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A number of repetitive transcranial magnetic stimulation (rTMS) protocols have been
developed for modulating brain function non-invasively. To identify the most powerful
one, these protocols have been compared in the context of the motor system. However,
to what extent the conclusions could be generalized to high-level functions is largely
unknown. In this study, we compared the modulatory effect of three excitatory rTMS
protocols on high-level cognition represented by response inhibition ability. Our first
experiment revealed that intermittent theta-burst stimulation (iTBS) could significantly
improve reaction time in a stop signal task, while 5-Hz and 25-Hz stimuli were ineffective.
This iTBS effect was significantly higher than that for the sham simulation and only
occurred in the second session of the stop signal task after iTBS in the first experiment.
However, this aftereffect of iTBS was not reproduced in the second experiment,
indicating high variability across subjects. Thus, on the one hand, our findings indicate
that iTBS on the pre-SMA could improve inhibitory control, but on the other hand, the
reliability and reproducibility of this effect needs further investigation.

Keywords: intermittent theta-burst stimulation, reproducibility, response inhibition, stop signal task, transcranial
magnetic stimulation

INTRODUCTION

Transcranial magnetic stimulation (TMS) is a non-invasive neural modulation technique with
valuable potential in both neuroscience (Bergmann et al., 2016) and clinical studies (Lefaucheur
et al., 2014). In particular, it has been shown that repetitive TMS (rTMS) can temporarily modify
brain function for minutes to hours (Iyer et al., 2003; Huang et al., 2005; Hamada et al., 2007;
Jung et al., 2008). Stimulations at low (≤1 Hz) and high (≥5 Hz) frequency can increase or
decrease neuronal excitability, respectively. Among rTMS protocols, theta-burst stimulation (TBS)
can produce long aftereffects (>20 min) using relatively short-term stimulation (typically, 40–
190 s) (Huang et al., 2005). A motor-evoked-potential (MEP) study indicated that repeating
intermittent TBS (iTBS) three times could further increase the aftereffects (Nettekoven et al., 2014).
To identify the protocol with the best modulatory capacity, different stimulation sequences have
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been compared in the context of motor systems (Zafar et al.,
2008; Ji et al., 2017). However, to what extent a conclusion could
be generalized to high-level functions is largely unknown. For
instance, the dynamic aftereffect of rTMS on cognitive function
has rarely been investigated.

Response inhibition represents a key executive function
(Aron, 2007; Mirabella, 2014; Hampshire and Sharp, 2015).
Specifically, response inhibition refers to the ability to suppress
responses that are no longer required or that are inappropriate,
such as braking when an animal suddenly crosses the road.
In a laboratory setting, a stop signal task (SST) is one
of the most effective paradigms for investigating response
inhibition of pre-planned movement (Logan et al., 2014).
Neuroimaging studies have shown that core regions underlying
response inhibition mainly include the bilateral inferior frontal
cortex (IFC), pre-supplementary motor area (SMA), globus
pallidus, striatum, and subthalamic nucleus (STN) (Aron and
Poldrack, 2006; Aron et al., 2007; Zandbelt and Vink, 2010;
Mirabella et al., 2012, 2013; Swann et al., 2012). Patients
with neuropsychological disorders, such as Parkinson’s disease
(PD) (Ye et al., 2014, 2015) and obsessive–compulsive disorder
(Chamberlain et al., 2006; de Wit et al., 2012), often exhibit
deficits in response inhibition. To non-invasively restore this
function, the effectiveness of different rTMS protocols on SST
has been investigated in independent studies (Obeso et al.,
2013; Watanabe et al., 2015; Yang et al., 2018). For instance,
Watanabe et al. (2015) found that excitatory and inhibitory
rTMS on the right pre-SMA could improve and impair the
response inhibition ability, respectively. In contrast, no positive
effect of an excitatory protocol was found following application
of 10-Hz stimulation on the right IFC (Yang et al., 2018). In
disease conditions (e.g., PD), there are many other excitatory
protocols (e.g., 5 and 25 Hz) showing potential in improving
response inhibition ability (Chou et al., 2015), but the effect
on SST has not been investigated or compared in the same
context to date.

Here, we hypothesized that excitatory rTMS protocols could
improve response inhibition ability and aimed to identify
the most effective from several common protocols. According
to a previous rTMS study (Watanabe et al., 2015), the
right pre-SMA was defined as the stimulation target. In the
current study, we estimated and compared the aftereffects
of rTMS protocols [i.e., 5-Hz, 25-Hz, intermittent (i) TBS,
and sham stimulation] in a single-blind, crossover design. In
particular, we designed two SST sessions before and after
each protocol to show the onset time and duration of
the rTMS effect.

