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Resting-state functional connectivity MRI (rs-fcMRI) is a common method for mapping

functional brain networks. However, estimation of these networks is affected by the

presence of a common global systemic noise, or global signal (GS). Previous studies

have shown that the common preprocessing steps of removing the GS may create

spurious correlations between brain regions. In this paper, we decompose fMRI signals

into 5 spatial and 3 temporal intrinsic mode functions (SIMF and TIMF, respectively) by

means of the empirical mode decomposition (EMD), which is an adaptive data-driven

method widely used to analyze non-linear and non-stationary phenomena. For each

SIMF, functional connectivity matrices were computed by means of Pearson correlation

between TIMFs of different brain areas. Thus, instead of a single connectivity matrix,

we obtained 5 × 3 = 15 functional connectivity matrices. Given the high correlation

and global efficiency values of the connectivity matrices related to the low spatial maps

(SIMF3, SIMF4, and SIMF5), our results suggest that these maps can be considered as

spatial global signal masks. Thus, by summing up the first two SIMFs extracted from the

fMRI signals, we have automatically excluded the GS which is now voxel-specific. We

compared the performance of our method with the conventional GS regression and to

the results when the GS was not removed. While the correlation pattern identified by the

other methods suffers from a low level of precision in identifying the correct brain network

connectivity, our approach demonstrated expected connectivity patterns for the default

mode network and task-positive network.

Keywords: resting-state functional connectivity MRI, global Signal, fMRI, empirical mode decomposition, spatial

intrinsic mode function, temporal intrinsic mode function, low-pass filtering

1. INTRODUCTION

Resting-state functional connectivity MRI (rs-fcMRI) has considerable potential for mapping
functional brain networks (Biswal et al., 1995; Kandel et al., 2000; De Luca et al., 2006; Fox et al.,
2006; Shmuel and Leopold, 2008; Friston, 2011). This mapping, which reveals the brain’s functional
architecture and operational principles (Kandel et al., 2000; Friston, 2011), can be used for early
detection of brain connectivity pathologies in neuropsychiatric patients (Erdoğan et al., 2016).
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However, the presence of broadly shared synchronous
fluctuations, termed as the global signal (GS) in Blood Oxygen
Level Dependent (BOLD) responses, is a significant problem for
fcMRI analysis. Its presence is problematic as it is of unknown
origin (Damoiseaux et al., 2006; Fox et al., 2009; Erdoğan
et al., 2016). Therefore, effective removal of GS has become an
important step in data preprocessing and must be done prior
to fcMRI analysis. GS is generally defined as the average of the
BOLD signals over the whole brain (Zarahn et al., 1997; Fox
et al., 2009; Liu et al., 2017) and can be computed from the raw
images or after some preprocessing steps (Liu et al., 2017). The
average-based GS is typically called conventional GS (or static
GS (SGS) Erdoğan et al., 2016).

Application of SGS regression (SGSR) was at first just limited
to task-related fMRI imaging (Zarahn et al., 1997; Macey et al.,
2004). More recently, SGSR usage has received more attention
in the analysis of resting-state fMRI than in task-related fMRI
studies (Liu et al., 2017). Some studies suggest that application
of SGSR improves the functional specificity of resting-state
correlation maps and helps to remove non-neuronal sources of
global variance like respiration and movement (Fox and Raichle,
2007; Fox et al., 2009; Liu et al., 2017). However, other studies
found that these improvements are limited to systems that would
exhibit only positive correlations with the specific selected seeds
(Fox et al., 2009; Weissenbacher et al., 2009). On the other hand,
many studies have shown that the common preprocessing steps
of removing GS via a general linear model can create correlations
between regions that may never have existed (Murphy et al.,
2009; Anderson et al., 2010; Saad et al., 2012; Murphy and
Fox, 2017), which results in spurious fcMRI values. Moreover,
it has been shown that SGSR do not consider the brain’s spatial
heterogeneities and biases correlations in different regions of the
brain (Saad et al., 2012). Accordingly, the extracted correlation
maps are known to present artifacts and do not reflect underlying
neurological properties (Murphy et al., 2009; Anderson et al.,
2010; Saad et al., 2012; Murphy and Fox, 2017). Therefore,
regressing out GS is under debate as its removal by applying
current approaches may introduce artifacts into the fMRI data
or cause the loss of important neuronal components (Murphy
et al., 2009; Anderson et al., 2010; Saad et al., 2012; Murphy
and Fox, 2017). These concerns about the GSR methods and the
need for accurate brain functional connectivity maps motivate
the need to develop new methods for dealing with GS. Moreover,
it has been shown that GS has a variety of sources with different
spatial distributions which are voxel-specific. Accordingly, it is
desirable to use a new method that works selectively and is
able to identify and remove the spatially specific GS for each
voxel or region (Saad et al., 2012; Tong and Frederick, 2014;
Chang et al., 2016; Power et al., 2017; Turchi et al., 2018),
and also produce known connectivity patterns in networks such
as the default mode network and task-positive network (Fox
et al., 2009; Erdoğan et al., 2016), thus avoiding the creation of
spurious correlations.

