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Deep convolutional neural networks (DCNNs) are widely utilized for the semantic
segmentation of dense nerve tissues from light and electron microscopy (EM) image
data; the goal of this technique is to achieve efficient and accurate three-dimensional
reconstruction of the vasculature and neural networks in the brain. The success
of these tasks heavily depends on the amount, and especially the quality, of the
human-annotated labels fed into DCNNs. However, it is often difficult to acquire
the gold standard of human-annotated labels for dense nerve tissues; human
annotations inevitably contain discrepancies or even errors, which substantially impact
the performance of DCNNs. Thus, a novel boosting framework consisting of a DCNN
for multilabel semantic segmentation with a customized Dice-logarithmic loss function,
a fusion module combining the annotated labels and the corresponding predictions
from the DCNN, and a boosting algorithm to sequentially update the sample weights
during network training iterations was proposed to systematically improve the quality
of the annotated labels; this framework eventually resulted in improved segmentation
task performance. The microoptical sectioning tomography (MOST) dataset was then
employed to assess the effectiveness of the proposed framework. The result indicated
that the framework, even trained with a dataset including some poor-quality human-
annotated labels, achieved state-of-the-art performance in the segmentation of somata
and vessels in the mouse brain. Thus, the proposed technique of artificial intelligence
could advance neuroscience research.

Keywords: artificial intelligence, deep learning, multilabel segmentation, boosting method, 3D reconstruction,
convolutional neural network

INTRODUCTION

3D digital reconstruction of the mouse brain from 2D image stacks is well known for its
complexity and time-consuming nature due to the extremely high density of the vasculature and
neural networks in brains (Motta et al., 2019). Some automated neuron localization and tracking
methods have been developed to accelerate the reconstruction speed with substantial success (Quan
et al., 2013; Peng et al., 2017), whereas the complicated morphology and the dense distribution
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currently make a fully automatic and systematic framework of
accurate 3D reconstruction pipelines still out of reach.

Image analysis algorithms play a decisive role in pipelines,
among which deep-learning-based methods [mainly via
deep convolutional neural networks (DCNNs)] along with
their substantial advances in recent years have demonstrated
significant success with robust evidence in applications such as
image classification, object detection and semantic segmentation
(Lecun et al., 2015; Long et al., 2015; Falk et al., 2019; Moen
et al., 2019). These DCNN-based methods were integrated into
processes that generate connectomics with the supervision of
human-annotated labels, indicating a more efficient and more
accurate human-machine interactive method to produce larger
reconstructed volumes of mouse brains in less time (Todorov
et al., 2020). Consequently, the correctness and completeness of
human-annotated labels for dense nerve tissues, i.e., neurons,
somata and vessels, in 2D images acquired by either X-ray
microscopy (XRM), light microscopy or EM are more important
in these deep-learning-based methods than ever before because
these labels are utilized to guide essentially both the learning
stage and the performance assessment stage of these methods
(Zeng et al., 2017; Haberl et al., 2018; Li T. et al., 2019).

However, the gold standard of human-annotated labels for
dense nerve tissue is often difficult, if not impossible, to
acquire and accumulate since domain knowledge, experience
and time are all required for human experts to annotate nerve
tissue correctly and completely (Giovanna et al., 2018). For
instance, our previous experience indicates that it typically takes
about 10 working hours for a trained undergraduate student
to finish labeling a single neuronal wire with a length of 6–
8 cm in a microoptical sectioning tomography (MOST; Wu
et al., 2014) image stack with a mean accuracy of 0.90–0.95.
Labeling vasculature structures in the brain requires similar
efforts. It is thus understandable that the gold standard would
never be sufficient to satisfy the pressing needs of the current
deep-learning-based methods, which are often trained with
hundreds or thousands of annotated image data. Even so,
the resulting reconstructions of dense nerve tissue are still
error-prone, affecting its scientific practicality (Motta et al.,
2019). Most biomedical researchers who are ready to use data-
hungry DCNNs for segmentation tasks thus encounter a realistic
challenge due to the availability of a relatively large set of poor-
quality or questionable annotated data and only a small set
of high-quality data or gold standard data. To address this
problem, various strategies have been proposed; for instance,
semisupervised or weekly supervised learning is proposed to
utilize fewer labels and achieve better results (Fang et al., 2019;
Vorontsov et al., 2019; Zhou et al., 2019). In this work, an
alternative approach, inspired by the Adaboost method (Freund
and Schapire, 1997), is proposed to gradually adjust the poor-
quality training data supervised by a well-performing DCNN,
which was trained sequentially to pay more attention to those
hard-to-learn instances.