MATERIALS AND METHODS

Experimental Design
We used a single-blind, within-subject design to examine the
aftereffects of rTMS protocols (Figure 1A). Subjects were blinded
to the sequence of the stimulation protocols until the end
of the study. There were two experiments. In the first, each
subject received four types of rTMS stimulation (5 Hz, 25 Hz,

iTBS, and sham) on independent days at least 1 week apart to
avoid any carryover effect. The order of the rTMS protocols
was randomized within each subject. Before and immediately
after each stimulation, participants performed SST for two
sessions. The second experiment was designed to validate the
findings of the first one in an independent sample. Subjects
received two types of rTMS stimulation. One was the most
effective protocol in the first experiment, and the other was
sham stimulation (the rTMS protocols are shown in Figure 1B).
For a study with a random design, it is important to test to
what extent participants are able to differentiate sham and real
TMS. Here, it took an average of 4 weeks for each subject
to complete experiment 1. Owing to the long delay between
protocols, the answers given by participants at the end of
experiment 1 would not have been accurate. Thus, we did
not include a post-experiment questionnaire in the design. For
consistency, a post-experiment questionnaire was not included
after experiment 2 either.

Subjects
From May 2017 to April 2018, we recruited 43 healthy,
right-handed undergraduates with no history of neurological
or psychiatric diseases and no experience in TMS. Of these,
20 and 18 participants completed the first and second
experiments, respectively. All participants met the safety
criteria for functional fMRI and rTMS, and gave informed
consent before participating in the study (Rossi et al., 2009).
The study was performed according to the Declaration
of Helsinki (2008 revision) and approved by the local
ethics committee.

Stop Signal Task
Response inhibition was assessed with the SST compiled and
executed using E-prime 2.0 (Publisher: Psychology Software
Tools, Inc., Pittsburgh, PA, United States). One SST session
included 200 trials consisting of “Go” (75%) and “Stop” (25%)
tasks. During the experiment, participants were instructed to
pay attention to a white circle (∼2.5◦

× 2.5◦ visual angle)
displayed at the center of a 14-inch Dell computer screen. After
a black background (1000 ms) and white circle (randomized
between 200 and 1000 ms), a white arrow was presented at
the center of the circle. In the “Go” trials, the color of the
arrow did not change. According to the orientation of the
arrow (left or right), participants were instructed to press “F”
or “J” on the keyboard using the left or right index finger,
respectively. The arrow disappeared upon pressing a button
or after 800 ms was elapsed, and the trial terminated. In
the “Stop” trials, the color of the arrow changed to red after
a so-called stop-signal delay (SSD); participants were asked
to withhold the button press. The trials were terminated if
the button was mistakenly pressed or at 800 ms after the
appearance of the red arrow. The SSD varied among the
stop trials according to a staircase procedure (initial SSD,
250 ms): when participants withheld or continued their press
response, the SSD was increased or decreased by 50 ms.
The participants were instructed to quickly respond to “Go”
signals but also to keep in mind that occasional “Stop”
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FIGURE 1 | Study design (A) and rTMS protocols (B). In experiment 1, each subject received four rTMS protocols on four separate days. Experiment 2 was
performed after the end of experiment 1, with subjects receiving iTBS or sham rTMS on two separate days. Both experiments followed a within-subject design. The
rTMS protocols were delivered in a randomized order for each subject. Subjects were required to perform the SST twice before and after stimulation. Each rTMS
protocol contained 1800 pulses. This takes 18, 16.2, and 39.5 min in the 5-Hz, 25-Hz, and iTBS protocols, respectively.

signals could appear. To ensure that subjects understood
the rule, 100 practice trials were performed before giving
the actual test.