In addition to GS, in fMRI studies, BOLD signal is low-pass
filtered (<0.1 Hz) during the preprocessing procedure to be sure
that the effects of the high frequency physiological noises are
removed from the data (Boubela et al., 2013; Brooks et al., 2013;

Liu et al., 2017). This is because, physiological noises which are
mainly cardiac and respiratory, are spatially widespread and have
cycles located prominently at the frequency range of 0.1–2.5 Hz.
It is indicated that, among different noise-removal methods (such
as band-pass filtering and Independent component analysis),
EMD based methods facilitate the noise removal from fMRI
data. In EMD-based methods, IMFs with specific frequency
bands are identified and removed from fMRI data to enhance
the functional sensitivity of the data (Typically the first and
second IMFs which have the highest frequency bands among
all IMFs are considered as a noise) (Lin et al., 2016). However,
removing the whole high-frequency data from fMRI time series
is controversial, as smoothing the signals via low-pass filtering
decreases the signal to noise ratio by smoothing the peaks and
amplifying the noise (Brooks et al., 2013). In fact, it has been
shown that filtering high frequency modes may also remove the
signal of interest that contains similar frequencies. The main
reason is that the TR time for sampling fMRI data is too low to
distinguish the high frequency components and causes signal’s
frequencies being aliased that can not be separated by temporal
filtering (Brooks et al., 2013). Furthermore, even using very high
sampling rate (TR < 0.4 s) to detect the high frequency modes
may cause losing information of neuronal activation in high
frequencies by filtering high frequency modes (Tagliazucchi et al.,
2011, 2012; Boubela et al., 2013). Accordingly, in resting-state
studies, we cannot do the band-pass filtering through previous
methods as the brain dynamics in all frequency bands needs to be
investigated. Therefore, we need a method that can remove the
physiological noises more specifically from BOLD signal.

There are several signal processing methods, such as Fourier
transform (Gallagher et al., 2008), Wavelet transform (Yves,
1993), spatial and temporal Blind source separation (Comon
and Jutten, 2010), and the EMD (Huang et al., 1998). However,
all of the mentioned method except EMD require predefined
basis function or some prior knowledge to decompose the
signal. Considering the fact that real-world signals including
fMRI signals are non-linear and non-stationary data and do not
perfectly obey our assumption, EMD method would be the best
method to apply, as it does not need any basis functions and
parameters that need to be adjusted such as wavelet type in
wavelet transform or informed separation ideas in Blind source
separation method (Liutkus et al., 2013; Riffi et al., 2014; He
et al., 2017). EMD is a computationally efficient method that can
adaptively decompose any non-linear and non-stationary signals
into Intrinsic mode functions (IMF) and obtain meaningful
frequencies estimation (Huang et al., 1998; Mandic et al., 2008;
Riffi et al., 2014; He et al., 2017).

In this paper, we define an adaptive global signal regression
(AGSR) by performing a spatiotemporal decomposition of the
fMRI time series through EMD-based methods. The GS which
is computed using this method is voxel-specific and depends on
brain regions’ heterogeneity.

Additionally, we show that by applying AGSR, we do
not need the traditional low-pass filtering methods as the
proposed method exhibits the potential to adaptively remove
the physiological noises from high temporal frequency modes
of fMRI time series, that are shared in whole brain regions.
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Therefore, AGSR method, besides removing the GS, helps
to eliminate the high frequency physiological noises without
needing to perform the low-pass filtering step separately.

In AGSR method, We do not use the Multidimensional EMD
approach as it requires great runtime and cannot decompose
a multidimensional signal into multidimensional components
(Wu et al., 2009; Riffi et al., 2014; He et al., 2017). Consequently,
in this paper, two EMD-based methods are used sequentially to
decompose the fMRI signals adaptatively and voxel-specifically.
We acquired the Spatial and Temporal Intrinsic Mode Functions
(SIMF and TIMF, respectively) of fMRI data by applying
FATEMD (Riffi et al., 2014) and ICEEMDAN (Colominas et al.,
2014) methods, respectively (Huang et al., 1998; Mandic et al.,
2008). It has been shown that applying EMD-based methods on
fMRI data separate inherent brain oscillations and fundamental
modes embedded in BOLD signal. Each of these oscillations
occupies a unique frequency band and can be used to investigate
the frequency characteristics in resting-state brain networks
(McGonigle et al., 2010; Zheng et al., 2010; Niazy et al., 2011;
Song et al., 2014, 2015; Qian et al., 2015; Lin et al., 2016;
Cordes et al., 2018).

To explore the frequency characteristics of the brain networks,
first, we obtain the average functional connectivity matrices for
different TIMFs of each SIMFs over all subjects. Functional
connectivity was computed using pearsons’ coefficient between
the peak voxels of each brain regions included in the AAL 116
atlas (Tzourio-Mazoyer et al., 2002).

We then compute the efficiency (Fair et al., 2007; Rubinov and
Sporns, 2009; Cohen and D’Esposito, 2016) of the brain network
of different spatiotemporal IMFs, which is used as a measure
of integration. Integration values are used to identify the GS,
since GS is defined as a synchronous fluctuation which is shared
among all brain regions that makes it being highly integrated in
the whole brain. Given the high values of efficiency in the low
spatial maps (SIMF3, SIMF4, and SIMF5), our results suggest
that these maps can be considered as spatial global signal masks.
The performance of the proposed method is compared with the
SGSR method, and also with the results when GS is not removed.
This is done by investigating the functional connections within
an extracted peak voxel of the known network’s regions and
the selected seed region. While the correlation pattern identified
by the other methods suffers from a low level of precision,
our method demonstrates a high level of accuracy due to its
data-driven adaptive nature.

