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It is an emerging frontier of research on the use of neural signals for prosthesis

control, in order to restore lost function to amputees and patients after spinal cord

injury. Compared to the invasive neural signal based brain-machine interface (BMI), a

non-invasive alternative, i.e., the electroencephalogram (EEG)-based BMI would be more

widely accepted by the patients above. Ideally, a real-time continuous neuroprosthestic

control is required for practical applications. However, conventional EEG-based BMIs

mainly deal with the discrete brain activity classification. Until recently, the literature

has reported several attempts for achieving the real-time continuous control by

reconstructing the continuous movement parameters (e.g., speed, position, etc.) from

the EEG recordings, and the low-frequency band EEG is consistently reported to encode

the continuous motor control information. Previous studies with executed movement

tasks have extensively relied on the amplitude representation of such slow oscillations

of EEG signals for building models to decode kinematic parameters. Inspired by the

recent successes of instantaneous phase of low-frequency invasive brain signals in

the motor control and sensory processing domains, this study examines the extension

of such a slow-oscillation phase representation to the reconstructing two-dimensional

hand movements, with the non-invasive EEG signals for the first time. The data

for analysis are collected on five healthy subjects performing 2D hand center-out

reaching along four directions in two sessions. On representative channels over the

cortices encoding the execution information of reaching movements, we show that the

low-delta EEG phase representation is characterized by higher signal-to-noise ratio and

stronger modulation by the movement tasks, compared to the low-delta EEG amplitude

representation. Furthermore, we have tested the low-delta EEG phase representation

with two commonly used linear decoding models. The results demonstrate that the

low-delta EEG phase based decoders lead to superior performance for 2D executed
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movement reconstruction to its amplitude based counterparts, as well as the

other-frequency band amplitude and power based features. Thus, our study contributes

to improve the movement reconstruction from EEG by introducing a new feature

set based on the low-delta EEG phase patterns, and demonstrates its potential for

continuous fine motion control of neuroprostheses.

Keywords: electroencephalogram, instantaneous phase, multiple linear regression, Kalman filter, movement

reconstruction, neuroprosthesis, brain-machine interface

INTRODUCTION

Brain-machine interfaces (BMI) are tools that potentially enable
the severely paralyzed patients after spinal cord injury (SCI) to
restore lost motor ability by using the neuronal signals to control
prostheses (Thomschewski et al., 2017; Lisi et al., 2018). A lot
of studies have been reported in the literature, which provide
discrete control for effectors by detecting and classifying discrete
motor activity from the neuronal signals (Mcmullen et al., 2014;
Meng et al., 2016; Yang, 2017; Zeng et al., 2017a). Nevertheless,
continuous movement parameters (such as position, speed,
and etc.) for the external actuator are generally demanded for
realizing fine control of neuroprosthesis. In other words, the
continuous BMI control, where the movement parameters are
desired to be continuously reconstructed frommovement-related
brain activities during the (executed, attempted, or imagined)
movements, would be more effective than the discrete BMI
control. Such a continuous kinematics decoding approach has
been successfully applied for closed-loop prosthesis control
with invasively recorded brain activities, such as single/multi-
unit activity (SUA/MUA) (Georgopoulos et al., 1986; Paninski
et al., 2004), local potential field (LFP) (Rickert et al., 2005),
electrocorticography (ECoG) (Hammer et al., 2013; Xie et al.,
2017) etc., from monkeys and humans. However, such invasive
BMI suffers from the possible post-surgery complications and
infections, and it is also difficult to maintain stable chronic
recordings. Therefore, the invasive BMI has only gained limited
use among the SCI patients. Although scalp recordings such
as Electroencephalogram (EEG) and magnetoencephalography
(MEG) can be obtained in a non-invasive manner, it has long
been believed that they lack of sufficient signal-to-noise ratio
and spatial resolution to reconstruct such continuous kinematic
parameters, for controlling the neuroprosthesis.