Transcranial Magnetic Stimulation
Transcranial magnetic stimulation was performed using a
Magstim Rapid2 stimulator (Magstim Company, Whitland,
United Kingdom) coupled to a frameless stereotactic optical
tracking neuronavigation system (Brainsight; Rogue Research,
Montreal, QC, Canada). High-resolution anatomical images were
acquired for neuronavigation (repetition/echo time, 8.16/3.18 ms;
flip angle, 12; field of view, 256 mm2

× 256 mm2; 256 × 256
matrix; section thickness, 1 mm, without intersection gap;
voxel size, 1 mm3

× 1 mm3
× 1 mm3; 188 sections). The

resting motor threshold (RMT) was estimated for each subject
to set the individualized stimulation strength before the first
rTMS. To measure RMT, MEP amplitudes were recorded for
the abductor pollicis brevis muscle using Ag/AgCl surface
electrodes when the left “hand knob” area was stimulated
with a 70-mm figure-of-eight coil (Magstim Company). The
electromyography (EMG) signal was amplified, digitized, and

displayed on a computer screen by the Rogue EMG device. RMT
was defined as the lowest intensity evoking a small response
(>50 µV) in at least 5 of 10 consecutive trials (Ji et al., 2017;
Chen et al., 2018).

The repetitive transcranial magnetic stimulation was delivered
to the right pre-SMA at Montreal Neurological Institute
coordinates (6,6,62) (Watanabe et al., 2015). Each rTMS
protocol contained 1800 pulses. The 5-Hz rTMS delivered 5-Hz
stimulations at 110% RMT for 18 min (each 10-s stimulation
followed by a 20-s rest). The 25-Hz rTMS delivered 25-Hz
stimulations at 110% RMT for 16.2 min (each 4-s stimulation
followed by a 50-s rest). A typical iTBS protocol lasted for 190 s
and consisted of a burst of three pulses delivered at 50 Hz (70%
RMT) for 2 s, which was repeated every 8 s for a total of 600
pulses. To achieve a cumulative aftereffect, three typical iTBS
were delivered three times at intervals of 15 min (Volz et al.,
2013; Nettekoven et al., 2014; Thimm and Funke, 2015; Ji et al.,
2017). We used a sham coil that had the same appearance as a
real coil and produced a similar sound (Magstim Company). The
sham stimulus in the first experiment was the same as the 5-Hz
rTMS. Given that iTBS was the most effective protocol, the sham
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stimulus in the second experiment was the same as for iTBS but
delivered via the placebo coil.

Statistical Analysis
The stop signal reaction time (SSRT) was the primary outcome.
According to the standard Race Model (Logan et al., 2014), SSRT
was computed by subtracting the average SSD from the mean
reaction time (RT) in the “Go” trials. To compare the modulatory
capacity of the three rTMS protocols, we first estimated the effect
of each active stimulation on SSRT in the first experiment using
paired t-tests. The first and second sessions after rTMS were
compared to the first and second ones before rTMS, respectively
(Ji et al., 2017). As a result, we ran six paired t-tests and corrected
the P value according to Bonferroni. Only protocols showing a
significant aftereffect were compared to identify the most effective
one. The most effective protocol was adopted in the second
experiment for the reproducibility test. RT in the “Go” trials was
also analyzed as a complementary measure.

RESULTS

All 23 participants completed the first experiment, but three
were excluded because their SSRT exceeded three standard
deviations of the mean value in one of the four protocols. Thus,
20 participants were finally included for the first experiment
(nine males; mean age ± SD, 21.6 ± 1.0 years). In the second
experiment, 20 subjects were initially recruited and 18 (13 males;
mean age ± SD, 22.1 ± 2.5) completed the experiment. No
serious side effect was reported. Several subjects reported that the
noise was too loud and that their scalp felt uncomfortable, but
that these effects disappeared after the stimulation was finished.

Experiment 1
The baseline measures (RT and SSRT) were similar between the
two sessions before each protocol (paired t-tests, all P > 0.05;
Table 1). The primary outcome, SSRT, did not show significant
changes in the first session (Figure 2A and Supplementary
Table S1). In the second session, only iTBS showed significant
effects on SSRT (t = 3.2, P = 0.03; Figure 2B and Supplementary
Table S1). In comparison to the sham protocol, the iTBS protocol
induced larger SSRT (t = 3.1, P = 0.006; Figure 2B) changes
during the second session. No significant RT alteration was found
in the first (Figure 2A) or second (Figure 2B) session after iTBS,
5-Hz, or 25-Hz rTMS (Supplementary Table S1).

Supplementary Analysis
We also analyzed the SSRT and RT data using a two-way (time
by session) repeated-measures analysis of variance (ANOVA)
for each protocol independently. Similar to the results reported
above, only SSRT in the second session after iTBS showed
significant aftereffect. To test whether the iTBS effect in
the second session was different from sham stimulation, we
performed a two-way [time (levels: pre- and post-rTMS) by
protocol (levels: iTBS and sham)] repeated-measures ANOVA
on the data from the second session. Significant interaction
effect was found, which suggested different aftereffects between

TABLE 1 | Stop signal measures in the first experiment.