2. METHODS

2.1. fMRI Data Acquisition
The resting-state fMRI preprocessed data-set of 21 subjects
from the NIH Human Connectome Project (HCP) (https://
db.humanconnectome.org) (Essen et al., 2013) is used in this
research. Each subject was involved in 4 runs of 15 min each
using a 3 T Siemens, while their eyes were open and had a relaxed
fixation on a projected bright cross-hair on a dark background.
The data were acquired with 2.0 mm isotropic voxels for 72
slices, TR = 0.72 s, TE = 33.1 ms, 1,200 frames per run, 0.58 ms
Echo spacing, and 2,290 Hz/Px Bandwidth (Moeller et al., 2010).

Therefore, the fMRI data were acquired with a spatial resolution
of 2 × 2 × 2 mm and a temporal resolution of 0.72 s, using
multibands accelerated echo-planar imaging to generate a high
quality and the most robust fMRI data (Moeller et al., 2010).
The fMRI data were preprocessed to remove spatial artifacts
produced by head motion, B0 distortions, and gradient non-
linearities (Jovicich et al., 2006). As comparison of fMRI images
across subjects and studies is possible when the images have been
transformed from the subject’s native volume space to the MNI
space (Evans et al., 1993; Ashburner and Friston, 1999), fMRI
images were wrapped and aligned into the MNI space with FSL’s
FLIRT 12 DOF affine and then a FNIRT non-linear registration
(Jenkinson and Smith, 2001; Jenkinson et al., 2002; Jahanshad
et al., 2013). In this study, the MNI-152-2 mm atlas (Mazziotta
et al., 1995, 2001a,b) was utilized for fMRI data registration.

2.2. Estimation of the Temporal IMFs
(TIMFs)
EMD is an adaptive data-driven signal processing method,
which does not need any prior functional basis such as the
wavelet transform (Mandic et al., 2008). The basic functions are
derived adaptively from the data by the EMD sifting procedure.
The EMD method developed and established by Huang et al.
(1998) decomposes non-linear and non-stationary time series
into their fundamental oscillatory components, called Intrinsic
Mode Functions (IMFs). There are two criteria defining an IMF
during the sifting process: 1) the number of extrema and zero
crossings must be either equal or differ at most by one, and, 2) at
any instant in time, the mean value of the envelope defined by the
local maximum and the envelope of the local minimum is zero.
The EMD algorithm for estimating the IMFs of the time series
x(t) is:

1. r0(t) = x(t), j = 1.
2. For extracting the j-th IMF:

(a) h0(t) = rj(t), k = 1,
(b) Locate local maximum and minimum of hk−1(t),
(c) Identify the average envelope using cubic spline
interpolation to define upper and lower envelope of hk−1(t),
(d) Calculate the mean valuemk−1(t),
(e) Put hk(t) = hk−1(t)−mk−1(t),
(f) Check the stopping criteria. The stopping criteria
determines the number of sifting steps to decompose an
IMF Huang et al. (1998). If stopping criteria is satisfied then
hj(t) = hk(t) otherwise, go to (a) to extract next IMF with
k = k+ 1.

3. rj(t) = rj−1(t)− hj(t).
4. If at least two extrema were in the rj(t), the next IMF is

extracted otherwise the EMD algorithm is finished and rj(t)
is the residue of x(t). Accordingly, x(t) is defined as:

x(t) =

n
∑

j=1

hj(t)+ rn(t), (1)

where hj(t) is the j-th IMF, n is the number of IMFs, and rn(t)
is the residue of the signal. Thus, the EMD method adaptively
decomposes a time series into a set of IMFs and a residue
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where the first IMF (IMF1) corresponds to the fastest oscillatory
mode and the last IMF (IMFn) to the slowest one, the sum
of these components yields the original signal (Huang et al.,
1998; Hassan and John, 2005). However, frequent occurrences
of the mode-mixing phenomenon in analyzing real signals using
EMD algorithm is problematic. To address this problem and
improve the spectral separation of modes, the ensemble empirical
mode decomposition (EEMD) method was proposed (Wu and
Huang, 2009). This method extracts modes by performing the
decomposition over an ensemble of noisy copies of the original
signal combined with white Gaussian noises, and taking the
average of all IMFs in the ensemble (Colominas et al., 2014).

The EEMD method solves the mode mixing problem, but
certain issues remain. First, the number of IMFs extracted from
each of the noisy signal copies is different, and this creates a
problem when averaging the IMFs. The second problem is a
reconstruction error in the EEMD method (Wu and Huang,
2009; Colominas et al., 2014). To fix this error the complementary
EEMD (CEEMD) was proposed (Yeh et al., 2010). In the CEEMD
algorithm, pairs of positive and negative white noise processes
are added to the original signal to make two sets of ensemble
IMFs. Accordingly, the CEEMD effectively eliminates residual
noise in the IMFs which alleviate the reconstruction problem.
Nonetheless, the problem of the different number of modes when
averaging still persists. To overcome this problem, the CEEMD
with adaptive noise (CEEMDAN) was developed (Torres et al.,
2011; Colominas et al., 2014). In this approach, the first mode is
computed exactly as in EEMD. Then, for the next modes, IMFs
are computed by estimating the local means of the residual signal
plus different modes extracted from the white noise realizations.
CEEMDAN decomposition can create some spurious modes
with high-frequency and low-amplitude due to overlapping in
the scales. Additionally, some residual noise is still present in
the modes. As a consequence, the new optimization algorithm,
Improved Complete Ensemble Empirical Mode Decomposition
with Adaptive Noise (ICEEMDAN), was proposed (Colominas
et al., 2014).

