown in Figure 9A. This chip consumes 418 mW and typically

generates ∼1 GS/s of total data at an ENOB of 5-6 bits. The
frequency encoder in each stage uses a ring-oscillator-based
divide-by-3 ILFD for locking to the input signal after cochlear
filtering, followed by several stages of static frequency division
implemented using current-mode logic (CML) latches. Figure 9B
shows the measured input sensitivity curves of the ILFDs
(known as Arnold tongues) over a broad set of stages, namely
{5, 10, 15, 25, 35}. The Arnold tongues shift to lower frequencies
as we move toward the apex (i.e., the stage number increases),
similar to the mammalian cochlea. Table 1 summarizes the
measured performance of this design (Wang et al., 2020).

In addition, simulations of an on-chip XOR-based stereausis
network show a power consumption of 715 mW (for an output
update rate of 20 MHz) and a layout area of ∼2.875 mm2. Thus,
the stereausis network only modestly increases the power and
area requirements of the system (relative to the two cochleas
alone)—by 85 and 20%, respectively.

3.2. Test Setup
To analyze the phase information present at the outputs of the
frequency encoders in the selected cochlear channels, we assume
single-tone CW input signals for channel A and channel B are
sin(2π ft) and sin(2π ft − ψd), respectively, where ψd = 2π f τd is
the phase difference between the two channels for an ITD of τd.

The phase difference between the ILFD outputs is then
ψd
3 , and

it is further decreased by a cascade of D-type frequency dividers

(FDs) and becomes
ψd

3×2M
at the cochlea output, where M is the

number of FD stages.

TABLE 1 | Cochlea chip performance summary.

Parameter Value

CMOS technology UMC 65 nm

Frequency range 1.0–8.3 GHz

Peak voltage gain 12 dB

Power consumption 418 mW

Dynamic range 62 dB

Area 3.95 × 1.88 mm

Output 50 LVDS pairs

FIGURE 9 | (A) Die photograph of the digitally-programmable RF cochlea chip; and (B) measured input sensitivity curves for the frequency-encoded outputs at

stages {5, 10, 15, 25, 35} (Wang et al., 2020).
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Since the ILFD and FD outputs are logic-level signals (square
waves), their phase shifts can be efficiently estimated using on-
chip XOR gates, as mentioned earlier. However, our experimental
prototype used off-chip components. Since discrete logic gates do
not have enough bandwidth, we replaced them with high-speed
four-quadrant analog multipliers (AD834, Analog Devices).
These devices have a bandwidth of 500 MHz, which is sufficient
for processing the fundamental component of the FD outputs
(but not their harmonics). Thus, their outputs are given by

cAB(t) = sin

(

2π
f

3× 2M
t

)

× sin

(

2π
f

3× 2M
t −

ψd

3× 2M

)

,

=
1

2

(

cos

(

ψd

3× 2M

)

− cos

(

π f

3× 2M−2
t

))

.

(9)

After low-pass filtering, the cross-correlogram output is

cAB,av =
1

2
cos

(

ψd

3× 2M

)

=
1

2
cos

(

π f

3× 2M−1
× τd

)

. (10)

Thus, the output voltage of themultiplier allows estimation of the
input ITD τd, and hence the AOA of the transmitter.

Figure 10 shows our experimental prototype, which used two
RF cochlea test boards and a set of analog multipliers integrated
on another board. Signals are fed into the cochleas through
two broadband RF front-ends, each of which includes a Vivaldi
antenna and an off-the-shelf low-noise amplifier (LNA).

The N = 50 parallel outputs from the two cochleas are
multiplexed through an interface board (to reduce the number
of multipliers in this initial implementation) and fed into the
custom cross-correlogram board. The latter contains four parallel
channels, each consisting of a four-quadrant multiplier (AD834)
and an op-amp based active low-pass filter. The output voltages
of these channels are digitized (in this prototype, by a digital
oscilloscope) and processed in MATLAB to estimate AOA
values for the sources detected by the four selected cochlear
channels. These selections can be changed by the MATLAB

algorithm (e.g., to adapt to a change in source frequency) by
programming a microcontroller (Arduino Due) which in turn
programs the multiplexer on the interface board. In addition,
the microcontroller can program the gains of the cochlear stages
via the chip’s built-in SPI port; this is useful for automatic gain
control (AGC) to increase the system’s DR.