Until recently, there have been attempts gradually emerging in
the research filed of continuous kinematics decoding from non-
invasive scalp EEG recordings (Robinson and Vinod, 2016). The
feasibility of handmovement kinematics decoding from EEGwas
first inspected in Bradberry et al. (2009, 2010)(Bradberry et al.,
2009, 2010), during a center-out 3D handmovement experiment.
They find that the hand-movement velocity information is
encoded in the low-pass filtered EEG (≤2Hz), from which the
kinematic parameters are reconstructed using a linear decoding
model. In Agashe et al. (2015), using a 3D reach-to-grasp
experiment paradigm, the hand joint angular velocities and
synergistic trajectory were decoded using low-delta band EEG
(≤1Hz). In Kim et al. (2015), the low-delta band EEGwas further

utilized for decoding complex 3D movement trajectories with
non-linear models, in executed, observed/imagined complicated
upper limb motor tasks. Researchers in Korik et al. (2016, 2018)
have also shown that the low-delta band EEG is informative about
the 3D hand joint trajectories in either executed or imagined
arm movements, though it is not the best representation for
such a 3D imagined movement decoding task according to their
experimental results. As for an executed 2D center-out reaching
paradigm, the low frequency EEG signal obtained with wavelet
analysis has succeeded to be applied for estimating the hand
kinematics adaptively (Robinson et al., 2015). The applicability
of the decoding model based on delta and beta bands EEG in
premotor, posterior parietal, and occipital areas for predicting
the 2D hand movement velocity was demonstrated in Lv et al.
(2010). The movement kinematics during the task of filling a
glass of water, was studied in Heger et al. (2012) using EEG slow
potentials in the delta and theta band. In a word, the above studies
with executed movement tasks have consistently reported that
the low-frequency EEG encodes the continuous motor control
information, and the amplitude of such slow oscillations has been
commonly utilized as the feature/predictor for building the linear
decoding model.

While the relationship between slow oscillation EEG
amplitude patterns (i.e., intensities of slow oscillations) and
kinematic variables has been studied extensively, there is
mounting evidence that the time-resolved signal phase patterns,
characterizing the precise temporal structure for such slow
oscillations, also embody the cortical motor control information.
For example, it has been demonstrated that the instantaneous
phase representation of the movement related cortical potential
(MRCP) , an oscillation in 0.1–1Hz delta band of EEG signal, can
be utilized for the discrete detection of self-paced gait intention
(Sburlea et al., 2017), and upper limb motion intention (Zeng
et al., 2017b) before the movement onset. Moreover, they have
shown that the phase feature based intention detector is more
accurate than the amplitude based one. Lew et al. (2014) have
also confirmed the power of instantaneous MRCP phase in
predicting discrete movement directions of self-paced center-out
arm reaching before the actual movement execution. Using
the phase synchrony analysis, the authors in Jerbi et al. (2007)
show that the slow (2–5Hz) cortical oscillations in human M1
obtained with the MEG source imaging can be perfect neural
correlates of hand kinematics in human. With the invasively
recorded ECoG signals, it has already been discovered that
the low-delta component phase is superior to its amplitude in
decoding hand movement kinematics during an executed 1D
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continuous motor task (Hammer et al., 2013). However, it still
remains unknown whether the decoding accuracy of continuous
movement parameters based on the low-delta EEG phase feature
is substantially higher than its amplitude feature.

To address such an issue, a 2D center-out reaching task was
designed, where a right-handed subject performed continuous
movements in four directions to reach a target. During the
task, the EEG signals and the continuous hand movement
parameters were recorded simultaneously. We firstly performed
the neurophysiological analysis on the phase feature and the
amplitude feature of the EEG slow oscillations on representative
channels, and then compared the decoding accuracies of the
low-delta EEG phase based linear decoder, the other bands EEG
amplitude based counterparts, as well as the recently proposed
mu/beta band power based ones by Korik et al. (2016, 2018). To
the best of our knowledge, our work is the first study to extend
the application of such a slow-oscillation phase representation
for decoding continuous movement parameters, with the non-
invasive EEG signals.