Notably, previous DCNNs in biomedical image segmentation
have mainly focused on the segmentation of a single object
(Kong et al., 2019; Moen et al., 2019; Todorov et al., 2020;
Wu et al., 2020). Consequently, if multiple objects existing

in the same image need to be segmented, previous DCNNs
would spend considerable time and require hardware usage
to make training and prediction efforts. Because both somata
and vessel structures occur at the same time in MOST
image stacks, a multilabel semantic segmentation network
was thus proposed in this study for its characteristics of
training once and obtaining the segmentation result for multiple
objects simultaneously.

In this paper, we proposed a novel boosting framework
(Figure 1) consisting of a multilabel DCNN based on U-Net
(Ronneberger et al., 2015; Falk et al., 2019) with a customized
Dice-logarithmic loss function, a fusion module combining
the original human-annotated labels and the corresponding
predictions from the DCNN, and a boosting algorithm to
sequentially update the sample weights during network training
iterations. The framework was then evaluated with the MOST
dataset to achieve efficient and accurate segmentation of
somata and vessel structures in the mouse brain. Considering
that minor errors occur in human annotations, the proposed
framework improved the network performance by about 3–10%
for both somata and vessels with less prediction time. The main
contributions of this work are summarized as follows:

• We developed a boosting framework to systematically
improve the quality of human-annotated labels for deep-
learning-based segmentation tasks.
• We formulated a customized Dice-logarithmic loss

function for a multilabel segmentation network to mitigate
the effects of ill-balanced classes in the training dataset
without the introduction of extra hyperparameters.
• We performed experiments on MOST image stacks

and demonstrated the advantageous performance in the
segmentation of both somata and vessels compared to other
methods.

Our source codes, the trained network weights, and a
validation dataset are publicly available to better assist the
development of a three-dimensional reconstruction of the mouse
brain in the biological community.

RELATED WORK

Biomedical Image Segmentation
Biomedical image segmentation has become essential in recent
years due to the growing demand in life sciences and medicine,
e.g., on the three-dimensional reconstruction of vasculature
and neural networks in brains using microoptical data (Wu
et al., 2014). Semantic segmentation has been applied to various
scenarios. Arteries, veins, and capillaries have been reconstructed
in the mouse brain (Xiong et al., 2017), as well as the retina
in human eyes (Hu et al., 2018). In addition, the neural system
is a composite of features, and different types of components
should be segmented separately (Gong et al., 2016). Furthermore,
brain tumors containing various tissues should be identified for
accurate medical diagnosis (Kao et al., 2020).

However, most of the existing deep-learning-based
segmentation techniques were developed to be single-label
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FIGURE 1 | The boosting framework for multilabel semantic segmentation.

networks, i.e., to identify a single type of object in the images
from the network output, including U-Net (Ronneberger et al.,
2015; Falk et al., 2019), flood-filling networks (FFNs; Januszewski
et al., 2018), DeepEM3D (Zeng et al., 2017), and CDeep3M
(Haberl et al., 2018), which have achieved significant progress
for segmentation tasks in different types of datasets, including
light, X-ray, and electron microscopy (EM). These networks
have achieved various degrees of success in the segmentation of
dense nerve tissues. For instance, whole-brain mouse vasculature
stained by two different dyes (i.e., wheat germ agglutinin and
Evans blue) was reconstructed in four hours at human-level
accuracy (about 0.94; Todorov et al., 2020). Combining the
DCNN with the multitask learning method, an F1 score of
0.92 in somata segmentation was reported on a Nissl-stained
dataset captured using the MOST system (Hu et al., 2021).
A Docker-powered DCNN was employed for the segmentation
of somata and vessels in MOST image stacks and achieved high
accuracy on both tissues with F1 scores of 0.96 (Wu et al., 2020).
Multilabel segmentation techniques can be developed based on
existing single-label networks with multiple output branches
but warrant further investigation (Hu et al., 2018), for instance,
to properly accelerate the convergence of network training
and consistently obtain a correct segmentation result from the
designed output branch.