3.3. Over-the-Air RF Source Localization
In the first experiment, we fed signals from a RF signal
generator directly to the inputs of the two RF cochleas. As
shown in Figure 11A, both channels are fed the same signal
from a RF power splitter, except for a time delay applied to
the signal in channel B (relative to that in channel A) using
a digitally-programmable RF phase shifter (HMC649ALP6E,
Analog Devices). In addition, a 6 dB RF attenuator at the input
of channel A is used to compensate the insertion loss of the
phase shifter. The input power level to the cochleas was kept high
enough (∼0 dBm) to ensure phase-locked ILFD outputs.

The phase shifter has 6-bit control over the range [0◦, 360◦],
resulting in an LSB = 5.625◦. We kept the input frequency fixed
at 3.4 GHz, swept the phase shift, and extracted the resulting
ITD by averaging the output of the analog multiplier over each
phase shift step. Figure 11B shows the calculated output phase
shift 1ψout as a function of the actual input phase shift 1ψin.
As1ψin increases from 0◦ to 360◦, the estimated value of1ψout

linearly increases from 0◦ to 30◦ as expected; this is because the
total frequency division ratio was set to 1

3×2M
with M = 2, i.e., a

value of 1/12. The input signal amplitude at the multiplier board
for1ψin = 0◦ was used to calibrate the estimate for1ψout .

In the second experiment, we attempted to extract ITD in a
more realistic over-the-air indoor environment with RF signals
received by the two planar Vivaldi antennas. Figure 12A shows
the experimental setup and Figure 12B shows a simplified block
diagram of the positions of the transmitter and the two receiver
antennas. The two receivers were placed symmetrically (with
spacing d) about the center of a circle with radius R ≈ 1 m, which
is large enough to ensure far-field conditions at the receivers. The
transmitter wasmoved around the circumference of this circle for

FIGURE 10 | Block diagram of an experimental prototype of a two-channel RF scene analysis system based on two RF cochlea chips.
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FIGURE 11 | (A) Experimental setup of a two-channel RF scene analysis system with ideal input signals. (B) Calculated phase shift vs. actual input phase shift for the

two RF cochlea boards (channels A and B).

FIGURE 12 | (A) Experimental setup of a two-channel RF scene analysis system used for over-the-air localization experiments at 3.0 GHz. (B) Positions of the

transmitter (moving around the circumference) and the two receive antennas (kept fixed). (C) Theoretical and experimental phase delay 1ψ (i.e., ITD) between the two

channels at different transmitter positions; and (D) experimental input power levels for the two channels at different transmitter positions.

azimuthal angles in the range φ = [−90◦, 90◦]. We denote the
propagation delays to the two receivers by τA and τB. To ensure
that |τA − τB| ≤ T (i.e., one RF period) such that the ITD is
resolvable without ambiguity, we kept the RF frequency fixed at
fin = 3.0 GHz and set d = λ = 10 cm. The results can be easily
generalized to other input frequencies and also multiple sources,
as discussed in section 2.

Figure 12C compares the theoretical and experimental ITD
1ψ between the two channels for transmitter positions in
the range φ = [−90◦, 90◦] and a step size of 1φ = 15◦.

The theoretical ITD was calculated using Equation (4). The
experimental ITD was calibrated using the measured output
voltage at 1ψin = 0 in the first experiment (i.e., using
wired inputs). The theoretical and measured ITD curves are in
good agreement.