During the sifting process using ICEEMDANmethod the local
mean of realizations is estimated, instead of using the average of
modes from the first step. This change in the algorithm reduces
the amount of noise present in the final computedmodes. To deal
with the issue of creation of spurious modes in the final results,
ICEEMDAN method proceeds differently than the EEMD and
CEEMDAN methods. In ICEEMDAN, white noise is not added
directly; instead EMD modes of white noise are added to the
original signal and to the IMFs during the sifting process (Wu
and Huang, 2009; Colominas et al., 2014). Furthermore, in this
method as in CEEMDAN, a constant coefficient is added to the
noise that makes the desired signal to noise ratio between the
added noise and the residue to which the noise is added. This
coefficient is computed based on the standard deviation of the
residue at each step of the sifting process. Therefore, the IMFs
computed with ICEEMDAN have less noise and more physical
content than IMFs obtained with other methods (Colominas
et al., 2014) (More detailed description of ICEEMDAN method
can be found at Colominas et al., 2014). The high accuracy rate,
reduction in the amount of noise contained in the modes, and

the alleviation of mode mixing phenomenon qualify this method
to effectively decompose biological signals. In this paper the
ICEEMDAN method with 300 ensembles and a level of noise
of 0.2 (Wu and Huang, 2009) is used to extract the Temporal
Intrinsic Mode Functions (TIMFs) from the fMRI data.

2.3. Estimation of the Spatial IMFs (SIMFs)
A fast, time efficient, and effective method is essential for
processing real images that have a large size. Previous EMD-
based methods were limited to small size images as the
extrema detection, interpolation at each iteration, and the large
number of iterations make their processing time consuming and
complicated (Bhuiyan et al., 2008; Riffi et al., 2013, 2014; He
et al., 2017). Therefore, those methods were just applicable to
reduced size images, which resulted in losing some information
during their process. Fast and Adaptive Tridimensional (3D)
EMD, abbreviated as FATEMD, is a recent extension of the
EMD method to three dimensions (Riffi et al., 2014). The
FATEMD method is able to estimate volume components called
tridimensional Intrinsic Mode Functions (3D-IMFs) quickly and
accurately by limiting the number of iterations per 3D-IMF to
one, and changing the process of computing upper and lower
envelopes, which reduce the computation time for each iteration
(Bhuiyan et al., 2008; Riffi et al., 2014; He et al., 2017). In the
FATEMDmethod, the steps of extracting 3D-IMFs are almost the
same as the previous EMD basedmethods, except for the number
of iterations and the estimations of the maximum and minimum
envelopes. The steps for decomposing a volume V(m, n, p) with
dimensions m, n, and p using the FATEMD approach are as
follows (Bhuiyan et al., 2008; Riffi et al., 2014):

1. Set i = 1 and Ri(m, n, p) = V(m, n, p).
2. Determine the local maximum and minimum values by

browsing Ri(m, n, p) using a 3D window (cube) with a size
of 3 × 3 × 3 which results in an optimum extrema maps
(Mapmax(m, n, p) andMapmin(m, n, p)). These local maximum
(or minimum) values are strictly higher (or lower) than all of
their neighborhoods contained in the cube.

3. Calculate the size of the Max and the Min filters which will be
used in making extrema envelopes and their smoothness. The
maximum and minimum filters are made by computing the
nearest Euclidean distances between the maximum (dadj.max)
(minimum (dadj.min)) points. The cubic window width (wen)
then is determined by using one of the following four
formulae for both maximum and minimum filters. Here,
we used the 4-th formula as outlined below, although using
the other formulas will result in approximately the same
decomposition result:

wen = min
{

min{dadj.max}, min{dadj.min}
}

,

wen = min
{

max{dadj.max}, max{dadj.min}
}

,

wen = max
{

min{dadj.max}, min{dadj.min}
}

,

wen = max
{

max{dadj.max}, max{dadj.min}
}

. (2)

4. Create the envelopes of maxima and minima (Envmax(m, n, p)
and Envmin(m, n, p)) of size (wen).
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5. Use the mean filter to compute the smoothed envelopes:
Envmax−s(m, n, p) and Envmin−s(m, n, p).

6. Calculate themean filter by averaging the smoothed upper and
lower envelopes (EnvA(m, n, p)).

7. Calculate the i-th 3D-IMF: IMFi(m, n, p) = Ri(m, n, p) −

EnvA(m, n, p).
8. Calculate Ri+1(m, n, p) = Ri(m, n, p)− IMFi(m, n, p).
9. If Ri+1(m, n, p) contains more than two extrema then

Go to the step 2 and set i = i+ 1,
Else

The FATEMD decomposition is completed.

Therefore, FATEMD is an adaptive approach as all of the
processes for computing filters and making the maximum,
minimum, and the mean envelops are data driven. FATEMD
decomposes a volume into a set of 3D-IMFs (Riffi et al., 2014). In
general, a volume V can be reconstructed from the summation of
the K 3D-IMFs and the residue as follows:

V(m, n, p) =

K
∑

i=1

IMFi(m, n, p)+ RK+1(m, n, p). (3)

K is the number of IMFs, and R(m, n, p) is the residue of
the signal.

In this paper, we apply the FATEMD method at each
time instant to decompose the resting-state fMRI data into
tridimensional IMFs called Spatial Intrinsic Mode Functions
(SIMF). Figure 1 shows the spatial decomposition results
of a sample resting-state fMRI image. The ICEEMDAN
method is then utilized to decompose each SIMF into its
corresponding TIMFs.