Abnormal Annotation
Human annotated labels for natural images are far from
perfect, and thus, several deep-learning-based methods have been
developed to address these abnormal annotation issues. First,
the coarse annotation issue has been partially resolved with a
weakly supervised learning technique (Dietterich et al., 1997),
which has been widely used for the segmentation of natural
images (Oquab et al., 2015; Durand et al., 2017) and medical
images (Hwang and Kim, 2016). However, the performance
of weakly supervised learning for segmentation is known to
be a challenge since the application of coarse annotations to
networks of pixelwise predictions is laborious. Second, in the
medical research field, clinical experts have often focused on

specific anatomical structures and thus have produced partial
or missing annotations (Petit et al., 2018). The issue could
be largely leveraged by using a curriculum strategy (Bengio
et al., 2009). Finally, noisy annotations are a typical challenge
in machine learning (Natarajan et al., 2013), particularly in
image classification and segmentation (Frenay and Verleysen,
2014; Algan and Ulusoy, 2019). Some noise-tolerant versions
of CNNs have been developed (Lu et al., 2017; Li J. et al.,
2019) and have achieved various degrees of success in public
datasets such as Pascal VOC (Everingham et al., 2010) and
CIFAR-10 (Krizhevsky and Hinton, 2009). However, to the
best of our knowledge, the efficiency and accuracy reported
in these studies are probably not adequate for the purpose
of digital reconstruction of the brain, considering that human
annotations for vasculature and neural structures in the mouse
brain are even more laborious and error-prone. It is thus
understandable that for segmentation tasks for somata and
vessel structures in the brain with abnormal annotations, new
techniques are still expected.

Boosting-Related Methods in Image
Segmentation
The acquisition of a large number of human annotations for
biomedical images is always difficult and sometimes impractical,
and thus, various strategies and techniques have been explored
either to boost the size of the dataset or to boost network
performance with the help of prior knowledge. For instance, to
increase both the size and the diversity of the training dataset,
human annotations from other domains, e.g., BBox (bounding
box) and ROI (region of interest), are utilized in a weakly
supervised mechanism (Dai et al., 2015; Gong et al., 2017).
Moreover, based on the fact that unlabeled or weakly labeled
data are easier to obtain, another weakly supervised segmentation
method has been proposed to make use of image-to-image
translations to leverage unsegmented training data with and
without cases of interest (Vorontsov et al., 2019). A simple
and efficient way to randomly augment the training dataset,
named InstraBoost, has been proposed using the existing human
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annotations through location probability map guided copying-
and-pasting (Fang et al., 2019).

To boost network performance, a partially supervised
multiorgan segmentation network has been implemented as a
prior-aware neural network (PaNN) by explicitly incorporating
anatomical priors on abdominal organ sizes; this network guides
the training process with domain-specific knowledge (Zhou et al.,
2019). In Roth et al. (2019), a distinct network architecture,
along with a new training style, was carefully designed to assist
the learning process, and thereby, the network was able to
interpret errors made previously using automatically generated
training labels. A few-shot segmentation network of foreground
objects was demonstrated to give a support image and the
ground-truth segmentation of the support image (Nguyen and
Todorovic, 2019). The network’s performance is boosted by
specifying its gradient for fine-tuning to new classes during
the testing stage.

Our proposed method is different from previous work in that
we first focused on the improvement of the quality of human
annotations via well-designed fusion with network predictions,
whereas the latter was exploited equivalently as “a priori
knowledge.” Then, during boosting iterations, the sample weights
of those hard-to-learn instances were sequentially updated until
the desired network performance was obtained.

MATERIALS AND METHODS

In an endeavor to improve both the efficiency and accuracy
of deep-learning-based methods for semantic segmentation of
biomedical images while considering imperfections in human
annotations, a boosting framework is proposed, as shown in
Figure 1. We borrowed the word “boosting” from ensemble
methods of machine learning to name the proposed framework
since the base learner (i.e., the DCNN) within the framework was
trained sequentially to pay more attention to instances with more
segmentation errors.

The boosting framework consists of three major components,
i.e., a multilabel DCNN (U-Net was used in this study but can be
easily replaced by other networks) with the revised architecture
to define a customized loss function (section “Multilabel
Semantic Segmentation with U-Net With a Customized Loss
Function”), a fusion module that aims to gradually fix the minor
mistakes in human annotations based on network predictions
without human intervention (section “Fusion Module”), and a
boosting algorithm to sequentially update the sample weights
during the network training iterations (section “Boosting
Algorithm”). The performance of the boosting framework is
assessed independently via a separate gold standard set, and
thus, it can be trained and validated end-to-end until the
desired performance is reached or the boosting iterations
are exhausted.

Multilabel Semantic Segmentation With
U-Net With a Customized Loss Function
U-Net (Falk et al., 2019) was utilized as the base learner of the
boosting framework. The network architecture was revised as

in Figure 2 to produce multiple output layers, including two
segmentation maps (e.g., somata and vessel structures in MOST)
and an output layer for the computation of a customized Dice-
logarithmic loss function. Moreover, after careful calibrations of
the performance tuning, some extra layers, and hyperparameters
used in the revised U-Net architecture were adjusted as
described below.