Figure 12D also shows the estimated input-referred power
levels Pin for the two cochlear channels vs. transmitter position
φ. These values were estimated by i) converting the digitized
outputs of the amplitude encoding circuits to output voltages
Vout ; and ii) finding Pin by dividing Pout with the cochlear transfer
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function. It is difficult to calculate theoretical values for Pin,A and
Pin,B due to uncertainties in the antenna gains and wireless path
losses. However, the experimental values reveal an approximately
linear dependence between Pin (in dB) and φ, with opposite
slopes for the two antennas. This dependence is due to physical
self-shadowing: one receive antenna blocks (i.e., shadows) part
of the wave incident on the other antenna. This effect increases
with φ because of the planar antenna geometry (see Figure 12A).
Finally, ILD can be estimated as the ratio of input power levels,
i.e., ILD≡ Pin,A/Pin,B.

In the next experiment, we built and tested data-drivenmodels
for localizing the transmitter using (i) ITD, and (ii) ILD. For
this purpose, the experimental data in Figures 12A,B was fit to
third- and second-order polynomials, respectively, as shown in
Figures 13A,B. Over the full range [−90◦, 90◦], using the ITD
method (as shown in Figure 13A) results in a mean fitting error
ǫ = 4.7◦ and a standard deviation σ = 10.7◦, while using the ILD
method (as shown in Figure 13B) results in a smaller mean fitting
error ǫ = 0.9◦, but a larger standard deviation σ = 12.4◦. These
errors are small enough to confirm the utility of our approach in
real-life wireless environments.

The fitted curves were used to localize sources at (i) φ =

−14.0◦ (using ITD, results shown in Figure 13C); and (ii) φ =

−9.5◦ (using ILD, results shown in Figure 13D). In both cases,
the red stars denote the estimated source locations (N = 20
trials), while the yellow circle shows the actual location (i.e.,
the ground truth). The histograms of estimation error in both
cases are plotted in Figures 13E,F. These results show that ITD
is more accurate than ILD in this case; it provides ∼3× smaller
values of mean error and standard deviation (ǫ = 2.2◦ and
σ = 0.62◦, respectively). In addition, the ITD results are

robust to parameter mismatch between the cochleas as long
as the ILFDs remain locked, while the accuracy of the ILD
results degrade with mismatch. Fortunately, Monte-Carlo circuit
simulations show that the magnitudes of the cochlear transfer
functions are tolerant to process corners and device mismatch
(standard deviation σ < 5%). The main reason for such
robustness is the extensive use of well-matched passive on-
chip inductors and capacitors to define the transfer functions,
rather than the active circuits used to realize audio-frequency
silicon cochleas.

The human auditory system mainly relies on ITDs for
localization at frequencies < 1 kHz (where neural phase locking
occurs but self-shadowing effects are small), and mainly on IIDs
at frequencies > 1.5 kHz (where phase locking is ineffective
but self-shadowing by the head becomes significant). There
is also a transition zone between 1 and 1.5 kHz where both
mechanisms play a role. Given similar wave physics, we expect
ITD- and ILD-based source localization methods to also have
complementary advantages at RF. It is therefore of interest to
combine them to create a better localization model. The two
most common range-based non-GPS localization methods, i.e.,
RSSI and AOA, have been intensively studied at RF over the last
decade. However, an in-depth analysis of methods to combine
these two cues is still unavailable, although weighted sums
have been proposed (Nguyen et al., 2019). We will study such
combinations in our future work.

3.4. Range Dependence of Over-the-Air
Source Localization
Let us define R as the radial distance (i.e., range) of an
RF source from the origin (see Figure 2A). The received

FIGURE 13 | (A) Experimental cochlear phase delay (i.e., ITD) and a polynomial fitting curve. (B) Experimental cochlear input power differences (i.e., ILD) and a

polynomial fitting curve. Estimated transmitter positions using (C) ITD, and (D) ILD. In both cases, results from N = 20 trials are shown, and the actual transmitter

position is indicated by the yellow circle. (E.F) Histograms of the position estimation error using (E) ITD, and (D) ILD.
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TABLE 2 | Performance summary compared with prior work.

