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In recent years, automatic sleep staging methods have achieved competitive
performance using electroencephalography (EEG) signals. However, the acquisition of
EEG signals is cumbersome and inconvenient. Therefore, we propose a novel sleep
staging approach using electrooculogram (EOG) signals, which are more convenient
to acquire than the EEG. A two-scale convolutional neural network first extracts
epoch-wise temporary-equivalent features from raw EOG signals. A recurrent neural
network then captures the long-term sequential information. The proposed method was
validated on 101 full-night sleep data from two open-access databases, the montreal
archive of sleep studies and Sleep-EDF, achieving an overall accuracy of 81.2 and
76.3%, respectively. The results are comparable to those models trained with EEG
signals. In addition, comparisons with six state-of-the-art methods further demonstrate
the effectiveness of the proposed approach. Overall, this study provides a new avenue
for sleep monitoring.

Keywords: deep learning, feature extraction, sleep stage classification, electrooculography, hierarchical neural
network

INTRODUCTION

Sleep-stage classification plays an essential role in sleep quality assessment and sleep disorder
diagnosis. According to the american academy of sleep medicine (AASM), sleep stages can be
categorized into five stages: wake, N1, N2, N3, and rapid-eye-movement (REM) (Iber, 2007). Sleep
technicians generally use polysomnography (PSG), comprising a set of physiological signals, such
as electroencephalography (EEG), electrooculography (EOG), and electromyography (EMG), to
classify sleep stages. However, this process is tedious and time-consuming.

Numerous machine learning-based methods for automatic sleep staging have been proposed.
Most studies use EEG signals as the primary modality (Längkvist et al., 2012; Sharma et al.,
2017; Supratak et al., 2017; Chambon et al., 2018; Dong et al., 2018). Cardiorespiratory or
movement signals are also explored to score sleep stages (Domingues et al., 2014; Willemen
et al., 2014; Fonseca et al., 2017; Wei et al., 2018; Zhang et al., 2018). Generally, EEG-
based algorithms can achieve high accuracy (Längkvist et al., 2012; Supratak et al., 2017;
Chambon et al., 2018; Dong et al., 2018). However, the acquisition of EEG signals is relatively
complex and may disturb natural sleep or alter sleep patterns. or alter sleep patterns.
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In contrast, the Cardiorespiratory and movement signals
are convenient to acquire (Chen et al., 2019). However, these
methods are still in the exploratory stage, and their performance
is unacceptable to clinicians. Therefore, a user-friendly approach
with high accuracy for sleep-stage classification is required.

Considering the trade-off between feasibility and accuracy, we
found that the EOG is a potential modality for sleep staging.
First, EOG recordings can reflect eye activity, which is a crucial
indicator for recognizing non-REM and REM stages. Second,
EOG signals are typically contaminated with EEG signals. As
shown in Figure 1, a high similarity between the EEG C3 channel
and the EOG E2 channel was observed. Finally, EOG signals
are generally convenient to acquire due to the ease of electrode
placement. To exploit the feasibility of using standalone EOG
signals to predict sleep stages, we designed a two-stage neural
network to capture both temporary-equivalent features and
sequential patterns from raw EOG signals. We used a two-scale
convolutional neural network (CNN) to learn high-level features
in the first stage. A recurrent neural network (RNN) captures
the sequential information, especially the transition rules within
sleep epochs, in the second stage. Compared with existing works
(Sun et al., 2019b,a), the proposed method can achieve promising
sleep staging performance from single-channel EOG signals.

The contributions of this paper are as follows.

(1) A novel sequential hierarchical neural network for sleep-
stage classification using single-channel EOG signals is

proposed to balance the complexity of data acquisition and
accuracy of data analysis.

(2) To achieve competitiveness in sleep staging classification,
the characteristic and temporal information within
successive sleep epochs of EOG signal are explored.

(3) The proposed method is validated by comparing it with six
existing state-of-the-art approaches.

The main context of this study is as follows. Section “Materials
and Methods” details the methodology. The experimental process
is described in section “Experiments.” The results are presented
in section “Results,” and section “Discussion” discusses the
experimental results and model analysis. The last section
summarizes this study.

MATERIALS AND METHODS

The overall workflow of the proposed approach is shown in
Figure 2. The network consists of two parts, feature learning and
sequence learning parts. The network is optimized with single-
channel EOG with two-step training. In the first training step,
the feature learning parts of the network are pre-trained. In
the second training step, the learnable network weights of both
feature learning, and sequence learning parts are optimized with
a different learning rate. The detailed description of the proposed
method is as follows:

FIGURE 1 | Top: the electrode placement positions of EOG and EEG signals recommended by AASM. E1 and E2 electrodes are used to acquire the left and right
EOG, respectively. F3, F4, C3, C4, O1, and O2 are the most-used EEG electrodes in sleep monitoring; Bottom: comparison between C3 EEG signal and the Right
EOG (E2) signal.
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FIGURE 2 | The overall workflow of the proposed method.