2.4. Spatiotemporal Pattern Analysis of the
fMRI Data
To define an adaptive and voxel-specific GS, the spectral
information of fMRI data is investigated by constructing the
functional connectivity matrices using extracted TIMFs and
SIMFs data. To fulfill this aim, first, the SIMFs of the fMRI
data at each TR time are computed by applying the FATEMD
method, then, all spatial components are merged together in
time to construct the time series of each SIMF. Second, the peak
voxel at each region, that is, the voxel of maximal activation,
is selected by computing the Root Mean Square (RMS) for
each voxel’s signal over all time. It has been shown that peak
voxel provides the best effect of any voxel in the ROI (Sharot
et al., 2005). Additionally, the peak voxel activity correlates
better with evoked scalp electrical potentials than approaches
that average activity across the ROI. This means that the peak
voxel represents the ROI’s activity better than other choices
(Arthurs and J Boniface, 2003). The peak voxel in each region
is determined using previously published Talairach coordinates
(after conversion to MNI coordinates and using AAL 116 atlas)
(Fox et al., 2005). After determining the peak voxels of each
region, the ICEEMDAN method is applied to its time series to
compute the TIMFs. Thus, the TIMFs of all regions for each SIMF
are computed.

We then compare the predefined distinct frequency bands
presented in fMRI studies (slow5 [0.01–0.027 Hz], slow4 [0.027–
0.073 Hz], slow3 [0.073–0.198 Hz], slow2 [0.198–0.25 Hz], and
slow1 [0.5–0.75 Hz]) (Penttonen and Buzsáki, 2003; Zhan et al.,
2014), to the frequency content of the extracted TIMFs. In all
subjects, TIMFs consistently corresponded to the same frequency
bands. As seen in the Figure 2, the frequency range comprised
in TIMF1 to TIMF3 is approximately the same as the frequency
range of the sum of slow1 to slow3. The frequency range of
TIMF4 is the same as slow4, and the frequency range of the sum
of TIMF5 to TIMF9 has the same frequency range as the slow5
frequency band. Accordingly, we label the summation of TIMF1
to TIMF3 as TIMF1, TIMF4 as TIMF2, and the summation of
TIMF5 to TIMF9 as TIMF3. Figure 3 represents the pipeline used
in computing SIMFs and TIMFs for each resting-state fMRI data.
Accordingly, the functional connectivitymatrices are constructed
by computing the average of correlation coefficients between all
possible pairs of TIMFs correspond to different Spatial domains
for all brain regions comprised in the AAL 116 atlas over all
21 subjects. Consequently, instead of the classical functional
connectivity matrix, the decomposition presented here produces
5 × 3 = 15 connectivity matrices (each with size 116 × 116), 3
temporal domains and 5 spatial domains, encompassing the rich
spatiotemporal dynamics of brain activity.

2.5. Topological Properties of the Brain
Network
The GS is a synchronous fluctuation shared among all
brain regions. Consequently, the GS component in the brain
connectivity matrix should present a high integration value,
where integration is the topological property of a network
that describes how information from distributed brain regions
is combined (Fair et al., 2007; Rubinov and Sporns, 2009;
Cohen and D’Esposito, 2016). To compute the integration of
the brain network at different spatiotemporal scales we use the
global efficiency measure (Fair et al., 2007; Rubinov and Sporns,
2009). The global efficiency is computed as the average inverse
shortest path length between all the node pairs of the network
that is normalized by the maximal number of network’s links.
Therefore, the weighted global efficiency is computed via the
following equation:

Ew =
1

N(N− 1)

N
∑

j=1

N
∑

i=1,i6=j

(dij
w)

−1
, (4)

where N is the number of nodes in the network and dij is the
minimum path length between nodes i and j (Fair et al., 2007;
Rubinov and Sporns, 2009). The shortest path length is computed
by counting the smallest number of edges needed to get from
node i to node j which is inversely related to node weight.
The information needed to estimate the weight of all pairs of
brain regions are provided by functional connectivity matrices
(Rubinov and Sporns, 2009; Cohen and D’Esposito, 2016), strong
association between regions has a large weight which leads to a
shorter length. When two nodes are disconnected the length of
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FIGURE 1 | Spatial decomposition of a sample fMRI image using FATEMD method. The original fMRI image at one TR time is decomposed into 5 SIMFs (SIMF1 to

SIMF5) and a residue.

that path would be infinite and correspondingly, the efficiency
would be zero (Fair et al., 2007; Rubinov and Sporns, 2009).

3. RESULTS

3.1. Defining Adaptive Global Signal (AGS)
We computed the functional connectivity matrices between all
pairs of brain regions for different spatiotemporal domains
extracted from fMRI data for each subject. Figure 4 shows the
average connectivity matrices computed by Pearson’s coefficient
over the 21 subjects. As seen in the figures, SIMF1 and SIMF2 in
all TIMFs showed low connectivity whereas SIMF3 to SIMF5 in
all TIMFs showed high connectivity. Besides, they indicate that
the magnitude of the correlation does not significantly depend
on the TIMFs. Thus, based on the connectivity strength for
different spatiotemporal domains, the summation of the SIMF1
to SIMF2 and the SIMF3 to SIMF5 including all TIMFs, were
considered as two separate signals. We also averaged the six
connectivity matrices resulting from the summation of TIMF1 to
TIMF3 with SIMF1 and SIMF2 (Figure 4) and labeled it as AGSR
(Figure 5A), and the nine connectivity matrices resulting when

combining TIMF1 to TIMF3 with SIMF3 to SIMF5, which we
labeled as AGS (Figure 5B).