The rest of the paper is organized as follows: Section 2
describes the materials and methodology. Section 3 shows the
results for the analysis performed and the experiment. Finally, we
provide a detailed discussion in section 4 followed by conclusions
in section 5.

MATERIALS AND METHODS

Subjects
Five healthy subjects (all right-handed males, mean age= 22.2±
2.3 years old) were recruited from the campus and participated
in the 2-session experiment within two separate weeks. This
study was carried out in accordance with the recommendations
of the Ethics Committee of Southeast University with written
informed consent from all subjects. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.
The protocol was approved by the Ethics Committee of
Southeast University.

Experimental Protocol
The experimental setup and the timeline in a trial are depicted in
Figures 1A,B, respectively. The subject was required to sit in the
chair and move the cursor (the red circle frame) from the center
to one of the four orthogonal directions (up, down, left, right)
in a horizontal 2D plane, by operating the haptic manipulandum
(PHANTOM Premium 1.5, Sensable Technologies) with his/her
right hand. In each trial, the subject first took a rest for 4 s,
where the cursor (the red circle) stayed inside the red square
box in the center of the screen (i.e., the “Home” position).
Then a red square frame (target cue) appeared randomly in
one of the four directions, which was about 10 cm away from
the central on the screen. After waiting at least 1.5 s before
initiating the movement, he/she moved the cursor at his/her
own pace until it touched the red square frame (target cue). If
the subject moved before 1.5 s (i.e., an immediate reaction), the
trial was stopped, discarded from the analysis, and repeated until
the subject successfully fulfilled the requirement of 1.5 s waiting
period. Such a time gap design for our experiment paradigm was

FIGURE 1 | Experiment settings in our study. (A) Experimental setup (written

informed consent was obtained from the subject for the publication of this

image). (B) Experimental protocol timeline.

to avoid the visual cue evoked potentials, which might interfere
with the self-paced movement related EEG signals. Subsequently,
the manipulandumwas moved back to the Home position for the
next trial.

The experiment was conducted for two sessions for five
subjects. Each session was recorded in 1 week and composed
of six blocks, each consisting of 40 trials (break intervals with a
duration adjusted to the need of the participants were inserted
between each block), thus resulting in overall 240 trials for each
subject in each week (session). It took 0.320 ± 0.126 (mean
± standard deviation) seconds on average for each subject to
complete the center-out reaching movement in the experiment.

EEG and Kinematic Recording
The EEG signals and electrooculograph (EOG) signals were
simultaneously recorded with a Neuroscan SynAmps II amplifier
and a 64-channel EEG cap with 10/20 montage. The electrodes
impedance was kept below 5 K� during the recordings. Referring
to the previous related studies (Bradberry et al., 2010; Robinson
et al., 2015), 33 channels1 that distribute around frontal cortex
and the parietal cortex were selected. EOG channels were placed
above nasion and below the outer canthi of both eyes in order

1F3, F1, FZ, F2, F4, FC5, FC3, FC1, FCZ, FC2, FC4, FC6, C5, C3, C1, CZ, C2, C4,

C6, CP5, CP3, CP1, CPZ, CP2, CP4, CP6, P5, P3, P1, PZ, P2, P4, P6.
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to capture horizontal and vertical EOG signals for assisting the
rejection of EOG artifacts contaminated EEG trials. The EEG
and EOG signal were sampled at 1000Hz, filtered at a lower
cut-off frequency of 0.05Hz and the signal bandwidth (highest
frequency) is limited at 200Hz by the acquisition system. In
order to reduce the EOG artifact contaminated EEG trials, the
subjects were also required to fixate on the central square box
and avoid blinking during the arm movement, but they were
encouraged to blink during the period of returning to the Home
position from the target. Besides, the EEG signals in a trial were
carefully monitored on the Nuroscan 4.3 recordings software
interface during each center-out reaching movement. Once there
was a significant contamination by EOG artifacts found in the
EEG recordings (e.g., EOG artifacts above 70 µV peak-peak in
any channel), the trial was abandoned and the subjects were
required to conduct a new movement for collecting a new trial
of EEG signal.