References Cues Stimulus RMS error Approach

(0◦-45◦/45◦-90◦)

This work ITD, ILD Sine tones 0.6◦(ITD), Two silicon

cochleas(1.0–8.3 GHz) 2.0◦(ILD)

Xu et al. (2019) IPD, Austalk 3.68◦ Two digital

cochleas

Spectral

cues

(CNN)

Chan et al. (2010) ITD Sine tones 2.7◦/5.5◦ Two silicon

cochleas

(400, 650 Hz) (AER-EAR)

van Schaik and

Shamma (2003)

ITD Sine tones 3◦/12◦ Two silicon

cochleas

(50–300 Hz) (zero-crossing)

power from this source decreases as 1/R2 in free space, and
approximately as 1/Rn in scattering environments (where n = 2–
4). The minimum useful source range Rmin for the proposed
localization method is limited by saturation of the cochlea
(which occurs for input power levels > 5 dBm), while the
maximum useful range Rmax is limited by either the ILFD
locking threshold (for ITD) or circuit noise (for ILD). For
example, as source distance increases and the input power
level drops, it eventually falls below the relevant ILFD’s locking
threshold. As a result, the ILFD becomes unlocked and its
average cross-correlation CLocked

AB,av becomes zero, thus preventing
ITD-based localization. The locking thresholds are frequency-
dependent (as shown in Figure 4C) but generally range from
−10 dBm to −20 dBm, thus limiting the useful localization
range Rmax/Rmin for a given source. Fortunately, the range can
be greatly increased by using automatic gain control (AGC).
In this approach, a programmable gain amplifier (PGA) is
placed after each LNA (see Figure 3), and its gain adjusted
to keep the signal power at the cochlear input terminals
relatively constant.

Similarly, the maximum localization range Rmax using ILDs
is limited by the SNR of the cochlear outputs. For our current

design, the maximum available SNR is SNRmax ≈ (V2
L/2)/v

2
n,out

where VL is the linear range of the active circuit within each

cochlear stage, and v2n,out is the total output noise. Assuming a

reasonable value of VL = 0.2 V, v2n,out and SNRmax vary over
the ranges 210-330 µVrms and 52-57 dB, respectively. Thus, the
useful dynamic range (DR) for ILD-based localization is∼50 dB,
which corresponds to a Rmax/Rmin ratio of about 300× in free
space. Again, this range can be further extended using an AGC
if required.

3.5. Comparison to Prior Work
Table 2 summarizes the performance of this design and compares
it with prior work on bio-inspired source localization. Ours is the

only work that operates at RF (earlier efforts were limited to audio
frequencies). Also, our work has the lowest source localization
errors for both ITD- and ILD-based methods.

4. CONCLUSION

We have described a hardware-efficient, real-time, ultra-
wideband, and multi-source RF localization system based
on combining two biologically-inspired broadband RF signal
analyzers (“RF cochleas”) with a stereausis network that
generates cross-correlograms from the cochlear outputs. We
have demonstrated the operation of the proposed system using
both simulations and preliminary over-the-air wireless tests.
Realistic indoor and outdoor wireless channels are subject to
additional effects, including wide-band interference and multi-
path propagation. The effects of interferers on source localization
can be greatly reduced by using a set of tunable band-pass
or band-stop filters before the cochleas, as shown in Figure 3.
The effects of multi-path propagation on source localization in
various RF environments are harder to model and predict, and
will be studied in our future work.

Future work will focus on extending the proposed source
localization method to the elevation plane. One method is based
on monaural cues, for example intensity differences between
adjacent output channels of the same cochlea (Searle et al., 1976).
These differences arise from the frequency-dependent radiation
patterns of the two antennas. Another promising approach is
based on modifying the radiation patterns of the two antennas
such that they become asymmetric with respect to the azimuth
plane (e.g., by rotating one of them); this makes the binaural cues
(mainly the ILD) elevation-dependent. Note that the two ears of
the barn owl (Tyto alba) are asymmetrically positioned within
its face to generate similar azimuth- and elevation-dependent
binaural cues (Knudsen and Konishi, 1979); the bird uses these
cues to accurately localize acoustic sources in 2D.
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