We also computed the global efficiency (Figure 6A) for
different spatial and temporal IMFs using Equation (4) and also
based on functional connectivity results. Figure 6A shows that
there are high values of efficiency in the low frequencies of spatial
domains, SIMF3, SIMF4, and SIMF5, which indicate active
shared connections between all the nodes in the brain, suggesting
the existence of GS in the low-frequency spatial domains, called
Adaptive Global Signal(AGS). Furthermore, SIMF3 to SIMF5
with high temporal frequency mode (TIMF1) which is included
in the AGS can be considered as an adaptive filter to reduce
the effects of the highly integrated physiological noises in high
frequency modes instead of applying low-pass filtering (Shmueli
et al., 2007; Boubela et al., 2013; Liu et al., 2017).

As seen in Figure 6B and Table 1, the high values of
integration of AGS (summation of SIMF3 to SIMF5 including
all TIMFs) confirm that they can be considered as a GS which
has to be removed from the fMRI data to have more accurate
brain connectivity results. In the last results’ section (represented
in Figures 8, 9) we show that, including low frequency spatial
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FIGURE 2 | Temporal IMFs and their corresponding frequency spectrum of the sample SIMF time series. (A) Sample of SIMF time series before temporal

decomposition (B) 9 decomposed TIMFs of a sample SIMF by applying the ICEEMDAN method with 300 ensembles and a level of noise of 0.2. (C) The 9

decomposed TIMFs are divided into three different frequency bands. According to slow1 to slow3 and slow5 frequency bands defined in the literature, TIMFs1 to 3

and 5 to 9 are combined, respectively. (D) Represents the frequency spectrum of the 9 TIMFs. (E) The frequency spectrum of TIMFs in part (C) that correspond to

frequency bands used in the literature for slow1 to slow5 Penttonen and Buzsáki (2003), Zhan et al. (2014). TIMF, Temporal Intrinsic Mode Function; ICEEMDAN,

Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise.

domains may cause spurious connectivity results between
brain regions.

3.2. Regressing Out the AGS and SGS
From fMRI Data
According to the definition of AGS, for each brain voxel signal,
there is a corresponding AGS while the SGS is common for the
whole brain voxels. The AGS for each voxel is computed by
summing up the SIMF3, SIMF4, and SIMF5 with all TIMFs while
the SGS is computed by taking the average of all brain voxels’ time
series. It should be noted that in computing AGS, the residues of
spatiotemporal decomposition of the fMRI data are added to the
last TIMF and SIMF. The three time courses in Figures 7A–C

correspond to the AGS, the fMRI sample time course [the peak
voxel’s time course in Medial Prefrontal cortex (MPF) ROI], and
the conventional or Static GS (SGS), respectively. Figures 7D,E
show resting-state fluctuations of the sample fMRI time series

from MPF ROI after regressing out (subtracting) the AGS and
the SGS. It also has to be mentioned that to be consistent with the
previous fMRI studies, data are conventionally low-pass filtered
except when the AGSR method is applied.

3.3. Connectivity Map of Task-Positive and
Task-Negative Networks
The default mode network or Task Negative Network (TNN) is a
state of brain activation whereby the individual is not attending
to any external cues in the environment but certain brain regions
are still activated and they are less active during task performance
rather than during the resting-state. It has been shown that (Fox
et al., 2005) the default mode network responses are significantly
activated in three of the seeded regions: the Posterior Cingulate
Cortex (PCC), Medial Prefrontal cortex (MPF), and Lateral
Parietal cortex (LP). The efficacy of our approach is examined
by computing the connectivity map. In computing functional
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FIGURE 3 | Pipeline for computing spatial and temporal IMFs (SIMF and TIMF) of the fMRI data. (A) A sample of fMRI data. (B) Splitting each fMRI data in time at

each TR time. (C) SIMFs at each TR time which are computed by applying FATEMD approach. (D) Shows the AAL 116 atlas used after merging SIMFs in time to

select the peak voxel of each region. (E) Time series of all brain ROIs for each SIMF. (F) The TIMFs’ time series of a sample SIMF for one ROI computed by using

ICEEMDAN approach. (G) Summation of time series of the TIMFs in (F) based on frequency bands of slow1 to slow5 defined in the literature. The summation of the

TIMF1 to TIMF3, TIMF4, and the combination of TIMF5 to TIMF9 are labeled as TIMF1, TIMF2, and TIMF3 in the rest of the paper, respectively. rfMRI, resting-state

fMRI; TIMF, Temporal Intrinsic Mode Function; SIMF, Spatial Intrinsic Mode Function; ICEEMDAN, Improved Complete Ensemble Empirical Mode Decomposition with

Adaptive Noise; FATEMD, Fast and Adaptive Empirical Mode Decomposition; ROI, Region of Interest.

connectivity maps, we computed Pearson’s correlation which
is popular in fMRI studies and also allows our findings to be
comparable with other papers to test the validity of the proposed
method. We computed the average connectivity between the
time course of the PCC region as a seed region and the main
regions of the Task Positive Network (TPN) which are theMiddle
Temporal (MT), right Frontal Eye Field (FEF), left Intraparietal
Sulcus (IPS), SupplementaryMotor Area (SMA), Inferior Parietal
Lobule (IPL), Visual regions, and the left Auditory region and the
TNN ROIs which are MPF, PCC, and left LP which includes the
Angular Gyrus, Hippocampus, and Cerebellar tonsils ROIs (Fox
et al., 2009; Erdoğan et al., 2016).