Feature Learning Parts
The classification performance of the existing machine learning
method primarily depends on feature engineering. However,
extracting task-relevant features is challenging and complicated.
In contrast, CNN-based approaches have powerful abilities of
feature learning and have achieved high accuracy in many
studies (Tsinalis et al., 2016; Supratak et al., 2017; Andreotti
et al., 2018; Chambon et al., 2018; Dong et al., 2018). Inspired
by previous studies, we designed a two-scale CNN to extract
features with different temporal sizes and frequency resolutions
from the EOG signal. As shown in Figure 3. the network
consists of two CNN modules that capture features from
different perspectives. CNN with small filter sizes and strides
is in charge of extracting detailed features and high-frequency
information. On the contrary, CNN with larger sizes and
strides is to capture low-frequency information, such as sleep
waves. Consequently, features extracted from two CNNs were
concatenated, yielding a comprehensive feature to be further
processed by the sequence learning parts.

Sequence Learning Parts
Several stage-switch criteria and temporal relations (Hungs,
2012) exist in sleep recordings. Proficient sleep experts typically
utilize these relations and criteria to score the present sleep epoch
according to its adjacent epochs. Therefore, sequential modeling
is of importance to capture inner-epoch patterns. In our study,

the bidirectional RNN, which is realized by Gated Recurrent Unit
(GRU) cells, is used to explore the sequential structure lying in
EOG signals. As shown in Figure 3. The Bi-GRU cells receive
features learned by the previous parts of the network, yielding
sequential information. Shortcut connection is used to reserve
residual information and avoid overfitting. This process can be
presented as follows:

h = BiGRU(F) (1)

R = softmax(h+ F) (2)

where, BiGRU and softmax represent Bi-GRU and softmax
layer, respectively. F, h, and R denote features learned by
feature learning, Bi-GRU, and the final predicted classification
probabilities, respectively.

Data Augmentation
Sleep datasets suffer from class imbalance problems (CIPs).
Several studies have attempted to address CIPs by oversampling
minority class samples (Supratak et al., 2017; Fan et al., 2020).
Such approaches can alleviate weight bias in the networks
but fail to produce new patterns to improve the performance
of trained models further. In this study, we propose a data
augmentation approach, as shown in Figure 4. The method
synthesizes sleep epochs for minor sleep stages to ensure that
all sleep stages are equal in sample number in the training set.
The samples are generated by morphological transformation,
including translation operation and noise addition. To be
specific, for each 30-s signal, a transition spanning 5 to 25 s is
conducted along the time axis. Gaussian noise with a signal-to-
noise ratio between 8 and 12 dB is added to the signals. The
process is shown in Figure 4.

Two-Step Training
As shown in Figure 5, the network is optimized by two-step
training. In the first step, to alleviate the CIPs in sleep training
data, we use the proposed data augmentation method to ensure
samples of all sleep stages equal in number. Then, with a softmax
layer stacked on the top of two CNN layer, the feature learning
parts of the network is pre-trained. By minimizing the cross-
entropy loss between true labels and predicted scores, the weights
of feature learning parts of the model are optimized. In the second
step, we train the whole network end-to-end using sequence
input, which keeps the original order of epochs in the sleep
records unchanged. Due to the feature learning parts of the
network is already trained, we used a lower learning rate to adjust
the learned weight.

EXPERIMENTS

Data
For evaluating the performance of the proposed model, 101
full-night sleep data from the montreal archive of sleep studies
(MASS) database (O’Reilly et al., 2014) and Sleep-EDF database
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FIGURE 3 | The architecture of the proposed network. sr, sampling rate of the input signals; conv, convolutional blocks; BN, batch normalization; ReLu, the rectified
linear unit; d and s, features learned by feature learning parts; F, integrated features; h, the output of Bi-GRU; R, the predicted probabilities by the network.

(Goldberger et al., 2000) were used. The two databases are both
open access and public. The MASS database, collected by the
Sacred Heart Hospital of Montreal and Montreal University,
has five subsets (SS1–SS5). We used all the 62 full-night PSG
data collected from healthy people in the SS3 subset as it was
labeled according to AASM. The recordings consist of 21 EEG
channels, 2 EOG channels, and 3 chin EMG channels. The Sleep-
EDF database contains two subsets: the Sleep Cassette (SC) and
the Sleep Telemetry (ST). All 39 full-night recordings from 20
healthy people in the SC subset (all subjects have two night’s
recordings except one subject) were used in the experiments.
The subset contains two EEG channels, one horizontal EOG,
and one chin EMG. Right EOG in MASS and horizontal EOG
in Sleep-EDF were selected to train the proposed network.
Signals were downsampled to 128 Hz to reduce computational
complexity. Each signal was filtered by a band-pass filter of 0.3
to 35 Hz. The data distribution of each dataset is presented
in Figure 6.

Training Parameters
The filter sizes for the top CNN layers on two branches
are set as 0.5 and 5 times the sampling rate, respectively.
These values are set mainly based on the frequency features
of sleep waves. The hyperparameters of the network are
set as recommended in previous studies. The sequential

information of the learned features by the pre-trained model
was captured using a two-layer Bi-GRU. The Bi-GRU structure
processed the input with a sequence length of 15 sleep
epochs (signals spanning 450 s), which empirically indicated
a higher accuracy. The weights of the pre-trained feature
learning parts were fine-tuned with a learning rate of 10−6,
while the learning rate for the sequence learning parts was
set to 10−4. In addition, we employed a heuristic gradient
clipping approach to avoid the gradient explosion problem.
We used a couple of improved techniques, including `− 2
regularization, dropout technique (Srivastava et al., 2014),
and focal loss (Lin et al., 2018), to improve the robustness
and avoid overfitting of the trained models. The network
is optimized using Adam optimizer (Kingma and Ba, 2017).
The hyperparameters used in our experiments are summarized
in Table 1.