(1) Dropout and batch normalization (BN) layers
To alleviate notorious overfitting problems in network
training, our experiments based on the MOST dataset
suggested that for a typical U-Net architecture, all BN
layers were better placed symmetrically before pooling
layers, and an extra dropout layer with a dropout rate of
0.5 was placed just before the upsampling layers.

(2) Customized Dice-logarithmic loss function
The occurrence of somata in the MOST image stack was
substantially more frequent than that of vessels, which
suggests that for the purpose of network training, two
classes of segmentation objects are not well balanced;
i.e., it is likely that the network was trained with more
information from somata than from vessels. Consequently,
in multilabel segmentation tasks, the network output for
the segmentation of one object sometimes contains the
information from the other object even after hundreds
of training epochs (Figure 3). This problem of ill-
balanced classes across multiple segmentation objects
is likely attributed to (1) predictions of both objects
sharing the same network parameters except in the
final output layer and (2) the standard cross-entropy
loss function used for multiple segmentation outputs
with ill-balanced classes probably being too slow to
converge or even becoming trapped in some local
minima. One possible solution is to implement a
weighted loss function for all segmentation objects that
regrettably introduces some extra hyperparameters (i.e.,
class weights) requiring additional laborious network fine-
tuning. Another possible solution is focal loss (Lin et al.,
2017), which, after some numerical experiments, did not
substantially improve the segmentation performance in
the proposed multilabel U-Net but introduced two more
hyperparameters.

Instead, to mitigate the effects of ill-balanced classes
in the training dataset without the introduction of extra
hyperparameters, a novel loss function is proposed to maximize
Dice coefficients (DCs) between network predictions and
the corresponding annotations of multiple segmentation
objects while simultaneously minimizing DCs across
different objects. The latter was designed intentionally
to prevent the network output for one object from
containing information from other objects. Furthermore,
the introduction of DCs into the loss function reconciled
the metrics of network training and framework performance
(Milletari et al., 2016).

We thus implemented a series of experiments on various
forms of the DC-based loss function, among which a
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FIGURE 2 | Illustration of the revised U-Net architecture for multilabel semantic segmentation. The figure demonstrates the architecture with the largest patch size of
512 × 512 voxels as input images on the left. Each light blue solid box corresponds to a multichannel feature map, as the channel number is denoted on top of the
box and the image dimensionality is denoted on the left edge. The white boxes with light blue lines represent the concatenated copied feature maps from the
contractive path. On the upper right, the dashed-line box represents the output branches consisting of two segmentation maps and one extra layer to compute the
customized loss function. The colored arrows represent the different operations listed in the lower-right legend.

Dice-logarithmic loss has been shown to better help the
convergence of the network training and defined as follows:

Losstotal = − log
[
DC

(
Annosoma, Predsoma

)]
− log

[
DC

(
Annovessel, Predvessel

)]
− log

[
1− DC

(
Annosoma, Predvessel

)]
− log

[
1− DC

(
Annovessel, Predsoma

)]
(1)

where Annosoma and Annovessel are the human-annotated labels
for somata and vessels, respectively, in the MOST dataset,
and Predsoma and Predvessel are the corresponding network
predictions. In addition, DC is defined as

DC =
2
∣∣Anno∩ Pred∣∣
|Anno| +

∣∣Pred∣∣ . (2)

The loss function defined in Equation (1) is calculated as one of
the output layers in U-Net (Figure 1) and updated in real time
during the network training stage.

Fusion Module
Human annotations are not perfect for various reasons, e.g.,
too many similar objects with blurred boundaries and subtle

differences between diminutive objects and the background.
Thus, deep-learning networks trained from such datasets
cannot be expected to fully segment the objects accurately.
Furthermore, the assessment of network performance based
on these “imperfect” datasets cannot be entirely reliable since
the network might be misguided to learn something not even
existing in the images.

Here, a fusion module is proposed to carefully and gradually
“rectify” the errors in human annotations by reconciling the
annotations with network predictions to better guide the training
process of the deep-learning networks, which proves to be
most likely data-driven. After the fusion, the “updated” human
annotations were used as the new training set for the network.
The general assumption behind the fusion module is that most of
the human annotated errors for image segmentation tasks come
with the missing or overlapped labels, and only a small part of the
errors is attributed to fake labels, i.e., labels for an object that does
not exist in the image.