Considering the AGS definition, the combination of the
SIMF1 and SIMF2 was used to compute the functional
connectivity between PCC and TNN and TPN including visual
ROIs by using Pearson’s correlation coefficient (r), P ≤ 0.01.
Figure 8 is functional connectivity brain map for different brain

layers along the Z axis which show the mean connectivity over all
subjects between brain regions and the PCC ROI as a seed region
when the AGSR, NR, and the SGSR are performed.

Figure 9 shows expected average connectivity between the
PCC ROI and different regions of the TPN and the TNN
(positive correlation between the PCC and the TNN and negative
correlation between the PCC and TPN) applying the new
approach of GSR in resting-state fMRI data.

While the NR and SGSR (conventional GSR which is based
on averaging) are unable to identify the expected connectivity
in some regions for TPN and TNN ROIs, the AGSR approach
obtains expected functional connectivity for all regions in TNN
and TPN which confirms the effectiveness of the proposed
method for GSR (Figure 9). As AGSR is an adaptive and voxel-
specific method, we have a unique local signal for each voxel
which by being removed from fMRI data augments the precision
of the rsfc-MRI results.
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FIGURE 4 | Functional connectivity matrices of the whole brain regions using AAL 116 atlas for different spatial and temporal IMFs. Pearson’s correlation coefficient (r)

with P ≤ 0.01 is computed between all the brain regions’ spatiotemporal domains extracted from fMRI data. Spatial domains are extracted by applying FATEMD

method on fMRI signal. The three temporal domains including TIMF1, TIMF2, and TIMF3 are computed by applying ICEEMDAN on each SIMF. SIMF, Spatial Intrinsic

Mode Function; TIMF, Temporal Intrinsic Mode Function; ICEEMDAN, Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise; FATEMD,

Fast and Adaptive Empirical Mode Decomposition.

FIGURE 5 | Average functional connectivity matrices of the whole brain regions using AAL 116 atlas over all subjects. (A) Average connectivity matrix of fMRI data

applying AGSR which means the connectivity matrix of combination of SIMF1 and SIMF2 including all TIMFs of the fMRI data, (B) connectivity matrix of the AGS

which is the combination of SIMF3 to SIMF5 including all TIMFs. AGSR, Adaptive Global Signal regression; AGS, Adaptive Global Signal; SIMF, Spatial Intrinsic Mode

Function; TIMF, Temporal Intrinsic Mode Function.

4. DISCUSSION

In contrast to previous works (Zarahn et al., 1997; Fox et al., 2009;
Liu et al., 2017), the present study provides a new method for
GSR, called AGSR, that works voxel-specifically and adaptively.
It is believed that fMRI data are a superposition of the GS
and network-specific fluctuations. However, the main reason
for the controversy over the use of GSR in fMRI studies is

that the average-based GS is a mixture of signals from multiple
brain regions without considering the possibility of spatial
heterogeneity in the GS (Fox et al., 2009; Murphy et al., 2009;
Weissenbacher et al., 2009; Saad et al., 2012; Murphy and Fox,
2017). It has been shown that regressing out average-based GS
results in negative correlations that do not have a biological basis
and are artifacts in the voxels’ time series which lead to distortion
in the connectivity results or activation measures (Fox et al.,
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FIGURE 6 | Integration of the brain network at different spatiotemporal scales.

(A) Average efficiency of the whole brain network for different spatial and

temporal IMFs defined in functional connectivity. (B) Comparing the magnitude

of average efficiency of the brain network over all subjects when the AGS is

removed from the fMRI time series (the sum of SIMF3 to SIMF5 in all TIMFS

are removed and the sum of SIMF1 to SIMF2 including all TIMFs of the fMRI

signal are considered to compute the connectivity), and the average efficiency

of the AGS (summing up SIMF3 to SIMF5 in all TIMFs). High efficiency values

in the SIMF3 to SIMF5 which represent the AGS in the fMRI data are seen in

the figures. GS, Global Signal; AGS, Adaptive GS.

TABLE 1 | Integration of AGSR and AGS. The average efficiency of the brain

network over all subjects, when the AGSR are performed, and the average

efficiency of the AGS. AGS, Adaptive Global Signal; AGSR, AGS Regression.

Network

measure

Label Interpretation Value

Efficiency AGSR The brain network’s average efficiency

when AGSR is performed

0.2325±0.0480

Efficiency AGS The brain network’s average efficiency

of the AGS

0.8850±0.0417

2009; Murphy et al., 2009; Murphy and Fox, 2017). In this paper,
we showed that the AGSR method works voxel-specifically and
can compute the neuronal correlations of the brain’s networks
more accurately. This is because using the FATEMD method
in computing AGS maximizes the spatial contributions to the
GS. In other words, decomposing fMRI data in space using the
FATEMD approach, which is done by considering features of
each voxel’s neighbors, makes the computed AGS sensitive to
brain regions’ heterogeneity.

When assessing the efficiency for different spatiotemporal
domains of the fMRI data, no large differences in different
temporal IMFs at the same spatial IMF were obtained. Thus, we
concluded that the variability of efficiency is just related to the
spatial frequency domains. The high values of the efficiency in
the low spatial frequencies demonstrated the existence of the GS.
On the other hand, high spatial frequencies, SIMF1 and SIMF2,

represented the most network-specific data. Accordingly, the low
spatial frequencies, SIMF3 to SIMF5 including all TIMFs, were
considered as the AGS.

