
METHODS
published: 22 November 2019
doi: 10.3389/fnins.2019.01248

Frontiers in Neuroscience | www.frontiersin.org 1 November 2019 | Volume 13 | Article 1248

Edited by:

Mikhail Lebedev,

Duke University, United States

Reviewed by:

Alan Degenhart,

Carnegie Mellon University,

United States

Andrey Eliseyev,

Columbia University, United States

Christoph Kapeller,

Guger Technologies OG, Austria

*Correspondence:

Carlos A. Loza

cloza@usfq.edu.ec

Specialty section:

This article was submitted to

Neuroprosthetics,

a section of the journal

Frontiers in Neuroscience

Received: 23 April 2019

Accepted: 05 November 2019

Published: 22 November 2019

Citation:

Loza CA, Reddy CG, Akella S and

Príncipe JC (2019) Discrimination of

Movement-Related Cortical Potentials

Exploiting Unsupervised Learned

Representations From ECoGs.

Front. Neurosci. 13:1248.

doi: 10.3389/fnins.2019.01248

Discrimination of Movement-Related
Cortical Potentials Exploiting
Unsupervised Learned
Representations From ECoGs
Carlos A. Loza 1,2*, Chandan G. Reddy 3,4,5, Shailaja Akella 5 and José C. Príncipe 5

1Department of Mathematics, Universidad San Francisco de Quito, Quito, Ecuador, 2 Instituto de Neurociencias, Universidad

San Francisco de Quito, Quito, Ecuador, 3Department of Neurosurgery, University of Iowa, Iowa City, IA, United States,
4Department of Neurosurgery, University of Florida, Gainesville, FL, United States, 5Computational NeuroEngineering Lab,

Electrical and Computer Engineering Department, University of Florida, Gainesville, FL, United States

Brain–Computer Interfaces (BCI) aim to bypass the peripheral nervous system to link

the brain to external devices via successful modeling of decoding mechanisms. BCI

based on electrocorticogram or ECoG represent a viable compromise between clinical

practicality, spatial resolution, and signal quality when it comes to extracellular electrical

potentials from local neuronal assemblies. Classic analysis of ECoG traces usually

falls under the umbrella of Time-Frequency decompositions with adaptations from

Fourier analysis and wavelets as its most prominent variants. However, analyzing such

high-dimensional, multivariate time series demands for specialized signal processing

and neurophysiological principles. We propose a generative model for single-channel

ECoGs that is able to fully characterize reoccurring rhythm–specific neuromodulations

as weighted activations of prototypical templates over time. The set of timings, weights

and indexes comprise a temporal marked point process (TMPP) that accesses a set of

bases from vector spaces of different dimensions—a dictionary. The shallow nature of

the model admits the equivalence between latent variables and representations. In this

way, learning the model parameters is a case of unsupervised representation learning.

We exploit principles of Minimum Description Length (MDL) encoding to effectively

yield a data-driven framework where prototypical neuromodulations (not restricted to

a particular duration) can be estimated alongside the timings and features of the TMPP.

We validate the proposed methodology on discrimination of movement-related tasks

utilizing 32-electrode grids implanted in the frontal cortex of six epileptic subjects. We

show that the learned representations from the high-gamma band (85–145 Hz) are not

only interpretable, but also discriminant in a lower dimensional space. The results also

underscore the practicality of our algorithm, i.e., 2 main hyperparameters that can be

readily set via neurophysiology, and emphasize the need of principled and interpretable

representation learning in order to model encoding mechanisms in the brain.

Keywords: brain-computer interfaces, electrocoticogram (ECoG), generative model, minimum description length

(MDL), representation learning, temporal marked point process
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1. INTRODUCTION

Brain-Computer Interfaces (BCI) strive to surpass the need for
any measure of muscle control in order to provide patients
suffering from severe neuromuscular disabilities with the ability
to interact with the external world. These systems are anchored
on principled analysis of the electrical activity of the brain
during movement or movement intent; successful decoding of
such neurophysiological processes is then relayed to external
devices that execute the desired motor activity (Lebedev and
Nicolelis, 2006). Recent technological and scientific advances
in BCI systems have extended its application from enabling
communication for completely “locked in” patients (Kübler
et al., 2001; Vansteensel et al., 2016; Chaudhary et al., 2017), to
restoration of motor control for patients with severe disabilities
(Pfurtscheller et al., 2000; Hochberg et al., 2012; Yanagisawa et al.,
2012; Ajiboye et al., 2017), and neurorehabilitation where BCIs
are doubled as therapeutic devices (Dobkin, 2007; Soekadar et al.,
2015; Bundy et al., 2017).

Current BCIs most commonly depend on scalp
electroencephalogram (EEG) to record the combined electrical
potentials of massive neuronal populations. While EEG is a
non-invasive and cost-effective alternative, it is limited both in
terms of spatial and temporal resolutions due to the overlapping
activity of different cortical generators. In addition, the passive
conductance through brain tissue, bone, and skin restrict the
effective spectral support of the EEGs (Lebedev and Nicolelis,
2006). BCI systems depending on other non-invasive methods
like magnetoencephalography (MEG) and functional magnetic
resonance imaging (fMRI) provide finer spatiotemporal and
spatial resolution, respectively (Weiskopf et al., 2004; Mellinger
et al., 2007). However, besides being technically exhaustive,
these methods are not cost effective. Moreover, the dependence
of fMRI and positron emission tomography (PET) techniques
on blood flow causes these systems to have very long time
constants deeming them impractical for rapid communication
and closed-loop applications (Vaughan, 2003).

Invasive methods involving single and multiunit recordings
circumvent all the above mentioned drawbacks while delivering
outstanding performance (Serruya et al., 2002; Taylor et al.,
2002; Lebedev et al., 2005; Hochberg et al., 2012; Collinger
et al., 2013; Bouton et al., 2016). However, these methods
require that the cortex be penetrated which brings into
question the safety of such technologies. Further, glial scars may
develop overtime decreasing accessibility of units and inducing
complex histological activity, simultaneously debilitating neural
recordings. Finally, spatial resolution is inherently limited due
to the restricted surface area covered by the recording electrodes
(Abdulkader et al., 2015; Waldert, 2016).

Considering the disadvantages of both invasive and non-
invasive BCIs and keeping in mind the ultimate aim of designing
a durable, fully-implantable BCI system, many research groups
have suggested Electrocorticogram (ECoG) as a more practical
solution. These signals are acquired by implanting a grid of
flat electrodes either above or below the dura mater, while
never actually penetrating the brain parenchyma. Number of
electrodes in these grids vary between 4 and 256, each having a

diameter between 70 and 2 mm and an inter-electrode spacing
between 1 and 10 mm depending on the extent of coverage and
precision appropriate for analysis (Schalk and Leuthardt, 2011).
Commonly used for invasivemonitoring in patients with epilepsy
(Reddy et al., 2009; Tangermann et al., 2012; Arya et al., 2017),
these electrodes measure the cumulative activity of multiple
neurons present in a small radius (∼ 50–350 µm) around the
tip of the electrode. Given their proximity to the brain surface,
ECoG recordings not just provide better spatial resolution (1.2–
1.4 mm compared to several cm in EEG), improved SNR and
larger spectral support (0–500 vs. 0–40 Hz in EEG), they have
also been found to be more robust to electrooculographic (EOG)
and electromyographic (EMG) artifacts (Freeman et al., 2000;
Ball et al., 2009). Moreover, while fidelity and durability of
these electrodes have been positively tested in macaques for
several months (Chao et al., 2010; Mestais et al., 2015; Degenhart
et al., 2016), further evaluation on a group of patients implanted
with subdural electrodes is under experimentation (Delavallée
et al., 2008). ECoG recordings, therefore, strike a perfect balance
between clinical practicality and signal quality, consequently
delivering prominence in performance (Leuthardt et al., 2006;
Schalk et al., 2008; Kubanek et al., 2009; Brunner et al., 2011;
Yanagisawa et al., 2012; Hotson et al., 2016; Degenhart et al.,
2018).

The broad spectral support available via ECoG recordings
has important implications for BCI applications pertaining to
encoding and decoding motor tasks. For instance, increased
modulatory activity of faster rhythms (75–100 Hz) in the motor
cortex of patients performing sustained muscle contractions has
shown specific somatotopic organization (Crone et al., 1998;
Miller et al., 2007). Several ECoG-based studies have confirmed
the correlation between spatially focused gamma activity and
motor function (Aoki et al., 1999; Miller et al., 2010; Leuthardt
et al., 2012; Gunduz et al., 2016). Although advances in recording
technology has allowed for similar EEG-based (Jokeit and
Makeig, 1994; Darvas et al., 2010), the recordings usually suffer
from severe contamination due to muscle artifacts (Goncharova
et al., 2003).