The hand movement parameters (position and speed in X,
Y axis) during the center-out reaching were recorded by the
haptic manipulandum. The movement onset is defined as the
time instance when the cursor (the red circle frame) exits the red
square box in the center of the screen, and the end of the center-
out reaching movement in a trial is defined as the time instance
when the cursor hits the target square box (see Figure 1B). Then
such events were sent as synchronization triggers to the EEG
acquisition system via the parallel port. All the trials were then
epoched from 1 s prior to the movement onset until the end of
reaching movement. The datasets used and/or analyzed during
the current study are available from the corresponding author on
a reasonable request.

Signal Preprocessing
To remove EOG and (electromyograph) EMG artifacts, the
independent component analysis (ICA) was employed to
decompose the EEG data. The criteria for identifying non-brain
artifact contaminated component activations are summarized
as follows: (1) Eye blinks should lie in the frontal areas with
evident punctate activations. (2) Muscle activities should lie in
temporal areas with a spectral peak in the band above 20Hz.
Based on these criteria, the component activations representing
the EOG and EMG artifacts were removed, and the EEG data
were reconstructed from the remaining component activations.
The signals were further re-referenced with common average
reference (CAR) to increase the signal-to-noise ratio.

Previous works (Bradberry et al., 2010; Kim et al., 2015)
have extensively revealed that the low-delta EEG signals encode
the motor control information, thereby a 0.1–1Hz, zero-phase,
second-order, band-pass Butterworth filter was applied. Finally,
the recorded EEG signal and movement parameters were both
down-sampled to 100 Hz.

Feature Extraction and
Neurophysiological Analysis
The preprocessed EEG sequence is then used to define a predictor
set from which the estimator for the movement parameter
information will be built. In this study, we will derive the
corresponding phase sequence of the preprocessed EEG sequence

for building the predictor set. For such a narrow-band signal, i.e.,
the temporal amplitude sequence of the low-pass-filtered EEG, its
instantaneous phase at each time point can be obtained with the
analytic representation:

z(t) = s(t)+ jHT(s(t)) (1)

whereHT(s(t)) is the Hilbert transformation of the sequence s(t),
defined as

HT(s(t)) = s(t) ∗
1

π t
(2)

Here ∗ denotes the convolution. The instantaneous phase
sequence ϕ(t) is defined as the angle of such an analytical signal:

φ(t) = arctan HT(s(t))
s(t)

(3)

We further conducted the neurophysiological analysis at two
levels. First, a spatio-temporal analysis was performed to
investigate two kinds of features at the scalp level:

(1) The amplitude features of the signal filtered in 0.1–1 Hz;
(2) The instantaneous phase features of the above signal

obtained with Equation (3).
Second, we conducted statistical analyses to assess twometrics

of such two types of features from several selected representative
channels (themethod for selecting the representative channel will
be specified later) over the frontal and parietal cortices [such two
cortices are extensively reported to carry necessary information
for decoding planning and execution of reaching movements
in the literature (Lew et al., 2014; Robinson et al., 2015)]. The
two metrics for characterizing these two types of features are
illustrated as follows:

(1) The time-resolved effect size for each type of feature in
the movement sub-interval 2 (0–0.2 s relative to the movement
onset) relative to the rest (baseline) interval (between −0.2 and
−0.1 s relative to the movement onset), which actually measures
the signal-to-noise ratio of the feature. In specific, we firstly
computed the grand average of the two features over trials across
subjects and sessions. Nextly, the mean and standard deviation of
the baseline were calculated. Finally, the effect size for each type
of feature was obtained by subtracting the grand average baseline
from the grand average activity of the movement sub-interval,
and being divided by the standard deviation of the baseline.

(2) The absolute Pearson correlation coefficient (CC) which
measures the strength of linear correlation relationship between
the feature and recorded movement speed in the movement
duration. The weakest linear relationship is indicated by 0,
whereas the strongest one is represented by 1.