Experimental Setting
The experiments were conducted under two protocols: the 5-
class-task protocol and the 4-class-task protocol. In the first
protocol, sleep stages were categorized into five classes, which
was consistent with the staging criteria of AASM. In the
second protocol, sleep stages were reformulated as stage Wake,
Light, Deep, and REM, in which class Deep contains stage
N1 and N2 defined in AASM. This criterion is practical for
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FIGURE 4 | The oversampling approach is based on data augmentation. An example of the morphological operation is shown in the upper part. The blue waveform
is the original EOG signal, and the red waveform suffers one translation with a length of 15 s and adds white noise with an SNR of 10 dB.

FIGURE 5 | The entire training process, which can consider both oversampling and sequence information learning.

clinical applications as N1 is exceptionally scarce in sleep
recordings. In both protocols, we used a leave-one-subject-out
(LOSO) validation to evaluate the performance of the trained
model. The overall accuracy (Acc.), F1-score (F1), Cohen’s
kappa coefficient (κ), as well as precision, and recall are
reported in this study.

RESULTS

Overall Performance
The overall performance of the proposed approach is presented in
Table 2. The results show that the model can attain a promising
classification accuracy with 81.2% and 76.3% on MASS and
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FIGURE 6 | The data distribution of the MASS and Sleep-EDF databases.

Sleep-EDF for the 5-class task, and 85% and 82.1% on MASS
and Sleep-EDF for the 4-class task, respectively. Besides, the
high F1 score and κ indicate that the model can also accurately
recognize minority classes. Overall, the results suggest that
the proposed method using single-channel EOG performed as
well as the method using EEG or other multi-modality inputs,
demonstrating standalone EOG signals can be used as the
primary modality to train automatic sleep staging models.

According to the confusion matrix in Figure 7, the class-
wise accuracy of stage wake, N2, N3, and REM is relatively high
both on the MASS and Sleep-EDF dataset for the 5-class task. In
contrast, the accuracy for recognizing stage N1 is inferior to that
of other stages. The results are consistent with methods using
EEG, as N1 is excessively rare in sleep recordings. For the 4-
class task, the class-wise accuracy for stage wake, light, deep, and
REM range from 66 to 85%, which can meet the requirements for
practical applications.

Figure 8 illustrates one example of the output hypnogram
and its ground truth during about 8 h. It can be observed that
the hypnogram predicted by the model aligns well with the
ground truth. Most misclassified epochs can be found during
stage transition, indicating the difficulty of recognizing the

TABLE 1 | Network hyperparameters.

Hyperparameters Value

Feature pretraining

Batch size 100

Input dimension (100, 3840, 1, 1)

`− 2 regularization term 10−3

Learning rate 10−4

β1 and β2 0.9, 0.999

Feature fine-tuning and sequence learning

Batch size 10

Input dimension (150, 3840, 1, 1)

Hidden size of Bi-GRU 200

α and γ in the focal loss 0.25 and 2

Learning rates 10−6, 10−4

*Batch, the set of examples used in one iteration; `− 2 regularization, regularization
that penalizes weights in proportion to the sum of the squares of the weights; β1

and β2, coefficients of Adam optimizer to adjust the learning rate.

transitioning epochs. Nevertheless, most stage transitioning pairs
could be accurately predicted by the proposed methods, such as
N1-N2, N2-wake, and REM-N2,.etc.

Comparison With Related Methods
We compared the proposed model with six state-of-the-art sleep
staging approaches as described below:

Method 1
Willemen et al. (2014) combined a support vector machine
(SVM) with an RBF kernel to conduct a 4-task classification.
Features were extracted from the cardiorespiratory and
movement signals. The authors selected features based
on the minimum redundancy maximum relevance feature
selection method.

TABLE 2 | Overall and class-wise performance.

5-class task (%)

MASS Sleep-EDF

Prec. Rel. F1 Prec. Rel. F1

Wake 72.3 86.7 78.8 76.2 87.9 81.6

N1 54.0 40.7 46.4 33.9 36.0 34.9

N2 85.6 89.5 87.5 80.1 83.2 81.6

N3 80.4 64.4 71.5 73.8 71.2 72.5

REM 83.5 84.9 84.2 88.0 66.4 75.7

Overall

Acc. F1 κ Acc. F1 κ

81.2 73.7 71.8 76.3 69.3 67.2

4-class task (%)

MASS Sleep-EDF

Prec. Rel. F1 Prec. Rel. F1

Wake 74.7 84.8 79.4 73.5 93.6 82.4

Light 87.4 90.1 88.7 84.2 84.6 84.4

Deep 80.0 66.4 72.5 83.7 69.9 76.2

REM 86.1 81.8 83.9 88.2 72.5 79.6

Overall

Acc. F1 κ Acc. F1 κ

85.0 81.1 74.3 82.1 80.6 73.3
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FIGURE 7 | The normalized confusion matrices in the first and second row are obtained via the 5-class task and 4-class task, respectively. The first and second
columns are obtained from the MASS and Sleep-EDF databases, respectively.

FIGURE 8 | Two full-night hypnograms of one subject. The solid blue line and red dashed line denote the hypnograms depicted by the proposed model and a
physician, respectively.

Method 2
Dong et al. (2018) used a rectifier neural network (ReNN) to
extract high-level features from the knowledge-based features,
which were sequentially used for sequential learning. The
stochastic gradient descent (SGD) approach and cross-entropy
loss function were used to train the model without regularization.