In addition to the BCI recording paradigm, appropriate signal
processing and feature extraction are paramount for designing
effective BCIs. Extracellular electrical potentials from the brain—
such as EEG, ECoG, and Local Field Potentials (LFP)—are
usually deemed as either chaotic deterministic or stochastic
non–stationary sequences; hence, they require principled and
distinct processing that needs to incorporate neurophysiological
principles into the modeling framework. Neuromodulations, also
known as phasic events, wave packets, or micro-events constitute
an order parameter of neuronal assemblies in the sense that
the population imposes order by regulated synaptic interactions,
i.e., they reflect the spatiotemporal interplay of local neuronal
populations (Freeman and Quiroga, 2012). These textured
images (as coined by Walter J. Freeman) appear in the recorded
trace as organized, transient patterns and differ statistically from
the featureless noisy background known to be characterized
by a 1/f power spectrum (Freeman, 1975). Moreover, phasic
events and deviation of Normality are the telltale signs of self-
organized criticality—a metastable state of the brain that allows
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shifting between dynamical states (Buzsaki, 2006). The goal
of signal processing is, then, to discriminate between relevant
neuromodulations and the temporally disorganized but spatially
structured background activity in order to elucidate the encoding
mechanisms that arise during BCI tasks.

A vast majority of ECoG-based BCIs exploit Time-Frequency
(TF) decompositions to build multiscale representations (Dat
et al., 2006; Zhao et al., 2010; Aydemir and Kayikcioglu,
2011; Herff et al., 2016), while the more advanced population
algorithms incorporate spatial information to account for
propagation and dependencies across electrodes (Ince et al.,
2008; Chao et al., 2010; Onaran et al., 2011; Ramsey et al.,
2018). However, TF methods are limited in their performance
pertaining to the uncertainty principle (Gabor, 1946) which lower
bounds the product of time and frequency resolutions. That is,
in order to efficiently capture short locally stationary segments
from non-stationary ECoGs, one must utilize small evolving
windows, which, then, compromises the frequency resolution
of the representation and blurs the phase information of
potential phasic events inside the processing window in question.
Although, wavelets attempt to alleviate this shortcoming (Unser
and Aldroubi, 1996; Mallat, 1999), the output still suffers due
to the imposition of fixed structures on the analysis of the
input signal, i.e., the inference is generic by nature due to
the templates of the underlying imposed generative model.
Lastly, the background activity (which is sometimes deemed
as “noise” by the signal processing algorithms applied to
each lead) demands for application-specific frameworks that
explicitly model the physiological regimes embedded in the
temporal traces. The resolution constraints of TF methods and
the inference on generic generative models that disregard the
complex dynamics of ECoG (e.g., linear projections onto preset
sinusoids in the case of Fourier analysis) are the two main
deterrents of TF decompositions. It is imperative to exploit the
neurophysiology behind ECoG in order to propose principled
generative models that would not only advance signal processing
applied to Neuroengineering, but also exploit the multivariate
nature of the ensembles in order to improve performance and
interpretability of ECoG-based BCIs.

We exploit a data-driven framework based on a generative
model for single-channel ECoGs which is able to fully
characterize each scale-specific neuromodulation by its timing,
amplitude, and duration (Loza et al., 2017). One of the main
advantages of the generative model is its exceptional temporal
resolution limited only by the sampling rate, i.e., no windowing is
necessary. Inference on the model can be viewed as either classic
feature engineering or sampling of a Temporal Marked Point
Process (TMPP) (Daley and Vere-Jones, 2007) fully characterized
by the intensity function of the timings and the joint probability
density function (pdf) of the amplitudes and durations—the
“features” of the TMPP. This dual interpretation opens the door
to uncover novel encoding mechanisms beyond the pervasive
power-modulation-based techniques. Learning on the model
invokes neurophysiological principles to restrict the search space
of potential phasic events by isolating the pervasive background
component of extracellular electrical potentials (Freeman and
Quiroga, 2012). Then, the resulting vector space is partitioned

in a top-down approach by means of a greedy clustering scheme
based on the principle of Minimum Description Length (MDL)
(Grünwald, 2007). The outcome is a set of prototypical vectors
from different vector spaces (i.e., durations)—a collection of
cluster centroids that represent bona fide transient events. Lastly,
the learning process is virtually parameter free: it only requires
two main hyperparameters; however, they are tightly connected
to the oscillatory rhythm under consideration and, thus, can be
selected based on empirical rules fully supported by clinical and
research fields.

The present study integrates the advantages of an ECoG-
based BCI and the proposed unsupervised learning framework
to discriminate movement-related tasks in six patients. Each
subject was requested to perform a motor task involving moving
a joystick in one of four directions (up, down, left, or right) and
an additional finger movement “trigger” task while ECoG activity
from twomain areas are recorded. Labeled single-channel, multi-
trial ensembles go through the learning and inference processes
on the generative model with a focus on the high-gamma
band (85–145 Hz). The results in terms of movement direction
separability not only confirm the plausibility of the methods,
but they also reveal a novel cortical encoding mechanism taking
place during movement-related tasks. The rest of the paper
continues as follows: section 2 explains the generative model
for ECoG alongside the proposed learning mechanisms. Section
3 details the experimental setting, while section 4 summarizes
the main results. Section 5 offers discussion, limitations, and
perspective. Lastly, section 6 concludes the paper and proposes
future work.

2. EXPERIMENTAL SETTING

The study comprised of 3 male and 3 female participants
in the age range of 22–40 years. All six subjects, suffering
from medically intractable epilepsy, were undergoing invasive
subdural electrode monitoring before resection. A standard
(1 cm interelectrode spacing) 32-contact frontal grid and a high-
density (0.5 cm interelectrode spacing) 96-contact temporal grid
were used to ensure unilateral, frontotemporal, subdural grid
coverage on the side corresponding to suspected seizure onset.
Altogether, there were three patients with left coverage while the
rest had right coverage. Patients did not incur additional risk by
participating in these studies. Research protocols were approved
by the University of Iowa Human Subjects Review Board.

During the trials, each participant was instructed to move a
joystick in one of the four cardinal directions (up, down, left,
right) in response to a visual display of an arrow pointing toward
the target location. A fifth display in the form of a square was
also included as a “trigger condition” where in response to the
cue, the participant was required to click the trigger button on the
joystick with the tip of the index finger. All cues were randomly
interleaved and no bias was introduced during their presentation.
Further, the patient was required to hold the joystick in the
target location until the visual display was replaced with a blank
screen, following which the patient was asked to either release the
joystick or bring it to a neutral position (Figure 1).
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FIGURE 1 | Experimental paradigm of ECoG–based BCI.

All trials lasted∼4 s. where the initial∼2.8 s involved stimulus
presentation and joystick maneuvers, while in the remaining
∼ 1.2 s the patient returned the joystick to its neutral position. All
participants performed an average of 50 trials for each direction
and “trigger” condition and all the trials were performed with
the hand contralateral to the grid placement. Table S1 details the
number of trials for each joystick direction under consideration
in our study. All signals were acquired at a sampling rate of 2034.5
Hz, which were later downsampled to 500 Hz for analysis.

3. METHODS

3.1. Generative Model for ECoG
Observable ECoG traces are the result of an underlying
multiscale system that describes large-scale function of neuronal
populations. One of the consequences of the structural fractal
nature of the cortex is reflected on the very own fractal, scale-free
nature of its observable variables (Buzsaki, 2006), being ECoG—
with its characteristic 1/f law—one of the most representatives
at a mesoscopic level. Self organized-criticality (Linkenkaer-
Hansen et al., 2001; Freeman et al., 2003; Stam and De Bruin,
2004; Bak, 2013) further formalizes these concepts posing
that brain dynamics remain at a complex state at the border
between unpredictable chaos and predictable periodic behavior.
The former representing a hypersensitive metastable state of
the network near phase transitions, whereas the latter brings
organization and transient stability by oscillations (Buzsaki,
2006). This type of micro-events have been well documented in
the literature under the umbrella of induced potentials or event-
related oscillations (Tallon-Baudry and Bertrand, 1999; Freeman
and Quiroga, 2012), e.g., the occipital alpha rhythm (Berger,
1929), K-complexes, sleep spindles (Rechtschaffen et al., 1968),

gamma oscillations in the olfactory bulb of cats and rabbits
(Freeman, 1975), high-frequency oscillations correlated to the
binding of perceptual information (Rodriguez et al., 1999), and
hippocampal sharp-wave ripples (Buzsáki, 2015) to name a few.
There are also so-called pathological patterns that are associated
to particular states in a pathological setting, e.g., in epilepsy, inter-
ictal spikes and high-frequency oscillations (HFO) or ripples have
been deemed as biomarkers and even potential predictors of
seizures (Worrell et al., 2004; Staley et al., 2011; Jacobs et al.,
2012). The challenge of principled signal analysis lies on the
detection, modeling, and further unveiling of the behavioral
correlates of said events.