Session 1 Session 2

RT (ms) SSRT (ms) RT (ms) SSRT (ms)

5 Hz

Pre 479 ± 22 231 ± 8 467 ± 22 237 ± 6

Post 465 ± 22 239 ± 7 468 ± 24 237 ± 8

Cohen’s d 0.31 0.21 0.009 0.008

Power 0.26 0.15 0.05 0.05

25 Hz

Pre 468 ± 18 246 ± 6 468 ± 21 236 ± 5

Post 475 ± 21 239 ± 8 488 ± 23 232 ± 6

Cohen’s d 0.11 0.19 0.47 0.17

Power 0.07 0.13 0.51 0.11

iTBS

Pre 467 ± 21 245 ± 6 480 ± 22 255 ± 4

Post 491 ± 23 246 ± 4 486 ± 23 236 ± 6

Cohen’s d 0.55 0.06 0.17 0.72

Power 0.65 0.06 0.11 0.86

Sham

Pre 490 ± 21 231 ± 5 490 ± 24 226 ± 6

Post 493 ± 23 234 ± 4 483 ± 20 235 ± 4

Cohen’s d 0.07 0.04 0.10 0.31

Power 0.06 0.05 0.07 0.26

Data are reported as the mean ± SEM. Numbers in bold indicate measures
significantly changed after rTMS.

FIGURE 2 | Comparisons of behavior measures within and between protocols
in sessions 1 (A) and 2 (B). RT and SSRT changes (Y axis) were computed by
subtracting pre-rTMS from post-rTMS values. Data are shown as the mean
and SEM. Asterisks indicate a significant within-protocol aftereffect.
∗P < 0.05, ∗∗P < 0.01.

iTBS and sham stimulation. In all, these findings were consistent
to that found in the main analyses. See details in the section
“Supplementary Results” (Supplementary Tables S1, S2).

Experiment 2
For the subjects in this experiment, there was a similar
male/female ratio (Fisher’s exact test, P = 0.11), age (t = 0.98,
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P = 0.34), and baseline SSRT (session 1, t = 1.57, P = 0.13; session
2, t = 1.71, P = 0.09) to those of the first experiment. Interestingly,
the RMT was higher for this experiment (mean = 61, SEM = 4.05)
than for the first experiment (mean = 52.6, SEM = 1.52; t = 1.43,
P = 0.0003). Similar to the first experiment, we initially estimated
the rTMS effect within each protocol. However, a paired t-test
indicated that the iTBS and sham protocols did not significantly
change SSRT or RT in either the first or the second session
(Table 2; all P > 0.05).

DISCUSSION

We investigated the effect of three excitatory rTMS protocols
on response inhibition by stimulating the pre-SMA. In the
first experiment, iTBS significantly improved the SSRT in the
SST, while 5-Hz and 25-Hz protocols did not. This effect was
significantly greater than that induced by the sham stimulation
and only occurred during the second session of the SST after
iTBS. However, the effect of iTBS was not reproduced in the
second experiment.

In traditional rTMS protocols (e.g., 5 or 25 Hz), thousands
of stimulations are necessary to produce a long-term aftereffect
(Touge et al., 2001; Peinemann et al., 2004). The stimulations
should be separated into a number of trains by several seconds
to avoid side effects such as epilepsy (Rossi et al., 2009). As a
result, it usually takes more than 10 or 20 min to complete one
rTMS session. In contrast, TBS protocols provide a rapid way to
establish long-term aftereffects on the motor system (Huang et al.,
2005). To test whether the long-term aftereffects of TBS persisted
when high-level cognitive functions are considered, we exploited
the SST. Among the three real rTMS protocols, only TBS showed
significant effects on SSRT. This result is different from previous
studies comparing the effects of TBS and conventional protocols
on the motor system. For instance, Zafar et al. (2008) found
that both the iTBS and 5-Hz protocols significantly elevated the
MEP amplitude. These data suggest that TBS may be a more
appropriate protocol for high cognition modulation. In addition,
the SSRT did not decrease immediately after stimulation, but
in the second session, suggesting a time specificity of iTBS
modulation. A delayed aftereffect has been reported for both
motor and high-level cognition systems. Peinemann et al. (2004)
found that rTMS could alter the MEP 1 min after stimulation, but

the effect on short-latency intracortical inhibition or facilitation
occurred 15 min later. Neuroimaging studies investigating TBS
on oculomotor (Hubl et al., 2008) and cognitive control systems
(Gratton et al., 2013) also found a delayed aftereffect at 20 min
after stimulation. All of these studies suggest that TBS could
be a potential treatment protocol for patients diagnosed with
diseases associated with inhibition control deficits, such as PD
and obsessive–compulsive disorder.