Method 3
Längkvist et al. (2012) extracted 28 features from multimodal
sleep data to train a deep belief network (DBN). A 2-layer DBN
combined with a softmax classifier was used. Both layers were
pre-trained for 300 epochs, and the top layer was fine-tuned for 50
epochs using modified z-score normalization. Finally, the output

from the DBN was used as the input to a hidden Markov model
(HMM) for final prediction.

Method 4
Tsinalis et al. (2016) extracted 557 EEG features to train
a stacked sparse autoencoder (SSAE). The limited-memory
Broyden–Fletcher–Goldfarb–Shanno approach was used for
optimization. This method used regularization to prevent
overfitting and utilizes the sparsity weight to control the scale of
the sparsity penalty term.

Method 5
Chambon et al. (2018) proposed a CNN-based network for sleep
staging by exploring temporal information among sleep epochs.
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The network was trained with batched data, in which each class is
equal in number. We re-implemented the network and trained it
using EOG and EEG signals separately for comparison.

Method 6
Supratak et al. (2017) proposed a sleep staging network with
representation-learning and sequence residual learning parts.
The former part extracted time-invariant features using two CNN
components. The latter part used a two-layer bidirectional Long
Short-Term Memory network (LSTM) (Chung et al., 2014; Greff
et al., 2017) for sequential modeling. The authors attempted to
address CIPs by repeating samples of minority classes. We re-
implemented the network and trained it using EOG and EEG
separately for comparison.

Compared to the proposed method, method 1, method 2,
method 3, and method 4 are based on handcrafted features,
which highly depend on the expertise knowledge. These features
are partly explainable. However, a suboptimal feature set may
lead to information loss. Thus the performance of methods

using handcrafted features often inferior to those using feature-
learning-based methods. In contrast, method 5 uses an end-to-
end CNN model to learn compact and discriminative features
from raw EEG signals. The sequential information is derived
from five consecutive epochs. However, the model does not
take long-term sequential information into account. Method
6 shares a similar concept with the proposed method using
CNN modules and LSTM to extract time-invariant features
and sequential information, respectively. However, the proposed
method uses residual blocks on both CNN branches to reserve the
learning capacity for shallow parts of the network. In addition, we
proposed a data augmentation method to address sleep CIPs.

For fair comparisons, all the above models were trained
using the MASS database on the same hardware platform. The
hyperparameters were kept consistent with their original settings.
LOSO validation was used for performance evaluation.

Table 3 summarizes the results of the comparisons. First,
feature learning-based methods outperformed all the methods
using knowledge-based handcraft features no matter the models

TABLE 3 | Results comparison of different methods using different features, classifiers, and signals.

Methods Feature type Method Input Overall results (%) Class-wise F1-score (%)

Acc. F1 κ W N1 N2 N3 REM

Willemen et al. (2014) Handcraft SVM EOG 63.2 47.3 42.9 37.6 18.9 75.3 40.2 64.3

Dong et al. (2018) Handcraft ReNN + RNN EOG 67.9 59.3 53.0 59.1 26.9 76.9 63.3 70.3

Längkvist et al. (2012) Learned DBN + HMM EOG 72.4 66.7 62.2 72.7 38.3 79.4 72.7 70.5

Tsinalis et al. (2016) Handcraft SSAE EEG 76.2 70.2 66.9 68.1 41.5 82.8 80.4 78.2

Chambon et al. (2018) Learned CNN EEG 75.1 68.6 65.6 73.5 31.6 82.1 78.4 77.3

EOG 69.2 60.9 54.8 61.6 29.4 77.6 64.8 71.3

Supratak et al. (2017) Learned CNN+RNN EEG 83.4 77.9 75.3 82.1 55.3 88.1 77.7 86.1

EOG 77.6 70.9 66.8 75.8 44.3 83.8 70.4 80.0

Our model learned CNN+RNN EEG 83.1 76.4 74.5 82.2 50.8 88.5 74.3 86.1

EOG 81.2 73.7 71.8 78.8 46.4 87.5 71.5 84.2

The proposed method is marked in bold.

TABLE 4 | Results of ablation studies.

MASS database

Settings Overall results (%) Per-class F1-score (%)

Acc. F1 κ Wake N1 N2 N3 REM

Dropping sequential learning 76.0 68.7 65.1 76.3 34.8 84.0 74.7 74.0

Without pre-training 80.0 72.3 69.8 78.0 43.4 86.4 71.6 82.4

Replacing two-scale CNN with MobileNetV2 78.2 70.8 67.5 74.9 43.4 85.2 68.3 82.1

Replacing Bi-GRU with transformer 73.5 69.2 62.5 76.6 39.6 83.6 79.0 66.9

Proposed method 81.2 73.7 71.8 78.8 46.4 87.5 71.5 84.2

Sleep-EDF database

Dropping sequential learning 72.0 65.8 62.3 79.1 33.2 77.7 68.3 70.7

Without pre-training 75.7 68.0 66.7 78.1 27.9 80.7 74.6 78.7

Replacing two-scale CNN with MobileNetV2 75.1 68.5 66.0 79.2 30.9 79.0 73.2 80.3

Replacing Bi-GRU with transformer 70.3 65.7 58.1 72.6 36.2 81.2 74.5 63.8

Proposed method 76.3 69.3 67.2 81.6 34.9 81.6 72.5 75.7

The proposed method is marked in bold.
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were trained with EEG or EOG. This demonstrates the
advantages of a neural network in extracting time-invariant
features from raw physiological signals. Second, models trained
with EEG have superior performance than those trained with
EOG. This is consistent with our previous analysis. For EOG, the
components from EEG play the most crucial role in recognizing
sleep stages. Finally, among all the models trained with EOG,
the proposed method has achieved the highest Acc, F1, and, κ

corresponding to 81.2, 73.7, and 71.8%, respectively, which is
comparable to its counterpart trained with EEG. This indicated
that EOG is a potential modality to be used for sleep staging.
The obtained accuracy (81.2%) can meet the requirements for
community health care, home-based sleep monitoring, or even
clinical applications.