Walter J. Freeman posited that the physiological regimes
of the generating local neural assembly are reflected on the
statistical properties of its observable EEG traces (Freeman and
Quiroga, 2012). If the network is at rest, the resulting EEG
is featureless, unorganized, and with amplitudes that closely
resemble a Gaussian distribution—a critical state characterized
by expectation in the form of hypersensitivity to perturbations,
such as sensory stimuli or motor output. Transition to an active
or work state shifts the network dynamics, which is revealed
by transient stability, and, in turn, derives in deviation form
Gaussianity (according to higher–order statistical moments). The
generating mechanisms behind extracellular electrical potentials
guarantees seamless translation of Freeman’s theories from
EEG to more local (and invasive) electrophysiology, such as
ECoG and LFP (Niedermeyer and da Silva, 2005; Buzsáki
et al., 2012). Let ỹ(t) be the result of linear filtering a single-
channel, single-trial ECoG trace. Linear filtering is necessary so
that the Gaussian/Non-Gaussian regimes are preserved through
linear operators on the raw signal. According to Freeman’s
experimental results and the theory of self-organized criticality of
neuronal assemblies, ỹ(t) can be decomposed into two sequences:

ỹ(t) =

{

y(t) if Network is Active (Y State)
z(t) if Network is at Rest (Z State)

(1)

where y(t) is the phasic event component—an ideal, noiseless
sequence that includes scale-specific neuromodulations over
time. On the other hand, z(t) is the filtered version of the
underlying ongoing activity, i.e., a background component.

The background component, z(t), ongoing or spontaneous
activity is associated to rest regimes of the generating neural
network. From a signal processing point of view, it can be
regarded as noise due to its featureless nature. However, it should
not be confused with interfering and external sources usually
mixed and superimposed in ECoG recordings—the so-called
artifacts, e.g., ocular and muscle activity, movement-related
activity, signal degradation as a byproduct of variable electrode
impedance, and so on (Niedermeyer and da Silva, 2005). Also,
noise might imply a complete divorce from behavior, yet, several
studies have confirmed the encoding nature of the ongoing
EEG by regulating response variability and imposing priors for
induced potentials (Başar, 1980; Buzsaki, 2006; Hanslmayr et al.,
2006; Busch et al., 2009; Luczak et al., 2009). Moreover, the
background component is essential tomaintain cortical functions
in a linear dynamic range (Freeman and Quiroga, 2012).
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FIGURE 2 | Generative model for ECoG. A bandpassed, single–channel,

single–trial ECoG trace, ỹ(t), is modeled as the noisy addition of weighted,

scale–specific, shifted filters over time. Temporal Marked Point Process

(TMPP) samples sparsely activate dictionary atoms to yield the phasic event

component y(t). Atom corresponding to ω1 appears twice in the TMPP.

* represents indexed convolution according to Equation (2).

The phasic event component is modeled taking inspiration
from the shot noise model (Davenport and Root, 1958). y(t) is the
result of a Temporal Marked Point Process (TMPP) with timings
τ and marks (features) α and ω activating filters, d, over time:

y(t) =
K

∑

ω=1

nω
∑

i=1

αω
i dω(t − τω

i )+ ǫ(t) (2)

where D = {dω}
K
ω=1 is a set of filters, kernels or atoms known

as dictionary. τω
i and αω

i are the timing and encoding coefficient
of the i–th instance of filter dω, respectively. ǫ(t) is the additive
noise sequence (possibly resulting from thermal noise, variation
in electrode impedance, and propagation losses through tissue).
nω indicates the number of instances of dω, which is not restricted
to be the same across filters. ω basically constitutes an assigning
set (i.e., index) between observed micro–events and modeled
dictionary atoms, i.e., ω ∈ {1, 2, 3, . . . ,K}. The resolution of τ

is limited only by the recording sampling rate; for instance for
500 Hz, one can determine the occurrence of a neuromodulation
with a 2 ms. resolution. In theory, the support of α is IR; however,
practical constraints are imposed by the power of the rhythm
under consideration. Figure 2 illustrates the encoding from
TMPP samples to noisy single-channel, bandpassed ECoG trace.

The model in (2) can be alternatively interpreted as y(t) being
the observable variable from a generative model with latent
variables Y and Z. Y is parameterized as 2Y , {τ ,α,ω,D},
whereas Z, being Gaussian in nature, is fully characterized

by the mean and standard deviation of the background EEG,
i.e. 2Z , {µZ , σZ}. A multiple input single output (MISO)
framework (Brockmeier and Príncipe, 2016) is the basis of the
current generative model for ECoG; however, training was not
scalable due to the amount of free hyperparameters. Then, a
single-rhythm approach was adopted by Loza et al. (2017), where
learning focused on scale-specific patterns of fixed duration by
means of shift-invariant time series clustering techniques. The
current work goes one step further and learns kernels of different
lengths. Similar models have been proposed in neuroscience
and statistics under the connotation of convolutional sparse
coding (Lewicki, 2002; Smith and Lewicki, 2006; Balcan and
Lewicki, 2009; Ekanadham et al., 2011). Their results highlight
the need of principled priors and constraints to tackle an inherent
combinatorial problem.

Given an ensemble of single-channel ECoG recordings,
{ỹi(t)}

N
i=1. Learning on the model implies estimating the

dictionary D whose elements, in general, are not restricted in
duration—they represent bases from vector spaces of different
dimensions. On the other hand, inference or encoding is posed
as learning the set of timings and marks of the TMPP, i.e.,
sampling from a point process. The shallow nature of the model
admits the equivalence between latent variables and features
or representations. D also encodes features of its own, such
as duration, central frequency, and Q-factor. Estimating 2Y ,
then, can be posed as a case of unsupervised representation
learning for ECoG (Bengio et al., 2013). The shallow
generative framework and physiological-based constraints
of the model guarantee that the learned dictionary and densities
of timings, marks, and representations lead to meaningful and
interpretable encoding mechanisms of the network without
imposing handpicked signatures, as in the case of wavelets or
Gabor bases.

3.2. Learning on the Model
Estimating the latent variables of this type of generative models
usually falls into two categories depending whether the sources
are explicitly estimated or not during learning. Bell and Sejnowski
(1996), Davies and James (2007), Lucena et al. (2011), and
Brockmeier and Príncipe (2016) showcase the potential of
learning the bases without appealing to reconstruction cost
functions or explicitly estimating the sources, i.e., marks of
the TMPP, by using Independent Component Analysis off–the–
shelf implementations, such as FastICA (Hyvarinen, 1999). The
alternative approach (adopted here) is to exploit block coordinate
descent optimization to iteratively estimate the sources while
keeping the filters fixed, and then, learn the dictionary atoms
while keeping {τ ,α,ω} fixed. The result is a local optimum
in solution space with the added bonus of less computational
demands. For a comparison of both approaches applied to a
MISO model on synthetic and real EEG, refer to Brockmeier
and Príncipe (2016). Achieving the global optimum is impossible
in practice because it would require combinatorial analysis,
which is simply intractable, i.e., it would require checking all
the possible different combinations of dictionary atoms (with
different dimensionalities) until optima are found; hence, here we
opt for the tractable, albeit suboptimal solution to the problem
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FIGURE 3 | Learning of generating dictionary and TMPP features. The

discriminative embedding transform (DET) isolates potential M–snippets

generated by the Y (active) state and collects them in the matrix X.

MDL–based hierarchical clustering estimates TMPP timings and marks as well

as bases from vector spaces of different dimensions, D.

at hand. For our case, learning takes place in two very distinctive
sequential stages: discrimination between dynamical regimes and
hierarchical partitioning of the data (Figure 3).

3.2.1. Discrimination of Dynamical Regimes: From

Traces to M–Snippets
We take advantage of the architectural constraints and
neurophysiology of the ECoG to render the learning more
tractable, alleviate the computational complexity, and, most
importantly, facilitate the interpretation of the learned
prototypes. This is accomplished by bandpass filtering the
traces according to the clinical EEG rhythms (Niedermeyer and
da Silva, 2005). The result is a natural grouping of scale-specific
neuromodulations. Then, sparsity is leveraged by associating a
single dictionary atom to an observed, noisy micro-event. This
will further prevent overfitting and overlapped occurrences of
TMPP samples; it also emphasizes the temporal sparsity of the
sources. Then, there is major deviation from the approaches
adopted in classic convolutional sparse coding applied to time
series (Lewicki, 2002; Smith and Lewicki, 2006; Mailhé et al.,
2008; La Tour et al., 2018). Instead of performing iterative
template matching over time, e.g., Matching Pursuit (Mallat and
Zhang, 1993), that attempts to reconstruct the entire input, we
exploit Freeman’s theories and the concept of self-organized
criticality to map the ECoG to a surrogate space of constrained
ℓ2-norms where discrimination between rest and active stages
is plausible. Let the M-sample-long subsequence from ỹ[n]

centered at the time instance t = i be aM-snippet:

ỹi = ỹ(i−M/2 : i+M/2)

s.t i = M/2,M/2+ 1, . . . , η −M/2 (3)

where η is the number of sampled values in ỹ(t). One of
the intermediate goals of learning on the generative model is
to effectively discriminate between M-snippets generated by
Z (background subsequences) and M-snippets with embedded
phasic events generated by Y . The advantages of principled
discrimination is two-fold: decrease likelihood of biased atoms
and improved convergence rates by effective restriction of the
input space to subsequences from the active stage, i.e., the
learning is not reconstructive in nature because the entire ECoG
trace, ỹ(t), is not worth encoding. The learning falls more into the
hierarchical partitioning category. In this regard, the embedding
transform (Loza and Principe, 2018)—introduced as a novel tool
to assess non–stationarity of single-channel EEG ensembles—
maps the input according to the ℓ2-norms of its constituent M-
snippets. The M-snippets are built sequentially: first, modulated
patterns are extracted (peak detection via moving averages or
instantaneous amplitudes), then, the rest of the unmodulated
patters complete the set of M-snippets. The middle points from
each sample is collected in the set 5 = {πi}. Powers of the M-
dimensional vectors are calculated, and, the resulting ℓ2-norms
comprise the surrogate variable βM . If ỹ(t) is strictly generated
by Z, its amplitudes will resemble a Gaussian density, which
derives in βM being a chi-distribution withM degrees of freedom.
Invoking the Central Limit Theorem, if M is large enough
(which is satisfied for high sampling rates), the chi-distribution
resolves to a Gaussian density. Conversely, M-snippets from Y
interspersed between Z counterparts will drive the shape of βM

by enlarging the tails and skewing the distribution. βM is then
a surrogate variable of the dynamic stages of the network. The
discriminative embedding transform (DET) goes one step further
and proposes a threshold in the βM space between potential
M-snippets from different regimes. Specifically, the matrix X

with columns xi collects all the M-snippets larger than the
hyperparameter γ :

xi = ỹ(πi −M/2 :πi +M/2)T (4)

s.t. ||ỹ(πi −M/2 :πi +M/2)||2 ≥ γ

The case for a set of multi-trial recordings is straightforward, i.e.,
X ∈ IRM×9 where 9 is the total number of M-snippets from
{ỹi(t)}

N
i=1 generated by Y . In short,X collects potential embedded

M-sample-long micro-events of single-channel, multi-trial traces
according to a non-linear mapper with hyperparameters M
and γ .

3.2.2. Learning Bases of Different Dimensions
After X is computed, the naive solution to extract centers of
mass in IRM would involve classic static clustering algorithms,
e.g., k-means. Yet, the shift-invariance of embedded phasic
events would most likely derive in meaningless clusters as
noted in Keogh and Lin (2005). Most importantly, if prototypes
of different durations are present, k-means would blur their
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contributions by grouping them in M-dimensional vectors. The
former problem is addressed by cross-correlation operators:
distances between prospective cluster centers and samples from
X can now be estimated over lags (similar to Matching Pursuit
implementations on time series). The latter problem is far more
challenging; it demands for principled measures between centers,
and vectors in general, of different dimensions, which is clearly
prohibitive under Euclidean distance regimes. We exploit the
parsimony principles of Minimum Description Length (MDL)
coding to build a hierarchical partitioning in IRM where the
learned atoms are not restricted to a fixed dimensionality.

The MDL principle is invoked to cluster reoccurring
patterns embedded in the columns of X. The goal is to
attempt to compress the data in a lossless manner by finding
repeated structures (or regularities) in it. Due to inherent
noise and response variability, we practically aim to discover
repeated structure and encode the differences. For instance,
the conditional description length of a sequence A after being
encoded with a hypothesisH is given by DL(A|H) = DL(A−H);
this can be interpreted as the cost of the encoding. DL(T) is the
bit level representation of time series T, which is defined as the
entropy of T times its lengthm, i.e.,:

DL(T) = −m
∑

t

P(T = t) log2 P(T = t) (5)

We exploit a cost function based on bit level representations
to decide among three basic clustering operations: creating a
cluster, adding a subsequence to an existing cluster, and merging
clusters. This approach was first introduced in Rakthanmanon
et al. (2011) under the term time series epenthesis as a virtually
parameter-free framework to find repeated subsequences in time
series without necessarily explaining all the data. In a similar
manner, we sequentially build a hierarchical partition of the
patterns embedded in X by greedily selecting the clustering
operation that reduces the total number of bits saved after being
applied, i.e., the difference in the number of bits before and
after applying an operator—a bitsave (BS) cost function. At each
iteration, one operator is selected and the updated set goes
through the same process until the set X is exhausted. The BS
corresponding to the three clustering operators are:

BS after creating cluster C from subsequences A and B:

BS = DL(A)+ DL(B)− DLC(C) (6)

where DLC(C) = DL(H) +
∑

A∈C
DL(A|H) − max

A∈C
DL(A|H)

is the number of bits needed to represent all subsequences
assigned to cluster C. H is the center subsequence of the cluster
under consideration.

BS after adding subsequence A to cluster C:

BS = DL(A)+ DLC(C)− DLC(C′) (7)

where C′ is the new cluster after adding A to C.
BS after merging clusters C1 and C2 into new cluster C′:

BS = DLC(C1)+ DLC(C2)− DLC(C′) (8)

Euclidean distance is used to initialize prospective clusters and
find the closest subsequence from a given cluster center. Cross-
correlation provides an intuitive extension to Euclidean distance
over lags for both tasks and is, therefore, exploited in the current
work. Consequently, the shift-invariance nature of the micro-
events is explicitly modeled. Additional practical implementation
details include quantizing the normalized inputs to a 64-bit
representation so thatDLs from different clusters and dimensions
can be effectively compared. Also, the algorithm requires priors
in the form of a set of prospective durations, δ ∈ 1, in
order to initialize cluster centers and initiate the optimization.
Nevertheless, these priors are not rigid because cross-correlation
operators are flexible enough to discover patterns beyond the
grid imposed by 1. Learning begins by finding the set of
pairs mostly correlated in X—a sort of motif finding routine—
for each δ. Querying these sets can be effectively executed
by building matrices of sizes IRδ×δ with maximal pairwise
cross–correlation as their elements. Initial cluster centers are
merely the average between these motifs. Then, the operators
of adding subsequences to existing clusters, merging clusters,
and adding an existing motif to the active set are evaluated
at each iteration. In summary, 1 are mere suggestions of
dimensions to be explored initially, but, later during learning,
the algorithm is free to venture into different dimensions
up until the practical limit imposed by M. The timings, τ ,
are estimated as the lags corresponding to maximum cross–
correlations with respect to the time stamp of xi in the original
time series. The encoding amplitudes or weights, α, are simply
the aforementioned maximum cross-correlation values.

The proposed algorithm alternatively estimates the TMPP
marks and learns bases from vector spaces of different
dimensions. In this way, it resembles greedy block coordinate
descent approaches. However, it is conceptually different from
previous attempts to learn generating dictionaries for time series.
First, it resembles the work in Rakthanmanon et al. (2011),
in that we exploit MDL for hierarchical partitioning; yet, our
implementation is significantly faster due to the pre-processing
and discrimination of dynamical regimes provided by the DET.
Second, clustering of shift-invariant patterns usually either fixes
the support of possible discoverable patterns (Mailhé et al., 2008),
or adapt this parameter in a semi-supervised manner (Lewicki,
2002; Smith and Lewicki, 2006; Loza et al., 2017). We propose
a flexible initial grid that is free to be explored and shaped
during learning as long as the bitsave is minimized. Lastly, and
more importantly, the proposed clustering technique greedily
selects the number of clusters, K, needed, i.e., model selection is
a natural byproduct. This is a major improvement over classic
convolutional sparse coders where K is left as a hyperparameter.
The final implementation takes three main hyperparameters:
γ , the threshold of dynamical regimes in the βM space, M,
the embedding dimension of the DET, and 1, the duration
prior. However, the last two are strictly tied to the rhythm
under consideration; they can both be set according to previous
studies, analysis of TF decompositions, or neurophysiology. γ

is parameterized by the mean and standard deviation of the
fitted Gaussian corresponding to Z in the βM space, i.e., γ =

µZM + γ ′ × σZM where µZM and σZM are the mean and
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standard deviation of the set of M–snippets generated from
Z, respectively.

3.3. Additional Analysis Methods
Discriminability of movement direction is assessed via two
methods: the one-way variant of multivariate analysis of variance
(MANOVA) and the silhouette indicator.

Simply put, MANOVA (O’Brien and Kaiser, 1985) is the
generalization of the well–known analysis of variance (ANOVA)
methodology. While the latter performs statistical tests regarding
univariate sample means, the former compares multivariate
sample means. MANOVA exploits covariance matrices to unveil
correlations between dependent variables instead of the sum of
squares estimator in ANOVA, which is sufficient in the univariate
case. In the present work, MANOVA is utilized to determine the
discriminability of movement direction based on ECoG features
(either power-based or representations derived from learning on
the proposed model). In particular given the four movement
directions under study, MANOVA poses the null hypothesis that
the multivariate means either lie on a line, on a plane or on a
3-dimensional hyperplane, being this last alternative the most
discriminant option.