Since the frontal and parietal areas are generally believed
to encode the planning and execution information of reaching

2The shortest duration of the movement was 0.2 s in our experiment, therefore, the

effect size for each type of feature was analyzed only in the movement sub-interval

[0, 0.2] s.
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movements, we restricted the statistical analysis and visualization
only to the features from the representative channels in frontal
and parietal areas, respectively. The representative channels
were screened using the electrode activation index (AI) (Benz
et al., 2012), which measures the average level of change in
low-delta EEG features between baseline and movement. In
specific, we utilized the cross-correlation coefficient to compare
the amplitude feature and the phase feature, between the baseline
state (rest, r) and active state (hand movement,m):

F =

∣

∣

∣

∣

∣

(m− r)3

|m− r|σ 2
m∪r

NmNr

N2
m∪r

∣

∣

∣

∣

∣

(4)

where r represents the average feature value during rest, m
denotes the average feature value across all hand movements,
σ is the variance of the feature across the movements and
rest states, Nm and Nr denote the number of incidences of
each state, respectively. The cross-correlation coefficient of each
channel was calculated with all the trials from five subjects and
his/her two sessions, using both the amplitude and phase feature,
respectively. Then the electrode AI was determined for each
channel as follows:

AI = max{Famplitude, Fphase}, (5)

i.e., the amplitude or phase derived cross-correlation coefficient
that shows a greater change between the rest and movement
states for all the trials. For each of the four directions, we selected
a channel with the highest AI from the frontal cortex and the
parietal cortex, respectively. In this manner, we obtained the
most representative channels from the four-directionmovement-
related cortex.

Subsequently, we performed the statistical analysis on the
above twometrics of the amplitude and phase features from these
representative channels. The pairwise Wilcoxon signed rank test
was conducted on the absolute values of the two metrics, where
the statistical significances for the effective size analysis was
confined to the movement sub-interval (0–0.2 s).

Decoding Models
For the decoding, the linear decoding methods were commonly
employed in previous studies for decoding continuous
movement, such as multiple linear regression (MLR) (Bradberry
et al., 2010) and Kalman filter (KF) (Wu et al., 2006; Pistohl
et al., 2008). Since our study aims at investigating whether the
low-delta EEG phase feature based linear decoding models could
substantially improve on the amplitude feature based ones,
we have employed the commonly used MLR and KF for the
continuous movement decoding.

In our study, we define the movement parameters as

Y =
{

sx, sy, dx, dy
}

∈ R
4×(n1+n2+···nN ) (6)

where ni is the number of instances in the i-th trial (i = 1,. . . ,
N). Thus, the absolute speed and position can be calculated as:

s =
√

s2x + sy2 and d =

√

d2x + dy
2. The i-th trial recorded brain

activity is denoted by E ∈ R
C×ni , where C is the number of

channels recorded. Next, we derive the low-delta EEG amplitude
representation A ∈ R

C×ni and the low-delta EEG instantaneous
phase representation P ∈ R

C×ni for the single trial brain activity
E. In such two representations, signals from each channel are
further normalized to unit Euclidean length. The predictor set
X ∈ R

L×(n1+n2+···nN ) where L = C · θ is then defined as

{

xτ c ∈ R
1×(n1+n2+···nN ), τ = 1, . . . , θ c = 1, . . . ,C

}

, (7)

where xτ c represents the feature (amplitude or phase) from
channel c and delayed by τ − 1 for the N trials of the original
low-delta EEG signal. In Equation (7), θ is the embedding
dimension that equals to the number of time delays plus one, and
it actually specifies that there are one sample at time instance k
and (θ−1) samples prior to instance k from each channel needed
for estimating the movement parameters at time instance k. In
our analysis, the constants in the Equation (7) are set to C = 33
and θ = 11, respectively. In the rest of this paper, the predictor
at time instance k will be denoted by Xk, i.e., xτ c(k), and the
movement parameter at instance k is Yk.