Model Analysis
To take a glimpse into how network components impact
model performance, we conducted ablation studies. In particular,
we analyzed and compared the performance of the proposed
network in different settings: (1) dropping sequential learning
parts; (2) without pre-training step; (3) replacing two-scale
CNN with MobileNetV2 (Sandler et al., 2018) for representing
learning; (4) replacing Bi-GRU with transformers (Vaswani et al.,
2017) for sequential learning. Thereinto, MobileNetV2 is a well-
known and efficient CNN-based feature extractor. It has achieved
state-of-the-art performance on several tasks such as image
recognition, object detection, and semantic segmentation. We
tailored the original MobileNetV2 for sleep staging in our study.
Transformer architecture has demonstrated impressive results
for tasks with sequential modeling, such as audio recognition
and natural language processing. We used it to capture sleep
epoch transition rules in comparison with the proposed Bi-GRU
module. The detailed introduction for these experimental settings
can be found in Appendix 1.

The results of ablation studies are summarized in Table 4.
Dropping sequential learning parts leads to a performance
degeneration on both datasets. An accuracy decline from
81.2% to 76.0% on MASS and 76.3% to 72% on Sleep-EDF

are observed, respectively. This demonstrates the importance
of sequence learning. The temporal information captured by
Bi-GRU contributes to a more accurate recognition of sleep
stages. Training the network without the pre-training step also
leads to an accuracy decrease of 1.2% and 0.6% on MASS
and Sleep-EDF, respectively, indicating the pre-training step
can facilitate the network to learn more generalized features
from raw EOG signals. Replacing feature learning parts with
MobileNetV2, one of the state-of-the-art feature extractors in
many pattern recognition tasks, does not necessarily contribute
to a further performance improvement. This indicates that
the proposed two-scale CNN, which is designed based on
the inherent characteristics of EOG signals, is capable of
learning discriminative and compact features for sleep staging
tasks. Features learned by the proposed two-scale CNN are
visualized in Figure 9. CNNs with different receptive fields
could capture complementary and task-relevant features from
multiple perspectives. The CNN filters are optimized to match
the time-invariant patterns, reflecting the characteristics of waves,
such as k-complex and sleep spindles. This, to some extent,
is equivalent to the sleep recording interpretation by human
sleep technicians. Similarly, replacing Bi-GRU with transformer
architecture also underperforms the proposed method. This
suggests that Bi-GRU cells, at least in the context of sleep
staging using single-channel EOG, are prior to the advanced
network, i.e., transformers. In addition, we analyzed the
feasibility and model complexity of the proposed network. As
shown in Appendix Table A2 in Appendix 2, the proposed
model is efficient and can meet the requirements for real-time
evaluation on different hardware platforms, including mobile and
wearable devices.

DISCUSSION

In this study, we proposed a novel automatic sleep staging
network using single-channel EOG. The basis of using single-
channel EOG signals for sleep staging is that EOG signals

FIGURE 9 | Examples of learned CNN filters in the feature learning parts of the network. Figures in green frames, learned filters that match characteristic waves
during eye movements. Figures in red frames, filters that match spindle waves. Figures in blue frames, filters that match k-complex. Figures in yellow frames: filters
that match slow waves.
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are typically multi-source, which mainly consist of frontal and
ocular EEG activity, as well as eye muscle EMG activity. Many
studies have exploited automatic sleep staging methods using
single-channel EEG, achieving state-of-the-art performance.
EOG signals, which contain rich information from EEG,
are promisingly ideal alternatives as the primary modality
to train sleep staging models. Moreover, EOG signals are
generally convenient to acquire due to the ease of electrode
placement. Thus EOG-based sleep staging approaches can
promisingly provide a solution for long-term and home-based
sleep monitoring.

To exploit the feasibility of using single-channel EOG to
classify sleep stages. We develop a network to capture sleep
patterns from raw EOG signals. The network consists of two
parts, feature learning, and sequential learning parts. The weights
of the network are optimized under a two-step training protocol.
In the first step, the feature learning part is pre-trained to learn
time-invariant features from raw EOG signals. In the second
step, the sequential learning part of the network is trained to
capture inner-epoch temporary information, and the weights of
the feature learning part are fine-tuned. The experimental results
on two publicly available databases indicate that the proposed
methods can achieve comparable performance in comparison
with methods using EEG. This indicates the feasibility of using
single-channel EOG as the primary modality for sleep staging.

According to the analysis of six state-of-the-art sleep staging
methods, using the same method, models trained with EEG
can invariably outperform models trained with EOG signals.
The rationale is that EEG patterns provide the dominant
information for interpreting EEG recordings both for human
sleep technicians and intelligence algorithms. With single-
channel EOG, the proposed network has achieved the best results
with an accuracy of 81.2% among all the methods. Consequently,
the accuracy obtained from EOG-trained models can match that
obtained from EEG-trained models with only marginal accuracy
inferiority (1.9%).