Despite the potential of rTMS in clinical application, it is
not considered as a conventional treatment for most mental
disorders. A key reason is the variability of the physiological
and behavioral responses to rTMS (Hinder et al., 2014; Lopez-
Alonso et al., 2014). Thus, we performed the second experiment
to test the reproducibility of our findings in the first experiment.
However, SSRT was not significantly modulated in either the
first session or the second session after iTBS in this second
experiment. This inconsistency between the two experiments
may be explained by high variability across subjects or sessions
in the rTMS studies. iTBS was initially proposed as an excitatory
protocol that can increase the cortical excitability of the primary
motor cortex (Huang et al., 2005). Although several studies
replicated the aftereffect of iTBS (Zafar et al., 2008; Schilberg
et al., 2017), others did not (Hamada et al., 2013; Lopez-Alonso
et al., 2014). Hamada et al. (2013) found that the aftereffect of TBS
was strongly influenced by the interneuron networks that were
recruited during stimulation. In addition, more variables need to
be matched, such as time of day, attention, and genetics, to obtain
robust findings (Ridding and Ziemann, 2010). Notably, most
variability studies focused on the motor system; our work further
indicates that it is also important to estimate the reliability and
reproducibility of any rTMS effect on high cognitive function.

Response inhibition function is associated with areas in
the bilateral cortex, such as the SMA, IFC, and STN. Deep
brain stimulation studies have indicated that bilateral (van den
Wildenberg et al., 2006; Mirabella et al., 2012, 2013) rather than
unilateral (Mancini et al., 2018) stimulation of the STN could
restore inhibitory control in PD. Behavior studies among patients
(Aron et al., 2003; Swick et al., 2008; Mirabella et al., 2017) and
healthy subjects (Li et al., 2008) also suggested the importance
of the right as well as the left cortex for inhibitory performance.
However, in our study, we only modulated the function of the
right SMA. This unilateral stimulation may not be strong enough
to achieve a stable aftereffect on inhibition control. The reliability

TABLE 2 | Stop signal measures in the second experiment.

iTBS t/P Cohen’s d/power Sham t/P Cohen’s d/power

Pre Post Pre Post

Session 1

RT (ms) 438 ± 21 426 ± 24 2.08/0.053 0.49/0.5 436 ± 17 428 ± 17 0.46/0.65 0.10/0.07

SSRT (ms) 230 ± 7 232 ± 8 0.27/0.79 0.06/0.05 255 ± 9 245 ± 8 0.74/0.47 0.29/0.21

Session 2

RT (ms) 443 ± 22 424 ± 21 1.98/0.064 0.46/0.45 442 ± 17 430 ± 16 1.05/0.31 0.25/0.17

SSRT (ms) 240 ± 8 239 ± 10 0.12/0.90 0.03/0.05 248 ± 9 239 ± 8 0.69/0.50 0.28/0.2

Data, mean ± SEM.
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and reproducibility of the effect may be increased by stimulating
bilaterally the pre-SMA.

Two limitations of the current study should be mentioned.
First, the sample size for both experiments was relatively small.
Future studies with hundreds of participants may clarify the
effect of iTBS on response inhibition (Lopez-Alonso et al., 2014).
Second, the baseline RMT was significantly different between
participants in the two experiments. Although the effect of this
difference could be largely diminished using individualized TMS
thresholds, it would be better to pair this baseline parameter
between experiments in the future.

CONCLUSION

We compared the ability of three rTMS protocols to alter
high cognitive function. Response inhibition tasks were selected
because of their importance in shaping motor strategies and
for its involvement in many neurological diseases. Although the
first experiment indicated that iTBS was effective in improving
response inhibition, the effect was not reproduced in the second
experiment. Thus, on the one hand, our findings indicate that
iTBS on the pre-SMA could improve inhibitory control, but on
the other hand, the reliability and reproducibility of this effect
need further investigation.
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