Silhouette values (Rousseeuw, 1987) estimate the separability
of clusters of points given their labels. In the present
work, average silhouette values determine the separability of
movement–related representations in a 3-dimensional space. In
particular for the i-th point, its silhouette Si, is defined as:

Si =
bi − ai

max{ai, bi}
(9)

where bi is the smallest average Euclidean distance of i to all
points in any other cluster (where i is not a member), and ai
is the average distance between i and all other points belonging
to the same cluster. Si provides a bounded ([−1, 1]) measure of
separability—average values close to −1 imply a poor clustering
solution, i.e., low discrimination of features, while averages close
to 1 guarantee high discriminability.

3.4. Parameter Selection
The proposed algorithm learns representations from ECoG
ensembles in a single-channel, task-by-task basis per subject.
Only the 32 channels across the frontal grid are part of the
current study. To ensure a reliable baseline for the estimation of
σZM , the processing comprises the interval starting at 0.5 s before
visual cue to 4 s after; yet, the subsequent statistical tests consist
of timings from −0.5 to 2 s relative visual cue to emphasize
TMPP samples around motor tasks (see Figure 6). According
to previous studies related to encoding of movement-related
cortical potentials (Reddy et al., 2009; Zhao et al., 2010), we focus
on bursts in the high-gamma band (85–145 Hz)—a Butterworth
filter with quality factor Q ∼ 2 is utilized for this purpose. Then,
M is set equal to 50 samples, or 100ms, 1 = [50 : 10 : 100] ms,
and γ ′ = 1. The first two hyperparameters are set based on
the physiology of cortical gamma rhythms and visual inspection
of the traces in the time domain. The last hyperparameter is a
recording-specific compromise between true and false positive

detection rates in the βM space, i.e., a value of γ = µZM + σZM
guarantees a theoretical 66% of excluded M-snippets generated
by Z from subsequent learning (according to an ideal Gaussian
density for Z). All trials in the study are used for learning
the prototypical high-gamma profiles. Lastly, for the present
study we implement all the learning pipeline—bandpass filtering,
hierarchical clustering per subject, task and channel, and feature
engineering, e.g., neuromodulation rates and average timings and
amplitudes—in an offline fashion.

4. RESULTS

First, we investigate the statistics of the TMPP samples
and the descriptors of the learned generating dictionaries.
Table 1 emphasizes the data-driven nature of the framework: it
enumerates the average number of dictionary atoms or clusters
over electrodes learned by the proposed method in a subject-
task-specific manner. It is worth noting that no further pruning
nor post-processing of the cluster centers were performed. In
terms of the learned dictionaries, Figure 4 illustrates some of the
learned prototypical high-gamma micro-events for a particular
channel and all subjects (one waveform permovement direction).
Figure S1 highlights the variety of atoms in terms of estimated
durations with respect to motor task type.

Next, spatial distributions are summarized; namely, Figure 5B
shows the average rate of gamma bursts over channels for all
movement directions. The rate statistic serves as a surrogate
of the modulated power during motor tasks. This is readily
confirmed in Figure 5A where average high–gamma power is
illustrated instead (both features will be later used to assess and
compare movement direction capabilities). Figure 6A illustrates
exemplary raster plots of the timings from Subject 153, channel
113 (associated with left hand tingling according to functional
mapping). An increase in firing of gamma events is clear
around the 0.75 s—mark with respect to visual cue. Figure 6B
corroborates such phenomenon by means of corresponding
spectrograms (250ms.–long segments with 50 % overlap). A
clear increase in modulated high–frequency power is observed
around the same 0.75 s—mark. For proper context, average
joystick movement onsets are also depicted. We quantify the
correlation between extracted TMPP timings and modulated

TABLE 1 | Average number of learned dictionary atoms per subject and task over

recording electrodes.

Subject Task

Up Right Down Left

146 27.15 26.28 23.59 22.87

147 32.03 32.68 28.93 27.59

149 28.87 28.00 25.28 23.84

153 32.06 34.21 36.75 36.25

154 49.90 47.34 46.00 41.87

156 29.28 30.12 31.06 30.15

High–gamma rhythm (85–145 Hz).
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FIGURE 4 | Learned sample cluster centers from high–gamma generating dictionaries. SX stands for Subject X according to the identifiers of the study. One atom per

movement direction. Channel 105. All atoms have unit ℓ2–norm.

FIGURE 5 | Correlation between modulated power and rate of neuromodulations in the high–gamma band (85–145 Hz). (A) Average high–gamma power over sensor

space for each movement direction. (B) Average rate of high–gamma micro–events (from proposed generative model) over sensor space for each movement direction.

Anterior channels (e.g., 105) display relative increase in both descriptors, yet only rate appears to be modulated depending on the movement direction. Subject 153.

gamma power by means of normalized Pearson correlation
coefficients across trials, electrodes, and tasks. In particular,
the correlation is performed between running sums for τ

and running variances for the bandpassed traces (sliding
250ms). Table 2 presents the means and standard deviations
per subject alongside measures across patients. A similar
correlation analysis (Table S2) between τ and the raw, unfiltered
recordings confirm a statistically significant positive correlation
between the extracted TMPP timings and the modulated
high-gamma power (right-tailed two-sample t-test of Pearson
correlation coefficients, p = 7.71 × 10−263). Lastly, the
gamma firing seems to be spatially selective; for instance,
channel 101 of the same subject does not display a bursting
preference or clear increase in gamma power (Figure 7). This

can be explained as τ being a proxy for modulated power
(estimation of τ demands for power-based measures addressed
in the DET).

Even though Figure 5B is informative, a more compelling
picture needs to incorporate amplitude information in the form
of the α feature. Figure 8 summarizes the learned TMPP timings
(τ ) and weight marks (α) over electrodes for each movement
direction task (Subject 153). The topographical plots depict the
deviations from the globals means over space, i.e., a motor task-
specific spatiotemporal marked point process over the ECoG
recording grid. The figures are also a succinct summary of a
multidimensional array or tensor: time× amplitude× electrodes
× movement direction. Similar plots for the rest of the subjects
are included as Figures S2–S6.
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FIGURE 6 | (A) Raster plot of high–gamma bursts (timings of TMPP, τ ) per movement direction. Red ticks signal joystick movement onset for each trial. Vertical blue

line is the average joystick movement onset across trials. (B) Corresponding spectrogram (STFT). Vertical white line is the average joystick movement onset across

trials. Zero–mark indicates visual cue before movement. Motor activity lasts ∼ 2.8 s. Higher rates of gamma micro–events around the 0.75 s–mark are reflected as

larger densities of TMPP samples in the raster plots as well as increase of modulated high–frequency power in the spectrogram. Subject 153, channel 113.

TABLE 2 | Pearson correlation coefficients between extracted TMPP timings, τ ,

and modulated high–gamma power (85–145 Hz) across channels, trials, and

tasks.

Subject Average

146 147 149 153 154 156

Mean 0.63 0.59 0.61 0.63 0.38 0.47 0.55

Standard deviation 0.18 0.25 0.19 0.29 0.27 0.26 0.26

We begin the discriminant analysis of the learned
representations in an incremental fashion. First, we focus
on the timings of gamma bursts, τ . One-way MANOVA
confirms that the TMPP timings are not discriminative enough
for the movement direction tasks under study. Figure 9C

illustrates the linear projections from the original 32-channel
space to a 2-dimensional space that maximizes the separation
between groups or, in this case, directions (TMPP timings from
each trial are collapsed as their mean in the design matrix).
Two dimensions are plotted for visual purposes. In actuality, the
MANOVA results fail to reject the null hypothesis that the group
means lie on a line (p = 0.90).

Being a point process, the micro-events might encode
information in timing-dependent measures, such as inter-event
intervals (or IBI—inter-bursts interval), or event rates in a similar
manner as spikes in units recordings (Reich et al., 2000). Average
log-IBIs constitute the labeled design matrices for the MANOVA
test (log-transform to encourage normality). In particular, IBIs
are calculated as the intervals (in seconds) between consecutive
gamma events for a given trial. Then, the average of the logarithm
of such IBIs constitute the feature for the channel/trial/task under
consideration. Figure 9D shows a similar 2–dimensional linear
projection that maximizes separation according to theMANOVA
test. The results effectively reject the null hypothesis that the
group means lie on a line (p = 0.0009); yet, they fail to reject
the coplanar null (p = 0.19). Similarly, Figure 9E summarizes
the linear projections corresponding to the micro-event rates,
i.e., the feature for a given channel/trial/task is defined as the

number of gamma bursts over the 2.5 s—interval of interest.
For this case, the test rejects the null hypothesis that the means
lie on a 3-dimensional hyperplane (p = 0.001), which is the
largest possible dimension for the case of four groups. Thus, high-
gamma burst rates are the most discriminative timing–related
features for movement directions.