The high accuracy is partly attributed to the topology of the
networks, which is designed to match the characteristics of EOG
signals, partly attributed to the two-step training protocol. To
be specific, in the first step, the feature learning part of the
network is pre-trained using class-balanced training sets, which
are generated by our proposed data augmentation methods.
The data augmentation method is inspired by the large-scale
image recognition tasks in computer vision. Analog to images,
morphological transformation on EOG signals can produce
new samples with new patterns from origin signals, thus can
improve the robustness of the trained models. The results of
ablation studies suggest that all the components in the proposed
network play essential roles in sleep staging. The performance
of trained models drops when deprecating two-scale CNN, Bi-
GRU, or two-step training protocols. Besides, we also tested
several variants of the proposed network, including a network
using MobileNetV2 to take the place of the proposed two-scale
CNNs and a network using a transformer for sequential learning
instead of proposed Bi-GRU cells. The results show that these
variants can hardly further obtain performance gains but lead to
performance degeneration.

Although the proposed method has achieved promising
performance using single-channel EOG, several improvements
are required in future works:

(1) In this study, all sleep recordings for model validation
are from healthy subjects. Staging sleep recordings
from patients with sleep disorders is considered to be
more challenging. In future works, we plan to test the
proposed methods on a larger population with different
health conditions.

(2) For long-term sleep monitoring, the convenience of
signal acquisition is a crucial factor, highly influencing
usability and acceptance. Besides PSG and EOG signals
can also be acquired by eye masks (Liang et al., 2015),
glasses (Ishimaru et al., 2014), and even unobtrusive
devices. Adjusting our method on EOG signals acquired
from these devices is of great significance. Furthermore,
cardiorespiratory or movement signals are also convenient
for acquisition. Many studies have attempted to score sleep
stages using the cardiorespiratory signals (Domingues
et al., 2014; Willemen et al., 2014; Fonseca et al., 2017; Wei
et al., 2018; Zhang et al., 2018). In future works, we will
develop methods by combining such signals with EOG to
improve the proposed method further.

(3) Sleep data from different cohorts generally suffer from
data mismatch issues. Models trained using data from
one database typically perform poorly on other databases.
We plan to improve the generalization of the proposed
method with several techniques such as transfer learning
and meta-learning in our future work.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. This data
can be found here: https://massdb.herokuapp.com/en/ and https:
//www.ahajournals.org/doi/full/10.1161/01.cir.101.23.e215.

AUTHOR CONTRIBUTIONS

CS, JF, CC, and WC: conceptualization and methodology.
CS and JF: data curation. CC and WC: funding acquisition
and supervision. CS: investigation and software. WC: project
administration. CS and CC: writing-original draft. JF, CC, ML,
and WC: writing-review and editing. All authors contributed to
the article and approved the submitted version.

FUNDING

This work was supported in part Shanghai Municipal Science
and Technology International R&D Collaboration Project (Grant
No. 20510710500), Shanghai Municipal Science and Technology
Major Project under Grant 2017SHZDZX01, National Natural
Science Foundation of China under Grant No. 62001118,
and Shanghai Committee of Science and Technology under
Grant No. 20S31903900.

Frontiers in Neuroscience | www.frontiersin.org 10 July 2021 | Volume 15 | Article 573194

https://massdb.herokuapp.com/en/
https://www.ahajournals.org/doi/full/10.1161/01.cir.101.23.e215
https://www.ahajournals.org/doi/full/10.1161/01.cir.101.23.e215
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-573194 July 6, 2021 Time: 18:30 # 11

Fan et al. EOGNET

REFERENCES
Andreotti, F., Phan, H., and De Vos, M. (2018). “Visualising convolutional neural

network decisions in automatic sleep scoring,” in Proc. Joint Workshop on
Artificial Intelligence in Health (AIH), 2018, 70–81.

Chambon, S., Galtier, M. N., Arnal, P. J., Wainrib, G., and Gramfort, A. (2018).
A deep learning architecture for temporal sleep stage classification using
multivariate and multimodal time series. IEEE Transact. Neur. Syst. Rehabil.
Eng. 26, 758–769. doi: 10.1109/tnsre.2018.2813138

Chen, C., Wang, Z., Li, W., Chen, H., Mei, Z., Yuan, W., et al. (2019). Novel flexible
material-based unobtrusive and wearable body sensor networks for vital sign
monitoring. IEEE Sens. J. 19, 8502–8513. doi: 10.1109/jsen.2018.2887107

Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. (2014). Empirical evaluation
of gated recurrent neural networks on sequence modeling. arXiv [Preprint].
arXiv:1412.3555.