Therefore, it is feasible to try to utilize the predictions
of well-performing networks to locate and compensate for
the missing/overlapped labels in the annotations under the
conditions that (1) network performance should be good enough
to provide meaningful corrections to the missing labels and

Frontiers in Neuroscience | www.frontiersin.org 5 April 2021 | Volume 15 | Article 610122

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-610122 April 5, 2021 Time: 14:11 # 6

Wu et al. Multilabel Segmentation for Mouse Brain

FIGURE 3 | Network predictions vs. human annotations for a MOST 2D image (downsampling to 64 × 64 pixels) using the multilabel U-Net architecture with the
standard cross-entropy loss function in a preliminary study. These preliminary studies were implemented with reduced image resolutions from the original MOST
dataset for the purpose of fast explorations of parameter space. A frame from the raw image (A) contains somata (dark gray) and vessels (white), which are labeled
in panels (B,C) and were predicted by the network in panels (D,E), respectively. Red squares numbered 1 and 2 in panel (A) mark two vessel structures, which are
annotated in panel (C) and were correctly predicted by the network in the “vessel” output layer [as in panel (E)] but mistakenly predicted in the “somata” output layer
[as in panel (D)].

(2) most of the human annotations are accurate and only a
very small portion of the annotations contain errors such as
missing and/or overlapped labels. The assumption could be
readily verified in the MOST dataset, which after careful manual
inspection indicated that nearly all errors in human annotations
(about 95%) were attributed to missing and overlapping labels
(Figure 4). The inspections also suggested that in principle, these
missing/overlapped labels could be compensated by network
predictions. However, due to the complexity of the determination
of the “correct” object boundary from the overlapped labels
between the annotations and the predictions, a simplified fusion
solution to focus on missing labels is proposed in this work, and
these missing labels likely were the major source of errors in the
present multilabel semantic segmentation.

The fusion module was implemented for somata and vessel
segmentation in the MOST dataset with three different fusion
strategies; the three proposed strategies were as follows:

(a) the union of the predictions and annotations
(b) a combination of human annotations with missing labels

located from the predictions
(c) a combination of network predictions with missing labels

located from the annotations.

The output of different fusion strategies (Figure 5) shows that
considering that it is more likely for object labels to be missed

in human annotations (e.g., green dashed-line box numbered as
3) and less likely for well-performed networks to predict fake
labels (e.g., blue crossing-line box numbered as 5) completely,
for MOST datasets, all three strategies were able to “recover”
the missing labels either in the annotation or in the prediction
after fusion. However, strategy (a) might be problematic and
worthy of further investigation since it simply combines all
possible errors from both the annotation and the prediction, and
these errors would persist thereafter during network training.
For strategies (b) and (c), the main difference is whether the
prediction or the annotation would be used after fusion when
overlapped labels occur.

The general algorithm in the fusion module is described
in detail below.

First, the network was trained with the original MOST training
set to achieve an overall DC performance of at least 0.90 for both
somata and vessels (evaluated in a separate test set); otherwise, no
fusion action occurs. Here, the performance threshold of 0.90 was
chosen to ensure that network predictions would be good enough
to guide the fusion algorithm in locating those missing labels.

Second, instances with DC less than 0.90 in the training
set were selected to be fused with the corresponding network
predictions based on the different strategies proposed above.
More specifically, these selected human-annotated data were
updated by comparison with the predictions to locate either
those labels predicted by the network but missed in the
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FIGURE 4 | A frame of the MOST image stack (A) with the corresponding annotations for somata (B), and vessels (C). Red boxes numbered 1 and 2 in panel (A)
mark vessel structures that were missed in human annotations (as pointed out by red arrows) in panel (C), and green boxes numbered 3 and 4 in panel (A) mark
soma structures that were annotated as overlapping labels (as pointed out by green arrows) in panel (B).

FIGURE 5 | Diagrams of 4 segmentation labels of the ground truth (red boxes), the corresponding annotation (green boxes) and the network prediction (blue boxes)
in the upper row. For demonstration purposes, there is a missing label in the annotation (green dashed-line box numbered 3) indicating human errors and a missing
label (blue dashed-line box numbered 4) and a fake label (blue crossing-line box numbered 5) in the network prediction indicating network errors. In the lower row,
the fusion module output (orange boxes) based on the diagrams above is shown for the fusion strategy (A), (B), and (C). Note that one of the ground-truth labels
(red box numbered as 2) has been added to each diagram to indicate the discrepancies between the ground truth and various labels.

annotations as in strategy (b) or those labels existing in the
annotations but missed in the predictions as in strategy (c)
using a modified “union-find” algorithm (Sedgewick and Wayne,
2011). Note that the missing labels were strictly defined without
any overlapping with existing labels. Strategy (a) could be
easily computed as a union operation between the annotation
and the prediction.

Third, after fusion, the updated training set was utilized
to train the network from scratch with the same training
parameters. The network performance was then evaluated using
a separate test set.