We have firstly employed the MLR, which fits the recorded
kinematic parameters over multiple regression variables by a
linear fitting strategy (Wu et al., 2006). The linear regression
problem can be written as follows:

ŶMLR(k)=

θ
∑

τ=1

C
∑

c=1

ατ cxτ c(k) (8)

Here, ŶMLR(k) is the estimated value of Y(k), ατ c denotes the
regression weight, xτ c(k) denotes the predictor at time instance
k from channel c with time lag τ − 1. The regression equation in
(8) can be rewritten in the following form:

ŶMLR=α · X (9)

where an extra column of ones will be included to induce the bias
in the regression model and thus α ∈ R

4×(L+1). Such a problem
can be solved by the least-square estimation.

The Kalman filter (KF) has been widely applied in decoding
kinematic parameters from invasive and non-invasive neuronal
activities in previous BCI studies (Wu et al., 2006; Pistohl et al.,
2008). KF predicts parameters of interest from inaccurate and
uncertain observations. In specific, it minimizes the mean square
error of the estimated parameters in the presence of Gaussian
noises with unknown mean and variances. In KF, a discrete-
time linear dynamical system is modeled where the state of the
system at any time instance is further defined by a linear model.
A generative model will be established in the KF algorithm,
assuming that the measured output (the predictor set at time
instance k) is linearly related to the state (movement parameter
at instance k). The generative model is defined as

Frontiers in Neuroscience | www.frontiersin.org 5 May 2019 | Volume 13 | Article 480

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zeng et al. Low-Delta EEG Phase Based Decoders

Xk = HKYk + qk, (10)

Here HK is the matrix that linearly relates the predictor with
the state of the system (i.e., movement parameters). The noise
qk in the observations is zero mean and normally distributed.
qk ∼ N(0,Qk), where Qk is the noise covariance matrix. The
Kalman filter assumes the state at time k + 1 is evolved from the
state at k according to the system model.

Yk+1 = AkYk + wk, (11)

Here Ak is the coefficient matrix and the noise wk ∼ N(0,Wk),
Wk is the noise covariance matrix. The KF method will
predict the hand movement state Yk+1 from Yk by following
Equation (11). We make assumption that Hk,Qk,Ak,Wk are
constant and estimated from the training data using least square
estimation method.

The reconstruction of the hand movement parameters by the
KF model consists of two steps. In the first step, the system
model estimates the hand movement parameters at time k + 1
from the state at time k. In the second step, these estimates are
updated using a weighted average, with more weight being given
to estimates with a higher certainty, once the outcome of the next
measurement is observed.

Decoding Performance Evaluation
Evaluation Against the Decoding Models With the

Low-Delta Amplitude Feature
Since the low-delta EEG signal amplitude feature has been
extensively used when building the movement decoding models
in the literature (Bradberry et al., 2010; Agashe et al., 2015;
Robinson et al., 2015), it is interesting to firstly assess whether
phase feature of the low-delta EEG could improve up on
continuous kinematic parameters decoding based on the low-
delta EEG amplitude feature. To this end, we constructed linear
decoders (MLR and KF) based on two sets of features: (1)
Amplitude model, the decoding model (MLR/KF) based on the
amplitude feature of low-delta band EEG signal. (2) Phase model,
the decoding model (MLR/KF) based on the instantaneous phase
feature of low-delta band EEG signal.

For each subject, since each session includes six blocks (each
consisting of 40 trials), thereby the data sets in each session
were naturally split into six-folds. The decoding performance
was then assessed by six-fold cross-validation (CV) for data of
each subject and each session, where five-folds formodel building
and the remaining fold as a test set for the model’s kinematic
parameters reconstruction. This procedure was repeated six
times, such that each fold was used as test set exactly once.
The decoding performance was evaluated with the correlation
coefficients between the estimated (predicted) and the ground-
truth kinematic recordings obtained from all test folds. We
conducted the statistical analysis on the performance difference
between the Phase model and the Amplitude model, using the
pairwise Wilcoxon signed rank test.