Domingues, A., Paiva, T., and Sanches, J. M. (2014). Hypnogram and sleep
parameter computation from activity and cardiovascular data. IEEE Trans.
Biomed. Eng. 61, 1711–1719. doi: 10.1109/tbme.2014.2301462

Dong, H., Supratak, A., Pan, W., Wu, C., Matthews, P. M., and Guo, Y. (2018).
Mixed neural network approach for temporal sleep stage classification. IEEE
Transact. Neur. Syst. Rehabil. Eng. 26, 324–333. doi: 10.1109/tnsre.2017.
2733220

Fan, J., Sun, C., Chen, C., Jiang, X., Liu, X., Zhao, X., et al. (2020). EEG data
augmentation: towards class imbalance problem in sleep staging tasks. J. Neur.
Eng. 17:056017. doi: 10.1088/1741-2552/abb5be

Fonseca, P., Teuling den, N., Long, X., and Aarts, R. M. (2017). Cardiorespiratory
sleep stage detection using conditional random fields. IEEE J. Biomed. Health
Inform. 21, 956–966. doi: 10.1109/jbhi.2016.2550104

Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. M., Ivanov, P. C., Mark,
R. G., et al. (2000). PhysioBank, PhysioToolkit, and PhysioNet: components
of a new research resource for complex physiologic signals. Circulation 101,
E215–E220.

Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J.
(2017). LSTM: a search space odyssey. IEEE Transact. Neur. Netw. Learn. Syst.
28, 2222–2232. doi: 10.1109/tnnls.2016.2582924

Hungs, M. (2012). Fundamentals of sleep medicine. JAMA 307, 1320–1321.
Iber, C. (2007). The AASM manual for the scoring of sleep and associated events:

rules, terminology and technical specifications. Am. Acad. Sleep Med. 7:59.
Ishimaru, S., Uema, Y., Kunze, K., Kise, K., Tanaka, K., and Inami, M. (2014).

“Smarter eyewear-using commercial EOG glasses for activity recognition,” in
Proceedings of the 2014 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, New York, NY. doi: 10.1145/2638728.2638795

Kingma, D. P., and Ba, J. (2017). Adam: a method for stochastic optimization. arXiv
[Preprint]. arXiv:1412.6980.

Längkvist, M., Karlsson, L., and Loutfi, A. (2012). “Sleep stage classification
using unsupervised feature learning,” in Advances in Artificial Neural Systems,
London.

Liang, S.-F., Kuo, C.-E., Lee, Y.-C., Lin, W.-C., Liu, Y.-C., Chen, P.-Y., et al. (2015).
Development of an EOG-Based automatic sleep-monitoring eye mask. IEEE
Transact. Instrument. Measur. 64, 2977–2985. doi: 10.1109/tim.2015.2433652

Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Dollár, P. (2018). Focal loss for dense
object detection. arXiv [Preprint]. arXiv:1708.02002.

O’Reilly, C., Gosselin, N., Carrier, J., and Nielsen, T. (2014). Montreal archive
of sleep Studies: an open-access resource for instrument benchmarking
and exploratory research. J. Sleep Res. 23, 628–635. doi: 10.1111/jsr.
12169

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.-C. (2018).
“MobileNetV2: inverted residuals and Linear bottlenecks,” in Proceedings of the
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt
Lake City, UT. doi: 10.1109/CVPR.2018.00474

Sharma, R., Pachori, R. B., and Upadhyay, A. (2017). Automatic sleep stages
classification based on iterative filtering of electroencephalogram signals.
Neural Comput. Applic. 28, 2959–2978. doi: 10.1007/s00521-017-2919-6

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, H., and Salakhutdinov, R.
(2014). Dropout: a simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res. 15, 1929–1958.

Sun, C., Chen, C., Fan, J., Li, W., Zhang, Y., and Chen, W. (2019a). A hierarchical
sequential neural network with feature fusion for sleep staging based on EOG
and RR signals. J. Neural Eng. 16:066020. doi: 10.1088/1741-2552/ab39ca

Sun, C., Chen, C., Li, W., Fan, J., and Chen, W. (2019b). A hierarchical neural
network for sleep stage classification based on comprehensive feature learning
and multi-flow sequence learning. IEEE J. Biomed. Health Inform. 9:1. doi:
10.1109/JBHI.2019.2937558

Supratak, A., Dong, H., Wu, C., and Guo, Y. (2017). DeepSleepNet: a model for
automatic sleep stage scoring based on raw single-channel EEG. IEEE Transact.
Neur. Syst. Rehabil. Eng. 25, 1998–2008. doi: 10.1109/tnsre.2017.2721116

Tsinalis, O., Matthews, P. M., Guo, Y., and Zafeiriou, S. (2016). Automatic sleep
stage scoring with single-channel EEG using convolutional neural networks.
arXiv [Preprint]. arXiv:1610.01683.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). Attention is all you need. arXiv [Preprint]. arXiv:1706.03762v5 [cs.CL].

Wei, R., Zhang, X., Wang, J., and Dang, X. (2018). The research of sleep staging
based on single-lead electrocardiogram and deep neural network. Biomed. Eng.
Lett. 8, 87–93. doi: 10.1007/s13534-017-0044-1

Willemen, T., Van Deun, D., Verhaert, V., Vandekerckhove, M., Exadaktylos, V.,
Verbraecken, J., et al. (2014). An evaluation of cardiorespiratory and movement
features with respect to sleep-stage classification. IEEE J. Biomed. Health Inform.
18, 661–669. doi: 10.1109/jbhi.2013.2276083

Zhang, X., Kou, W., Chang, E. I.-C., Gao, H., Fan, Y., and Xu, Y. (2018). Sleep
stage classification based on multi-level feature learning and recurrent neural
networks via wearable device. Comput. Biol. Med. 103, 71–81. doi: 10.1016/j.
compbiomed.2018.10.010