Our preliminary experiments of the proposed fusion module
on the MOST dataset indicated that after 3000 epochs,
the multilabel U-Net (as in section “Multilabel Semantic
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FIGURE 6 | Performance of the boosting framework during 10 iterations: mean DC for somata (A) and vessels (B) in the gold standard set. The results from three
different fusion strategies are indicated by blue, red, and green solid lines. The performance on the test set is also shown for somata (C) and vessels (D).

Segmentation with U-Net With a Customized Loss Function”)
architecture was able to achieve an overall DC performance
of about 0.95 in the training set and about 0.90 in the test
set for both somata and vessels, and normally, less than
3% of training instances were fused with the corresponding
network predictions.

Boosting Algorithm
The fusion module ideally reduces the errors of human
annotations in the training data, but its effectiveness heavily
depends on the performance of the network, especially in
hard instances, which would significantly impact the overall
performance. After a few experiments in the MOST dataset, it
was suggested that a one-time fusion between the annotations
and predictions would likely not be enough for the network to
achieve state-of-the-art (SOTA) performance. Multiple fusions
might be more appropriate to gradually justify the network
learning process. Thus, a boosting technique is proposed to
allow the network to pay slightly more attention to the hard
instances that the predecessor might underfit, causing the
subsequent network to focus increasingly on the hard instances.
The boosting algorithm works by following a similar fashion as
the Adaboost method in conventional machine learning, with the
main difference that the final ensembling stage in Adaboost is
skipped in our framework because the instances in the training
set are likely modified after each boost and fusion; thus, it might
have been inappropriate to ask all the trained networks to vote
the final results.

(1) As a result, the proposed boosting algorithm is
implemented as followed:All the instances in the training

data were initially assigned the same sample weight wj
i

calculated as 1/m, where i = 1. . .m is the number of
instances and j = 1 or 2 represents somata and vessels,
respectively

(2) The network was trained with the weighted instances, and
then, the DC was assessed for each instance for both somata
and vessels. The weighted error rates Errj were computed
over the training set as

Errj =

∑m
i = 1

DC < δ

wj
i

∑m
i=1 w

j
i

(3)

where δ is the threshold value to determine which
instances would be boosted. It was set as 0.97 for both
somata and vessels.

(3) If Err was less than 0.5 but greater than 0, which means
that the network performed well (i.e., a weak learner was at
least more accurate than random guessing) in the training
set, the sample weights could be updated as

wj
i =

wj
i if DC ≥ δ

wj
i ∗ e

0.5∗log
1−Errj
Errj if DC < δ

(4)

and then were normalized (i.e., divided by the sum of all
weights). Otherwise, no sample weights were updated.

(4) The network was again trained from scratch with the
instances of updated weights, and the whole process
was repeated until the desired number of boosting
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iterations was reached or the goal of the network
performance was achieved.

Since the network performance was normally evaluated by
the test set during each boosting iteration to determine whether
the network was properly trained, i.e., neither overfit nor
underfit, another independent set was required to evaluate the
efficiency of the boosting algorithm; i.e., to observe whether
after boosting, the performance was de facto “boosted”. For this
reason, an extra gold standard data set consisting of images
was carefully inspected by a group of human experts to ensure
that the annotations were as good as possible was introduced
as an independent set (Figure 1). The network performance of
multilabel semantic segmentation is thus reported based on both
the test set and gold standard set after each boosting iteration.

To make predictions, the boosting algorithm simply employed
the latest network after boosting iterations or the best-performing
network evaluated on the gold standard set.

EXPERIMENTS AND RESULTS

The MOST system performs both thin slicing and imaging while
recording the image coordinates for automatic alignment. By
taking advantage of the modified Nissl staining method, the
MOST system was able to provide a high-resolution data set of
vascular and cellular structures of the entire mouse brain with
a voxel size of 0.35 µm × 0.35 µm × 1 µm, interpolated to
isotropic 0.35 µm and saved at a depth of 8 bits. The gray intensity
of the voxel codes the cellular and vascular information of the
brain (Wu et al., 2014). A representative MOST image stack of
512 × 512 × 1,000 voxels (i.e., 179 µm × 179 µm × 350 µm),
along with the human annotations for both somata and vessels
within the stack, were fed into the proposed boosting framework
in this study. The annotations contained some errors mainly
due to missing labels and inaccurate boundaries of somata and
vessels. To independently assess the performance of the entire
framework, a separate image dataset consisting of 10 2D images
of MOST with labels that were carefully inspected and improved
one-by-one by three human experts was utilized as the gold
standard set. This small set of gold standards was never used
during network training and validation. All the experiments
were run within a Docker image configured with Ubuntu 16.04
LTS, Python 3.6 and Keras 2.2 with TensorFlow 1.14 as the
backend on a Linux server equipped with 2 Nvidia 1080TI GPUs
and 96 GB memory.