Evaluation Against the Decoding Models With

Other-Band Power and Amplitude Features
Recently, authors in Korik et al. (2016, 2018) have advocated
the utilization of the time-resolved power feature extracted
from other frequency bands (e.g., the mu and beta bands,
etc.) EEG signals for decoding the 3D executed or imagined
movement trajectories. They have shown that the bandpower
feature is also an effective alternative to the slow-oscillation
EEG signal amplitude feature. In this regard, we have also
compared the performance of such band-pass filtered EEG
power features with that of the slow-oscillation EEG phase
feature. In specific, as in Korik et al. (2018), we applied
the 8th order zero-phase band-pass Butterworth filters on the
artifacts removed EEG in the high delta (1–4Hz), theta (4–
8Hz), mu (8–12Hz), and beta (12–30Hz) bands, following a
down-sampling to 100Hz. The time-resolved bandpower was
obtained by averaging the square values of the band-pass filtered
EEG signals within a 500 ms-long sliding window in a step
of 10ms. Then the performance of the high delta (1–4Hz),
theta (4–8Hz), mu (8–12Hz), and beta (12–30Hz) bandpower
feature based MLR/KF decoding models was evaluated with
the same six-fold cross-validation procedure. For completeness,
the six-fold cross-validation decoding performance with the
amplitude representation of those bands was reported as well.
However, the phase features for other band EEG were not used to
continuously predict the movement trajectory (<4Hz), because
the instantaneous phase varies faster than the relatively slow time
course of the movement trajectory.

The subject-session-specific CV performance was obtained
by averaging the six correlation coefficients from the six-fold
cross-validation procedure for each subject and each session.
We took the mean value of the two axes (X and Y) as the
final CV performance to report as in Fernandez-Vargas et al.
(2016) and Li et al. (2018). The statistical significance analysis
on the performance differences (among the low-delta EEG phase
based model, the other-band EEG power based one and the
amplitude based one) was further conducted with the one-
way ANOVA using the Tukey’s honestly significant difference
correction procedure for multiple comparisons. The normality
assumption of the ANOVA was validated by the Jarque-Bera test.

Evaluation Against the Chance-Level

Decoding Models
To ensure the validity of the proposed Phase model for
reconstructing the hand movement trajectory, it was further
tested against the chance level of the reconstruction. The chance-
level reconstruction was empirically obtained by first shuffling
the original data (i.e., disorganizing the correspondence between
original EEG signals and position/speed profiles) and then
applying the phase feature based MLR/KF decoding model on
the shuffled data. We repeated the shuffling processN = 20 times
per subject and per session to reduce the chance effects due to
the randomness of the process, the six-fold CV evaluation was
still adopted after each shuffling process (with N = 10% of the
number of trials used for training). The chance level results were
tested against those with authentic models, using the Wilcoxon
rank sum test.
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FIGURE 2 | The time-resolved topographic maps of low-delta EEG features during the four-direction movements over subjects and sessions. (A) The grand average

of low-delta EEG amplitude features. (B) The grand average of low-delta phase features.

RESULTS

Neurophysiological Analysis
Figure 2 shows the low-delta EEG amplitude and phase features

in grand average over subjects and sessions, covering the pre-

movement interval [−0.4, 0] s, and the movement sub-interval

[0, 0.2] s. Since we find that the topographical scalp distribution

of the low-delta EEG correlates for handmovement demonstrates

different patterns for the four movement directions, the
topographic maps of low-delta EEG features during the four-
direction movements are depicted separately. Moreover, before
calculating the grand average, the amplitude feature, and
the instantaneous phase feature from each channel were z-
scored. From the time-resolved topographic maps of low-delta
EEG amplitude features in Figure 2, we can observe that the
spatio-temporal grand average of the amplitude patterns have
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FIGURE 3 | The time-resolved topographical maps of the low-delta EEG features during the four-direction movements from a representative subject and session (1st

trial in the 2nd session of subject 5). (A) The low-delta EEG amplitude features. (B) The low-delta EEG phase features.

demonstrated a smooth variation before and after the movement
onset (0 s). By contrast, for the phase patterns shown in Figure 2,
although the topographical scalp distribution of the phase
patterns also shows a smooth change during the pre-movement
stage, it has exhibited significant changes since the movement
onset. In particular, the time-resolved topographical maps of the
low-delta amplitude and phase features from a representative
subject and trial in a session (the 1st trial in the 2nd session of
subject 5) are shown in Figure 3. It can be observed that the

trend of such representative spatio-temporal patterns is generally
consistent with that of the grand average ones.