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Fan, Sun, Long, Chen and Chen. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | www.frontiersin.org 11 July 2021 | Volume 15 | Article 573194

https://doi.org/10.1109/tnsre.2018.2813138
https://doi.org/10.1109/jsen.2018.2887107
https://doi.org/10.1109/tbme.2014.2301462
https://doi.org/10.1109/tnsre.2017.2733220
https://doi.org/10.1109/tnsre.2017.2733220
https://doi.org/10.1088/1741-2552/abb5be
https://doi.org/10.1109/jbhi.2016.2550104
https://doi.org/10.1109/tnnls.2016.2582924
https://doi.org/10.1145/2638728.2638795
https://doi.org/10.1109/tim.2015.2433652
https://doi.org/10.1111/jsr.12169
https://doi.org/10.1111/jsr.12169
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1007/s00521-017-2919-6
https://doi.org/10.1088/1741-2552/ab39ca
https://doi.org/10.1109/JBHI.2019.2937558
https://doi.org/10.1109/JBHI.2019.2937558
https://doi.org/10.1109/tnsre.2017.2721116
https://doi.org/10.1007/s13534-017-0044-1
https://doi.org/10.1109/jbhi.2013.2276083
https://doi.org/10.1016/j.compbiomed.2018.10.010
https://doi.org/10.1016/j.compbiomed.2018.10.010
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-573194 July 6, 2021 Time: 18:30 # 12

Fan et al. EOGNET

APPENDIX

Appendix 1 | Settings of Model Analysis. The descriptions of four settings used in ablation studies are as follows:

(1) Dropping sequential learning. In this scenario, Bi-GRU cells were removed from the network. A softmax layer is stacked on the
top of feature learning parts to make predictions based on the learned features by two-scale CNNs.

(2) Without pre-training. Under this setting, training data without data augmentation is directly used for end-to-end
network training.

(3) Replacing two-scale CNN with MobileNetV2: MobileNetV2 is a lightweight but efficient network for feature extraction, which
can achieve state-of-the-art performance on many tasks, including image recognition, semantic segmentation, and object
detection. The core of MobileNetV2 is depth-wise convolution blocks and shortcut connections. As presented in Appendix 3
and Appendix Table A1, we customized MobileNetV2 to suit the sleep staging application in our case and used it to take the
place of the proposed two-scale CNN.

(4) Replacing Bi-GRU with a transformer: The transformer is a sequence to sequence network architecture, in which multi-head
attention, shortcut connection, mask technique, and positional encoding were embedded. Recent studies have revealed the
potential of transformers to be a powerful alternative for RNN. Accordingly, we attempted to use a transformer to play the role
of sequential modeling instead of Bi-GRU cells.

Appendix 2 | Hardware realization feasibility of the method. The feasibility of the network is a crucial factor for practical application,
especially for home-based monitoring applications. Therefore, we analyzed the complexity and computation cost of our trained
models. In our analysis, time complexity (TC) and space complexity (SC) are indicated by floating-point operations (FLOPs) and
the number of network parameters, corresponding to approximately O (3.95 × 107) and O (1.67 × 106), respectively. The required
storage space for a single model is 12 Mb, which can be compressed to 2 Mb by quantization operation and pruning. Furthermore,
we investigated the computation time of the trained models to predict on multiple platforms. As shown in Appendix Table A2, the
model is very efficient and can meet the requirements for real-time evaluation, even on mobile and wearable devices.

TABLE TA1 | Specifications of the MobileNetV2.

Detail feature extractor

Layers Size Filter Number Stride

Conv 0.5 sr sr 0.05 sr

Max-pooling sr/16 – sr/16

RD Block 1 0.05 sr sr 1

Conv 0.5 sr 2 sr 2

P-conv 1 2 sr 1

RD Block 2 0.05 sr 2 sr 1

Conv 0.05 sr 2 sr 2

P-conv 1 3 sr 1

RD Block 3 0.05 sr 3 sr 1

Avg-pooling Full-size – Full-size

Shape feature extractor

Conv sr sr 0.5 sr

Max-pooling 0.05 sr – 0.05 sr

RD Block 1 0.05 sr sr 1

P-conv 1 2 sr 1

RD Block 2 0.05 sr 2 sr 1

P-conv 1 3 sr 1

RD Block 3 0.05 sr 3 sr 1

Avg-pooling Full-size – Full-size

Feature concatenation

Dense 1000

Dense 500

* sr denotes the sampling rate of the preprocessed EOG signals.
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TABLE TA2 | FLOPs per second of the current mainstream processors and their time consumptions for running the proposed model.

Processors FLOPs per
second

(Theoretical
peak)

Time
consumption

NVIDIA GTX 1080 Ti (PC end) 11.3 T 3.5 µs

HUAWEI Kirin 970 (mobile end) 1.92 T 20.6 µs

Xilinx Cholesky (portable end) 20 G 2.0 ms

STM32F7 (wearable end) 20 M 2.0 s

Appendix Figure A1 | The feature-learning stage is based on the modified MobileNetV2. The RD block is shown on the right side. Each RD block consists of one
D-conv layer and one P-conv layer with the shortcut connection.

Appendix 3 | Customized MobileNetV2. We develop a customized MobileNetV2 for sleep staging applications. Thereinto, a depth-
wise separable convolution block is used to implement depth-wise and pointwise convolutions. Shortcut connections are used for
learning the residual information. Finally, several Res-Depthwise (RD) blocks were stacked to serve as a feature extractor. The detailed
architecture of the customized MobileNetV2 could be found in Appendix Figure A1 and Appendix Table A1.
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