Data Preprocessing
The MOST image stack, along with the 10 gold standard sets,
was first processed via a technique named histogram equalization
to enhance the contrast and was then normalized by simply
dividing all pixel values by 255. The image stack along with
the corresponding annotations for somata and vessels was
randomly split into training, validation, and test sets, which
consisted of 800, 100, and 100 images with the same voxel size
of 512 × 512, respectively. Then, various data augmentation
techniques (e.g., rotation, shifting, zoom-in/out, flipping, etc.)

were applied to the original training set (i.e., 800 images) to
generate the final set of 2,400 images ready for network training.
No real-time data augmentation was applied thereafter during the
boosting iterations.

Network Training Strategy
The training and validation sets of the MOST image stack were
fed into the U-Net (as described in section “Multilabel Semantic
Segmentation With U-Net with a Customized Loss Function”)
and trained for 3,000 epochs using the Adam optimizer with
a constant learning rate of 5× 10−5. The epoch number of
3,000 was carefully selected since a few numerical experiments
indicated that the U-Net performance evaluated in the training
and validation sets was nearly stable after 3,000 epochs. During
the training, each instance was initially assigned a sample weight
of 1/2,400. The best trained network was selected based on the
performance in the validation set by observing the customized
Dice-logarithmic loss after each epoch and then was evaluated in
the test set of 100 images and the gold standard set of 10 images.

Fusion and Boosting
Depending on the performance of the best trained network in
the test set, the training instances that were selected according
to the threshold values described in section “Fusion Module”
were fused with the corresponding predictions, resulting in a new
training set. Then, the sample weights for the new training set
were updated according to the boosting algorithm described in
section “Boosting Algorithm.”

This new training set and the updated sample weights were
fed into the U-Net architecture to train from scratch for 3,000
epochs. The best-trained network was again utilized for the fusion
and boosting iteration. This whole process was repeated 10 times
within the proposed boosting framework.

Results Analysis
The performance of the boosting framework assessed via mean
DC in the gold standard and the test set with different fusion
strategies is shown in Figure 6 and summarized in Table 1.
The fusion strategy (a) performed poorly, especially in the
segmentation of vessels in the gold standard set (mean DC as
0.719). The fusion strategy (c) performed relatively well for the
segmentation of somata in both the gold standard (mean DC as
0.994) and the test set (mean DC as 0.972) but worse than the
fusion strategy (b) for the segmentation of vessels (mean DC as
0.838 vs. 0.971, and 0.933 vs. 0.963, respectively).

To observe whether the boosting framework indeed improves
network performance, a linear regression model was then
employed to analyze the trend of the network performance
by fitting the mean DC in the gold standard and the
test set, respectively, during boosting iterations. The result
indicated that both fusion strategies (a) and (b) “boosted”
the network performance with more iterations since the
linear coefficients were positive, whereas no such consistent
performance improvement was observed in the fusion strategy
(c) (Table 1).

Therefore, the fusion strategy (b), i.e., a combination of human
annotations with missing labels located from the predictions, is
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TABLE 1 | Network performance (mean DC) and performance boosting trend (linear coef.) of the proposed framework.

Models Object Gold Standard DC/Linear Coef Test Set DC/Linear Coef.

DDeep3M Soma 0.988 0.968

Vessel 0.937 0.923

U-Net without fusion/boosting Soma 0.956 0.964

Vessel 0.825 0.912

Boosting framework Strategy (a) Soma 0.938/0.0087 0.953/0.0024

Vessel 0.719/0.0080 0.903/0.0013

Strategy (b) Soma 0.996/0.0085 0.994/0.0036

Vessel 0.971/0.0012 0.963/0.0082

Strategy (c) Soma 0.994/0.0013 0.972/-0.0035

Vessel 0.838/-0.0043 0.933/-0.0069

The performance boosting trend is indicated by linear coefficients fitted by the linear regression model for different fusion strategies. Positive values in the linear coefficient
indicate a general upward trend, and negative values indicate a downward trend. For comparison, the performance of DDeep3M and multilabel U-Net (trained for 30,000
epochs without fusion and boosting iterations) is also shown. The bold values mean that within the same column, they represent the best results in various experiments.