Additionally, it has been shown that motion, cardiac, and
respiratory noise components which have high frequency cycles
and are spatially coherent, cause spatially widespread fluctuations
in the BOLD signals that contribute to the global signal (Shmueli
et al., 2007; Liu et al., 2017). Conventionally, filtering the high
frequency components of the fMRI data to remove above
mentioned physiological noises and the GSR are done separately
as two preprocessing steps in fMRI studies (He and Liu, 2012;
Caballero-Gaudes and Reynolds, 2017; Liu et al., 2017), however,
common low-pass filtering methods through removing high
frequency components cause missing a considerable amount
of information on resting-state brain functional network
(Tagliazucchi et al., 2011, 2012; Boubela et al., 2013; Turchi et al.,
2018). In our proposedmethod, in addition to GSR, physiological
noise components that are common across voxels and are mainly
included in the high frequency modes are also removed from
the data by removing the SIMF3 to SIMF5 of TIMF1 through
AGSR. Thus, our proposed method, through AGSR, filters
the highly connected part of high frequency modes adaptively
without applying low-pass filter separately. It can help to provide
more informative data by involving high frequency modes
in the data.

We examined the efficacy of our method by computing
the seed-based functional connectivity for the TPN and TNN
regions. Our results in agreement with previous studies (Chang
and Glover, 2009; Fox et al., 2009; Chai et al., 2012), show that the
negative correlations are intrinsic to the brain and do not appear
just as a result of the GSR. We found that the AGSR method
identifies the connectivity between the TPN and TNN regions
according with the expected results of prior studies (Fox et al.,
2005, 2009). We compared the connectivity results of the AGSR
with the SGSR and when there is NR in the fMRI data. Despite
the connectivity results of the SGSR method and when there is
NR, applying our proposed method resulted in an enhancement
to the detection of network-specific fluctuations of the brain.
Furthermore, although the strength of the correlations is related
to cognitive function, in auditory regions, lower activity seen in
the result of applying AGSR appears to be related to the better
removal of the acoustic noise heard by subjects during fMRI. This
shows that the acoustic noise of the fMRI device which is almost
constant in all TR times and interferes with auditory system
activity can be removed better through AGSR (Ravicz et al.,
2000; Moelker and Pattynama, 2003). Thus, it is inferred from
the results that AGSR method is able to remove physiological
and remained systemic noises after preprocessing more correctly
and without introducing artifactual correlations as confirmed by
correlations between PCC and the reference regions.

In conclusion, AGS is a unique local signal for each voxel’s
BOLD signal. In the AGSR method, the first and second spatial
IMFs of each fMRI data, decomposed by FATEMD method,
are simply summed up to have a band-pass filtered fMRI data
without GS. AGSR is a reliable method that works voxel-
specifically for all subjects which leads to provide information
about brain function with more accuracy. There are some
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FIGURE 7 | AGSR and SGSR of a sample fMRI data. (A) The voxel-specific AGS of Medial Prefrontal (MPF) cortex region and (B) the original fMRI time series of the

peak voxel in MPF cortex region. (C) The SGS which is common for all region’s voxels. (D,E) Show the time series with the SGSR and AGSR, respectively. These time

series are computed by subtracting the AGS and SGS from the original time series. MPF, Medial Prefrontal cortex; AGS, Adaptive Global Signal; SGS,

Static(conventional) Global Signal; AGSR, AGS Regression; SGSR, SGS Regression.

FIGURE 8 | Comparing the average functional connectivity between the PCC ROI as a seed region and the brain ROIs using the AAL 116 atlas for fMRI data of all

subjects. The average functional connectivity applying (A) AGSR, (B) NR, and (C) SGSR. Slices shown in the maps are at Z = 09, 15, 25, 35, 45, 55, 65, 75,

respectively. AGSR, Adaptive Global Signal Regression; NR, No Regression; SGSR, Static (conventional) Global signal regression.

limitations to the methods used in this study that should be
noted. Although the FATEMD and ICEEMDAN are optimized
approaches for finding the best IMF sets, they still need
more improvement in the sifting procedure to yield better

decomposition performance. For instance, finding the optimum
values of added white noise and the ensemble number to
overcome themodemixing problem and speed up the calculation
in ICEEMDAN approach are two drawbacks of this approach.
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FIGURE 9 | The average connectivity map between the PCC as a seed region and (A) the TPN and (B) TNN ROIs for fMRI data of all subjects. Connectivity results of

applying AGSR and SGSR are shown in green and red, respectively, and the blue ones are the results of computing connectivity without applying any GSR (NR).

Connectivity map is made by computing Pearson’s correlation coefficient (r) with P ≤ 0.01 between the PCC region as a seed region and the main regions of the TPN

and TNN. PCC, Posterior Cingulate Cortex; MPF, Medial Prefrontal cortex; LP, Lateral Parietal cortex; MT, Middle Temporal; FEF, Frontal Eye Field; IPS, Intraparietal

Sulcus; SMA, Supplementary Motor Area; IPL, Inferior Parietal Lobule; ROI, Region Of Interest; NR, No Regression; AGS, Adaptive Global Signal Regression; SGS,

Static (conventional) Global Signal Regression.

We computed the GS for each region of the AAL 116 atlas
specifically, however, as this method has a “voxel-specific” nature,
it can be applied to all voxels of the brain. Computing voxel-
specific GS just needs more memory and computer power, such
as a larger computer cluster but no additional changes to the
underlying algorithm are needed. It is more feasible to compute
the AGSR for all the voxels when we are interested in some
specific regions of the brain and not the whole brain.

Therefore, the proposed method in this paper provides the
opportunity to characterize the whole brain function and reflect
the intrinsic property of the spatiotemporal nature of the fMRI
data through removing the voxel-specific GS and not removing
the whole high frequency modes. Future studies can be devoted
to the application of our proposed method to the other image
processing areas.
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