Next, we incorporate α as an additional feature. From a
generative model instance, α represents the inner product
between observed micro-events and closest latent dictionary
atoms. We now utilize the couple {τ ,α} as a 2-dimensional
feature vector (TMPP timings and amplitudes from each trial are
collapsed as their corresponding means in the design matrix).
This novel feature can be rightfully regarded as a more refined
measure of modulated power, i.e., usual TF-based feature vectors
do not exploit the concept of sparse neuromodulations with
localized modulated power with respect to the background and,
therefore, are more likely to introduce noise to subsequent stages.
Figures 9A,B confirm this limitation; the former exploits log–
gamma power whereas the latter utilizes modulated gamma
power over time after STFT (Short-Time Fourier Transform)
decomposition (85-145 Hz for proper comparisons). On the
other hand, Figure 9F shows the linear projections from the 64-
bivariate ({τ , log(α2)}) feature space to a 2-dimensional space
after the one-way MANOVA test. Classic log-gamma power
features fail to reject the null hypothesis that the means lie on
a 3-dimensional hyperplane (p = 0.20), the STFT case results
in a value of p = 0.51, whereas a combination of timings
and encoding amplitudes of the TMPP yields a rejection of said
null (p = 3 × 10−5). Table 3 summarizes the p-values from
similar one-way MANOVAs for all subjects across movement
directions. In general, high-gamma rates and bivariate TMPP
features are the most discriminant approaches while STFT power
is generally more discriminant than gamma power alone. In
order to normalize results across subjects, Table 4 outlines the
average silhouette values for the same experiments and confirms
the three most discriminant features (in descending order):
bivariate TMPP features {τ , log(α2)}, neuromodulation rates, and
Time-Frequency-based power.
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FIGURE 7 | (A) Raster plot of high–gamma bursts (timings of TMPP, τ ) per movement direction. Red ticks signal joystick movement onset for each trial. Vertical blue

line is the average joystick movement onset across trials. (B) Corresponding spectrogram (STFT). Vertical white line is the average joystick movement onset across

trials. Zero–mark indicates visual cue before movement. Motor activity lasts ∼ 2.8 s. No clear indication of high–rates epochs in both raster plots and spectrograms.

Subject 153, channel 101.

FIGURE 8 | Visualization of high–gamma (85–145 Hz) Temporal Marked Point Process (TMPP) statistics over sensor space for each movement direction. Subject

153. Color scale indicates the deviation of the timings τ from the global, task–specific mean over electrodes. Radii of circles represent deviations of the weights α from

the global, task–specific mean over electrodes. Log–transform of squared weight feature to encourage normality, i.e., log(α2 ).

Lastly, sensitivity to hyperparameters is studied. Namely, γ ′ is
varied in the interval [0:0.5:2] and the grand average of silhouette
values are reported in Table 5. This is equivalent to modulate the
sparsity of the resulting TMPP samples, i.e., smaller values of γ ′

will yield dense neuromodulations over time while a higher γ ′

further prunes the TMPP at expense of decreasing TPR. Yet once
again, τ alone is not discriminant enough regardless of γ ′. On the
other hand, IBI, τ rate, and {τ ,α}, show more discriminability
and a slight dependency on γ ′ (especially for values on the

extremes of the plausible threshold interval). However, the
bivariate (τ ,α) features remain the most discriminant case with
respect to its peers for a given noise threshold γ ′.

5. DISCUSSION

MDL principles are key in the current representation learning
framework. Centroid-based clustering usually requires model
selection techniques or hyperparameter tuning based on
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FIGURE 9 | Linear projections to a 2–dimensional space that maximizes Mahalanobis distance between groups (movement directions). Byproduct of multivariate

analysis of variance (MANOVA) in the interval −0.5 to 2 s relative to visual cue. (A) 32–dimensional log gamma power features. (B) 64–dimensional STFT–based power

features. (C) 32–dimensional TMPP timing (τ ) features. (D) 32–dimensional TMPP inter–bursts intervals (IBI) features. (E) 32–dimensional TMPP phasic event rate

features. (F) 64–dimensional TMPP timing and weight (τ ,α) features. Subject 153. 2–dimensional projections presented for visual purposes only. Tables 2, 3

summarize the results of similar linear projections to 3–dimensional spaces.

performance measures. For our case, the latter option is
impractical and intractable: reconstructive cost functions such as
mean-squared error between inputs and reconstructions imply
the need of encoding the entire sequences in X ∈ IRM×9

when, in reality, only subsequences embedded in each sample
from X are worth encoding. In addition, hyperparameter tuning
of such a large space would be infeasible, e.g., for 10 possible
number of clusters per channel, there are a total of 1032 =

possible hyperparameter settings for the frontal ECoG grid under
analysis. MDL provides a principled model selection heuristic
that is able to partition the input in a hierarchical manner.Table 1
emphasizes this advantage, while at the same time, highlights the
data-driven nature of the proposed algorithms. The fact that the
number of dictionary atoms is different across subjects and tasks
implies that diverse generative models are responsible for the
inherent variability of the ECoG traces. Setting a fixed number

of clusters (as is customary in centroid-based clustering) would
certainly bias the learned representations. Another alternative is
to compare solutions according to performance measures based
on labels in a supervised fashion as in Loza et al. (2017).

5.1. Validation
The learning framework was initially proposed in Loza and
Principe (2019) as a generalized sleep spindles detector for single-
channel EEG recordings. Essentially, classic detectors either
estimate the set of timings, {τ }, and a surrogate of the set of
durations of the micro-events in questions (sleep spindles) or
obtain amplitude, {α}, and duration features as a post-processing
step (Huupponen et al., 2007; Devuyst et al., 2011; Purcell et al.,
2017). Either way, both views lack the underlying generative
nature the dictionary,D, entails.
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TABLE 3 | p-values from one–way MANOVA tests exploiting different types of

features during the interval −0.5–2 s relative to visual cue.

Subject Feature

Power STFT power τ IBI Rate τ ,α

146 8.7× 10−1 8.4× 10−1 9.9× 10−1 8.2 × 10−3 5.2 × 10−6 2.8 × 10−2

147 7.3× 10−1 3.7 × 10−2 6.9× 10−1 9.5× 10−1 2.4 × 10−3 3.2 × 10−2

149 5.8× 10−1 2.1× 10−1 7.6× 10−1 2.2 × 10−2 1.1 × 10−9 5.6× 10−2

153 2.0× 10−1 5.1× 10−1 9.9× 10−1 4.7× 10−1 1.1 × 10−3 3.0 × 10−5

154 5.5× 10−1 3.0× 10−1 7.8× 10−1 8.3× 10−1 4.9× 10−1 4.3 × 10−3

156 9.6× 10−1 7.1× 10−1 9.2× 10−1 1.7× 10−1 1.0 × 10−5 3.3 × 10−3

Rate refers to high–gamma burst rate from TMPP framework. Null hypothesis: group

(movement direction) multivariate means lie on the same 3–dimensional hyperplane.

p-values that lead to hypothesis rejection are marked in bold.

TABLE 4 | Average silhouette values exploiting different types of features during

the interval −0.5–2 s relative to visual cue.

Subject Feature

Power STFT power τ IBI Rate τ ,α

146 0.39 0.72 0.20 0.46 0.70 0.88

147 0.02 0.34 −0.004 0.16 0.48 0.44

149 0.12 0.65 0.10 0.35 0.71 0.78

153 0.03 0.14 −0.05 0.01 0.16 0.36

154 −0.03 0.03 −0.05 −0.06 −0.03 0.12

156 −0.02 0.25 −0.003 0.16 0.49 0.46

Average 0.08 0.35 0.03 0.18 0.42 0.51

Rate refers to high–gamma burst rate from TMPP framework. Analysis on a three–

dimensional space after MANOVA projections.

TABLE 5 | Grand average silhouette values of TMPP–based features during the

interval −0.5–2 s relative to visual cue with respect to hyperparameter γ ′.

Feature γ
′

0.0 0.5 1.0 1.5 2.0

τ 0.06 0.04 0.03 0.03 0.06

IBI 0.21 0.22 0.17 0.12 0.06

Rate 0.31 0.41 0.42 0.40 0.32

τ ,α 0.47 0.44 0.51 0.51 0.51

The DREAMS database (Devuyst, 2011) was utilized to
validate the methods. Single-channel (either CZ-A1 or C3-
A1), 30-min-long EEG recordings from 8 subjects were made
available with corresponding ground truth as visual scorings
of sleep spindles from two different experts. M is set equal to
the sample equivalent of 1.5 s while 1 is set to [0.5:0.1:1.5]
s. according to scoring criteria of sleep spindles (Rechtschaffen
et al., 1968; Niedermeyer and da Silva, 2005; Purcell et al., 2017).
Lastly, detection performance with respect to γ ′ is compared
to the visual scoring annotations of expert 1. Expert 2 did not
provide scorings for two subjects; therefore, it is excluded from
the analysis.