FIGURE 7 | Network predictions vs. human annotations for a MOST 2D image in the gold standard set in the boosting framework after 10 iterations. Image (A) is
labeled for somata (B) and vessels (C) and then predicted by the network in panels (E,F), respectively. The predictions are merged into one image (D), where the
vessels are shown in red. The DC for the segmentation of somata and vessels was 0.994 and 0.963, respectively.

likely the better option in the MOST dataset. More specifically,
the mean DC in the fusion strategy (b) for the gold standard
set is “boosted” from 0.927/0.886 (without fusion and boosting)
to 0.996/0.971 for somata and vessels, respectively. Performance
boosting was also observed in the test set, i.e., from 0.965/0.903
to 0.994/0.963 for somata and vessels, respectively. To further

verify the effectiveness of the fusion and boosting algorithm,
the multilabel U-Net architecture used in the framework was
trained independently for 30,000 epochs (set to the total epoch
number after 10 boosting iterations) using the same learning rate
(i.e., 5× 10−5) but without fusion and boosting. The result (as
shown in the last column of Table 1) indicates that the proposed
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FIGURE 8 | Predictions on a 3D MOST image stack by the boosted network. Panels (A,B) are the predictions of somata (shown as gold standard) and vessels
(shown as red). (C) 3D reconstruction of somata and vessels by merging (A,B).

framework improves network performance in the MOST dataset,
whereas performance is improved substantially more for vessels
and less for somata.

Compared with the previous network (DDeep3M; Wu et al.,
2020), the proposed framework (after 10 boosting iterations)
achieved slightly better performance in the same dataset (0.996
vs. 0.988 for somata and 0.971 vs. 0.967 for vessels) and
outperformed significantly in terms of training duration (6 h vs.
36 h) and prediction speed (1 s vs. 24 s on a 1,024× 1,024 MOST
2D image). Additionally, in a study of deep-learning-based
analysis of whole mouse brain vasculature at the micrometer
scale (Todorov et al., 2020), a transfer-learning approach was
employed to increase the performance of the network, for which
similar performance on the segmentation of vessels was reported
with an accuracy of 0.94± 0.01 for VesSAP CNN, 0.95± 0.01 for
3D U-Net, and 0.95± 0.02 for V-Net (Milletari et al., 2016).

Overall, the proposed framework improves the network
performance by about 3–10% for both somata and vessels, even
considering that minor errors occur in human annotations of the
MOST dataset. As an example, a representative frame from the
gold standard set is shown in Figure 7 with the corresponding
predictions from the network after 10 iterations. Finally, the
boosted network was utilized for the semantic segmentation of
somata and vessels in an independent MOST image stack of
1,024× 1,024× 1,024 voxels (i.e., 358 µm× 358 µm× 358 µm),
and the results could be merged into one single block (Figure 8)
for 3D digital reconstruction of the mouse brain, which could be
used to explore the neurovascular network.

DISCUSSION AND CONCLUSION

In this work, we have proposed a boosting framework, combining
a U-Net architecture with a customized loss function, a fusion
module, and a boosting algorithm, to systematically improve
the quality of the human annotations that eventually resulted in
a performance boost in the multilabel segmentation task using
DCNNs. The framework was assessed using a MOST image stack
for a segmentation task of somata and vessels. Evaluation with
an independent gold standard set of 10 images revealed that the

framework significantly increased the segmentation performance
of U-Net from 0.927 to 0.996 for somata and 0.886 to 0.971 for
vessels. An overall performance improvement of 7% was achieved
after 10 boosting iterations in this semantic segmentation task
for the MOST image stack. In comparison with the existing
SOTA segmentation solutions for MOST image stacks, which
report about 0.986/0.967 in DC (Wu et al., 2020), the proposed
framework achieves slightly better performance with less time
and demonstrates its power even with poor-quality data.

Some limitations exist in our work. The number of gold
standard sets was probably not enough to thoroughly assess the
performance of the boosting framework, and we did not perform
sensitivity analyses with respect to the variations of gold standard
sets. 2D U-Net was used but was applied to essentially a three-
dimensional segmentation task based on MOST image stacks. We
expect that the DCNN in the framework can be easily replaced
by other networks, such as 3D U-Net. The fusion module
mainly focuses on the recovery of missing labels but does not
provide a comprehensive algorithm to reconcile overlapped labels
among the ground truth, the annotation and the prediction. The
number of boosting iterations (i.e., 10) was manually selected,
which should be adjusted in real time based on the performance
goal in future work.

Our work substantially lowers the requirement of time-
consuming high-quality human annotations, which normally are
the key to the success of DCNNs in segmentation tasks; thus,
this work would greatly help researchers who are eager to utilize
deep learning technology but are limited by the amount of
high-quality data. In principle, the boosting framework may be
scaled up to the whole-brain level for both somata and vessels
(Todorov et al., 2020). Precise segmentation is directly helpful for
quantitative analyses of neurovascular networks (Wu et al., 2014).
This proposed technique of artificial intelligence could advance
basic neuroscience research.
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