Receiver operating characteristics (ROC) curves quantify the
grand averages of True Positive Rates (TPR) and False Positive
Rates (FPR) across subjects for a γ ′ range of [−3:0.5:3] (Figure
3 in Loza and Principe, 2019). Namely, expert 1 provided ground
truth as his assessment of the temporal timestamps and durations
of each putative sleep spindle. On the other hand, our proposed
learning algorithm returns the sets {τ ,α,ω,D} alongside the
durations of each dictionary atom or kernel in an unsupervised
fashion. A true positive (TP) appears when a time sample in the
EEG recording is deemed as part of a micro–event by the visual
scorer and our learning algorithm simultaneously. Conversely,
a false negative (FN) occurs when a time sample is deemed as
part of a sleep spindle by the expert, but it is missed by the
learningmethod. False positives and true negatives can be defined
analogously. Then, TPR and FPR are calculated as:

TPR =
TP

TP + FN
(10)

FPR =
FP

FP + TN
(11)

In addition due to the inherent noisy and artifact–prone nature
of EEG, the sigma index (Huupponen et al., 2000, 2007) is
exploited to further reduce the FPR by filtering alpha intrusions
and Electromyography (EMG) interference. Best cases of our
approach correspond to a global sensitivity of 67.7% and FPR
= 0.154 compared to 70.2% and 0.264 from the original report
(Devuyst et al., 2011), respectively. Essentially, the proposed
algorithm is able to significantly improve specificity while
compromising a few TPR percentage points. At the same time,
the results go beyond classic detectors by estimating generating
dictionaries and features in a completely data–driven fashion.
The main scope of the current manuscript is not sleep spindles
detection nor optimal conditions for learning on the generative
model. Yet, interested readers are referred to Loza and Principe
(2019) for further information and heuristics regarding the
generalized sleep spindle detector as an application of the
proposed model on single-channel EEG traces.

5.2. Analysis of Results
Before addressing the quantitative results of our study, we
devote some time to a particular set of neuromodulations that
usually appear in ECoG-based epileptic studies: high-frequency
oscillations (HFO) or ripples—modulated activity in the 60–100
Hz range that has been used as a biomarker to localize seizure
onset zones for potential subsequent resection in medicine
resistant patients (Bragin et al., 1999; Worrell et al., 2004). Even
though the HFO band is a subset of the high-gamma band under
study here, we believe there is no real chance of HFO leaking into
our detector. Namely, as mentioned in the Experimental Setting
section, all of the epilepsy patients in our study had a temporal
lobe onset of epilepsy and none had a frontal neocortical onset
(our 32-channel analysis takes place in the frontal grid). Also,
none of the patients had a Rolandic focus of their epilepsy, which
is where the recordings were taken from. Lastly, it HFO were
actually leaking into the learning framework, they likely would
not be synchronized to the motor tasks and would serve more as
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random background noise which would actually hurt, rather than
strengthen our analysis.

Figure 4 underscores the data-driven solutions of the
proposed methods. The learned filters are rich in terms of
duration, symmetry, frequency, and modulatory patterns. This
highlights the data-driven nature of the proposed framework;
for instance, classic wavelets or complex sinusoids restrict
the time-frequency plane to specific subsets; conversely, our
learned dictionaries reflect the inherent non-stationarity of the
ECoG with exceptional temporal resolution (only limited by the
sampling frequency). The cluster centers depicted in Figure 4

can also be regarded as the mean values of the distributions of
a mixture model that gives rise to the phasic event component in
Equation (2). MDL guarantees that said clusters will not merely
fit the data, but they will capture the regularity of the ECoG
traces, while at the same time, keeping the model as simple as
possible (simplicity is quantified here in terms of compression-
based measures). Classic shift-invariant dictionary learning
solutions, also deemed as convolutional sparse coding, applied
to time series either require careful hyperparameter tuning or
fixing the number and dimensionality of the learned atoms
(Lewicki, 2002; Smith and Lewicki, 2006; Mailhé et al., 2008;
La Tour et al., 2018). Our approach provides an unsupervised
framework where none of those constraints are required (as
previously noted,1 is a mere blueprint for the learning algorithm
to explore different dimensions, however, it is not a restrictive
grid of possible phasic event durations). The price we pay,
though, comes in the specialization of the EEG spectrum, i.e.,
all the learning is rhythm-specific (high-gamma in this case).
Figure S1 summarizes the duration distributions and stands
in stark contrast to traditional decomposition methods where
the dictionary waveforms (e.g., complex sinusoids in Fourier
analysis) have a predetermined set duration that is usually
regarded as a free hyperparameter of the decomposition, e.g.,
window size in TF decompositions. Our proposed methods
bypass this limitation by learning these duration profiles in a
data-driven fashion. Further work will contemplate the potential
of novel discriminative mechanisms based on the duration of
gamma bursts.

Figure 5 illustrates the correlation between the high–gamma
power profile and the rate of extracted micro-events over
channels for each movement direction. While the power features
suggest specialization over space, it does not fully indicate
discriminant areas with respect to motor task type. On the other
hand, the estimated rate provides a richer feature space where
the neuromodulation density seems to be modulated according
to movement direction. This is one of the main reasons why
power-based features seem to fall short when compared to more
elaborate descriptors that harness the inherent sparse nature
of the phasic events (Tables 3, 4). Also, Figure 5 is a proof of
concept of the proposed methods—a case in point is channel
105 where the power profile suggests an area of high local
synchronization. The same channel displays high rate levels as
well; however for the “up” direction, the high-gamma density
slightly decreases suggesting potential discriminant behavior.
Lastly, Figure 5B depicts smooth transitions in general, i.e.,
non-abrupt local spatial correlations that can further indicate

discriminant regions (not only single electrodes) in terms of
neuromodulation rates. This hypothesis is left as further work.

Figures 6A, 7A suggest specialization of gamma bursting
over the cortex. Some channels increase their bursting around
specific time instances, while some others do not seem to display
particular distinctive patterns. This suggests a selective spectral-
spatiotemporal organization of local neuronal populations in
order to encode motor tasks. Similar results are observed via
averaged TF decompositions, such as STFT (Figures 6B, 7B),
however, the introduction of a windowing parameter blurs
the temporal information encoded in the timings. Conversely,
our approach provides a temporal resolution limited only by
the sampling frequency: 2ms for the current work, although
the original 2034.5 Hz sampling frequency could have been
used as well (yielding a ∼ 0.5ms temporal resolution with
the added computational load that comes with working on
higher dimensions). TheMANOVA results, silhouette values and
exemplary 2-D projections in Figure 9C confirm that timing
information alone is not sufficient to discriminate movement
directions. Yet, further work will investigate if τ might be enough
to distinguish between movement and rest stages.

Figures 6, 7 also illustrate the correlation between extracted
TMPP timings, τ , and modulated high-gamma power over time.
Even though the recordings are aligned to the visual cue, the
density of estimated gamma micro-events grows larger around
the average joystick movement onset (blue lines in Figure 6).
This suggests that the rate of gamma neuromodulations increases
before and around movement onset on a trial-by-trial basis
(see red ticks in Figure 6). The measures in Table 2 confirm
the positive correlation between extracted TMPP timings and
modulated high–gamma power. On the other hand, the estimated
set of τ ’s bear no correlation (in a linear scheme) with the
raw ECoG traces—average of −0.06. Comparison of these two
samples (τ correlations with high-gamma filtered and raw
recordings) by means of a right-tailed two-sample t-test confirms
that the extracted phasic events follow the profile of actual high-
gamma power.

A spatiotemporal marked point process succinctly
summarizes the network dynamics during motor tasks. Figure 8
exemplifies a novel graphical depiction of discrete micro-events
in terms of their timings and weights. Unlike TF decompositions,
the topographical plots quantitatively emphasize the concept of
neuromodulations and gamma bursts. For instance, electrode
105 seems to encode motor activity via large timing and weight
deviations (with respect to global mean over electrodes); yet, the
activity does not seem to support discrimination of movement.
On the other hand, electrode 124 modulates gamma burst firing
with respect tomovement while keeping the amplitudes relatively
the same. Most sensors seem to fall into three categories, they
resemble the activity of either electrode 105 or electrode 124,
or they remain relatively unaffected by the motor task, e.g.,
electrode 97. However, there are no regions with clear weight
modulation (variability of radii across tasks). If the weight α is
devised as a surrogate of power with respect to normalized bases,
then the results in Tables 3, 4 and Figure 9A are completely
justified—power-based measures alone that disregard timing
information are not discriminant when it comes to encoding
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movement direction of motor tasks. This conclusion goes along
the lines of Reddy et al. (2009) and Zhao et al. (2010). In the
case of the two electrodes depicted in Figures 6, 7, their TMPP
representations emphasize the fact that channel 101 does not
actively encode motor activity—both its τ and α deviations lie
close to the zeros marks, i.e., electrode 101 resembles the average
global activity of the grid. On the other hand, channel 113 clearly
deviates from both global trends; namely, its smaller radii suggest
relatively smaller α’s (again with respect to the global average
of the grid for a particular task). Similarly, positive deviations
from the zero-timing-mark indicate slight latencies (roughly
in the order of 50ms) with respect to the entire local neuronal
population under study. This empirical analysis highlights one
of the main features of the proposed algorithm: the ability to
analyze EEG recordings exploiting fine temporal resolutions
only limited by the sampling frequencies. Similar plots from the
remaining subjects are included as Supplementary Material.

IBI and micro-event rates seem to be more suitable
features to linearly separate the classes. Both features are
a direct consequence of working under the premise of
discrete reoccurring wave packets throughout the cortex. These
representations would be infeasible for classic TF decompositions
where there is no explicit notion of micro-events. While IBI
estimates the average interval between gamma bursts, micro-
event rates indicate the density of neuromodulations during
the specified 2.5 s window. The former seems to be more
discriminant than τ alone; however, the latter is consistently
superior. If Figure 6 suggests a specialization in spectral-
spatiotemporal organization of local assemblies, Tables 3, 4 and
Figure 9E suggest a collaborative effort of the entire frontal
network tomodulate high-gamma burst densities at a macro level
in order to sparsely encode movement direction. This conclusion
could potentially lead to effective online classifiers where it would
be only necessary to estimate the density of high-gamma bursts to
predict motor tasks.

The incorporation of TMPP weight marks, α, into the
modeling framework improves the separability of the classes
and consistently outperforms all previous approaches, including
classic TF-based frameworks. This last addition emphasizes
the need of a generative model to encode neuromodulations
as the noisy addition of weighted prototypical templates over
time. STFT performs a similar generative assumption, however
the basis is generic and not overcomplete; in addition, the
unconstrained STFT decomposition does not encourage sparse
solutions. Encoding high-gamma bursts as multimodal features
not only reduces the dimensionality of the inputs, but also
provides interpretable representations that can be fully validated.
The bimodal representation (per channel) achieves the highest
average silhouette values, signaling a proper clustering solution
that can be further exploited in supervised learning frameworks,
such as online BCI.

The main hyperparameter of the learning framework
is the threshold γ ′ of the DET. Table 5 summarizes the
average silhouette values as a surrogate of the discriminability
among movement directions (larger values imply better class
separability). In general, τ–based results are unaffected by the
choice of γ ′, i.e., they all yield a poor clustering solution. When

IBIs are utilized as features there is an inverse relationship
between performance and γ ′; this is a direct consequence of
the increase in sparseness that larger γ ′’s entail, i.e., temporally
sparser events lead to biased IBI estimates (the same logic can
be applied to τ rates). Lastly, bivariate features are not only the
most discriminant solutions for a given γ ′ in a consistentmanner,
but they also register robust intervals of the hyperparameter;
consequently, this combination of features should be preferred
in practice.

Now we address the concept of overfitting, i.e., merely
“memorizing” the data and fitting underlying noise rather than
actual trends in the ECoG. First, one of MDL’s main applications
is model selection (Stine, 2004; Grünwald, 2007); hence, it
provides a principled framework to choose an appropriate
hypothesis (or set of hypotheses) that not only explains the
regularities in the data, i.e., fit it properly according to a specified
criterion, but also complies with a parsimony principle that
controls the complexity of such hypothesis. In this way, MDL
is an explicit tool to avoid overfitting. Second, we exploit a
randomization test (1,000 independent runs) that randomly
shuffles the labels and proceeds to compute the MANOVA p-
values (null hypothesis that the means lie on a 3-dimensional
hyperplane) and average silhouette values for each subject.
Table 6 summarizes the results and clearly indicates that no
significant p-values emerge; silhouette-based measures are also
lower than their counterparts on Table 4. In fact, the average
silhouette values of Table 4 surpass the 95th percentile of
the corresponding randomization test distributions in all cases
except for subject 154 exploiting IBI (Table S3). In this way,
we provide a proof of concept that no overfitting takes place in
our study.

In the previous paragraphs we glossed over an important
concept for BCI deployment in real settings—online classifiers.
Now, we explain in-depth how our framework can be adapted
to the supervised learning setting alongside the associated
theoretical and practical implications of such change. In this
study, we basically clustered relevant subsequences of different
lengths from single-channel, multi-trial ECoG traces. This

TABLE 6 | Mean p-values (from MANOVA) and average silhouettes (denoted by S)

after randomization test.

Subject Feature

IBI Rate τ ,α

p S p S p S

146 0.83 0.17 0.83 0.17 0.66 0.73

147 0.85 0.00 0.84 0.00 0.83 0.19

149 0.84 0.11 0.84 0.11 0.77 0.54

153 0.84 −0.04 0.85 −0.03 0.84 0.07

154 0.84 −0.07 0.83 −0.05 0.84 0.00

156 0.84 0.00 0.85 0.00 0.84 0.20

Average 0.84 0.02 0.84 0.03 0.79 0.28

Interval from −0.5 to 2 s relative to visual cue. One thousand runs of random trial shuffling

were performed. γ ′ = 1.
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learning is executed task by task, and the associated TMPP
features and subsequent timing-related characteristics (IBI and
rate) are found to be discriminant according to statistical tests
and silhouette values. However, during learning, there is no
cost function that maximizes discriminability (exploiting label
information) and, at the same time, estimates the dictionaries and
TMPP features; we only focused on the latter task. An apt analogy
comes in handy here: in the computer vision field, dictionary
learning is widely used; specifically, the K-SVD technique learns
overcomplete, redundant dictionaries under the umbrella of
sparse modeling (Aharon et al., 2006). This technique was
initially utilized for compression, denoising, and demosaicking
of digital images (Elad, 2010), i.e., unsupervised learning tasks
similar to our framework in the present manuscript. Later,
variations of K-SVD emerged in the supervised setting by
exploiting label information and proposing novel cost functions
(and consequently novel optimization techniques) (Zhang and
Li, 2010; Jiang et al., 2013). We believe our contribution—
likewise K-SVD—is the first step toward explicit discriminant
models for ECoG-based BCI that exploit representation learning.
To this end, the cost functions in Equations (6–8) should be
modified to accommodate separability among classes (possibly
via a linear classifier); then, appropriate optimization techniques
(almost inevitably more complex than the algorithms presented
here) would be proposed in order to estimate dictionaries that
are not only adaptive, but also discriminant. If such dictionary
is attainable, then online classifiers can be built on top of its
atoms; for instance, a simple pipeline would assign any incoming
trial to the class that minimizes the residual norm (after TMPP
features estimation) according to a learned linear classifier. The
computational burden and latency of said simple framework
would be proportional to the added complexities of the following
routines: online bandpass filtering, parallel convolutions with all
of the dictionary atoms, online computation of the residue norm
(per channel), and linear classifier. Clearly, more sophisticated
classifiers can be built on top of such discriminant dictionary,
but our goal here was to simply illustrate the point that our
contribution focuses on fitting multivariate ECoG data to the
proposedmodel (with the addedmodel selection feature ofMDL)
in an unsupervised scheme, and yet, discriminability still arises
as a property of the representation. In addition, this supervised
learning framework would potentially allow the use of “global”
dictionaries learned from a population of subjects in order to
encode ECoG traces from a novel patient.

Lastly, as previously mentioned, the proposed learning
algorithm is rhythm-specific. It was devised as an estimator
of dictionary atoms that represent event–related oscillations at
small time scales, i.e., higher frequencies. The DET exploits this
constraint alongside the inherent sparsity of short-lived bursts to
extract micro-events with prominent modulated envelopes. Even
though the generative model of Equation (1) is general enough to
explain the generative mechanisms of phasic events in the cortex,
other learning frameworks are certainly needed to model non-
oscillatory events (e.g., K-complexes), desynchronization type of
activity (such as the decrease in beta and mu powers observed in
Figure 6 prior and during joystick movement onset), and dense
low-frequency events at larger time scales (e.g., phase shifts in
theta and delta waves). All these cases constitute attractive new

avenues of research and are left as further work. In the spirit of
openness and to encourage reproducibility, the MATLAB code
corresponding to the proposed methods are available at https://
github.com/carlosloza/EEGMDL.

6. CONCLUSION

We proposed a generative model and learning algorithm for
single-channel, multi-trial ECoG recordings that can be either
posed as a convolutional variant of the sparse modeling
problem where both inference and learning are attained or
as an estimation of temporal marked point processes and
associated prototypical activation filters. MDL is successfully
exploited to render a data-driven methodology where model
selection and discovery of bases from vector spaces of different
dimensions are plausible. Our approach learns representations
per label and models the separability among classes via optimal
linear projections that maximize the Mahalanobis distance
between groups. Timings and weight features of the marked
point process are the most discriminative representations and
outperform methodologies that do not encourage sparsity and
rely on power–based measures. Further work will expand the
framework to predictive modeling, i.e., jointly learning the
representations as well as a classifier to effectively generalize
the encoding mechanisms at work during movement direction-
related motor tasks.
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