For each of the four movement directions, the selected
channels with the highest electrode AI over the frontal and
parietal cortices, respectively, are shown in Figure 4. Figure 4
presents the effective size for each type of feature from these
representative channels. In the movement sub-interval [0, 0.2]
s, it can be easily observed that the phase feature generally has
a much larger effective size than the amplitude feature, relative
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FIGURE 4 | Effect sizes for the low-delta EEG amplitude feature and phase feature quantified in standard deviation units in the representative channels for the grand

average across subjects and sessions along the four directions: (A) Left. (B) Right. (C) Up. (D) Down. Those channels, which exhibit statistical significant differences

(signed rank test p << 0.01) in effect size for the amplitude feature and the phase feature during the movement sub-interval (0–0.2 s), are marked by ***.

to the baseline interval [−0.2, −0.1] s. We further evaluated
the statistical significance between the absolute value of the
effective size of the two representations (phase, amplitude) in the
movement sub-interval [0, 0.2] s. The differences between phase
and amplitude are indeed found to be statistically significant
(p-value << 0.01 on all representative channels). Such findings
indicate that on these representative channels, the signal-to-noise
ratio of the phase feature is substantially higher than that of the
amplitude feature in the movement interval.

Figure 5 depicts the absolute CC for each type of feature
from these representative channels in the movement interval.
From Figure 5, we can observe that the average absolute Pearson
correlation coefficient with phase feature is substantially higher
than that with the amplitude feature. Moreover, such differences
are statistically significant (p < 0.05). These results clearly
identify that the temporal profile of the phase features from

these representative channels in the movement interval are
more linearly correlated with the recorded kinematics data
than the amplitude features. As an example, the z-scored
values of the phase and amplitude (average and standard
deviation) on the FC1 and CP4 channels and the z-scored
speed (average and standard deviation) recording during the
leftward movement across subjects and sessions are shown
in Figure 6. Clearly, the phase feature is better aligned with
the movement parameters. Moreover, it also demonstrates
smaller variations (thus is more stable) across trials than
the amplitude one around the motion onset, reflecting the
entrainment of the oscillatory dynamics by the motion event.
Such observations suggest that on these representative channels,
the phase pattern is strongly modulated by the movement task,
which may carry more continuous movement information than
the amplitude one.

Frontiers in Neuroscience | www.frontiersin.org 9 May 2019 | Volume 13 | Article 480

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Zeng et al. Low-Delta EEG Phase Based Decoders

FIGURE 5 | The absolute correlation coefficients between the speed and the low-delta EEG amplitude/phase feature in the representative channels across subjects

and sessions along the four directions: (A) Left. (B) Right. (C) Up. (D) Down. The results demonstrating statistical significant differences are marked by *** (signed rank

test p < 0.001), ** (signed rank test 0.001 ≤ p < 0.01) and * (signed rank test 0.01 ≤ p < 0.05).

FIGURE 6 | The across-subject and across-session time course of low-delta

EEG phase features and amplitude features in the representative channels

(FC1 and CP4) preceding movement onset (the vertical line on 0 s) and during

the leftward movement. The thick lines denote the average patterns, and the

range of standard deviation is plotted with a shaded background in blue.

Furthermore, for each of the four directions, we visualize
the temporal course of the low-delta EEG signal amplitude
and phase features from channel FCz for a representative
subject/session (i.e., the 2nd session of subject 5) across multiple

trials in Figure 7. The amplitude temporal profiles are depicted
in the top panels of Figures 7A–D. A decrease in amplitude
before the onset of movement and an ascending trend in
amplitude after the motion onset can be observed. The bottom
panels of Figures 7A–D show that there is a synchronization
of phase across multiple repetitions. After around 0.5 s prior
to the movement onset, the bottom panels demonstrate a
continuous increase in phase from π/2 to π. From the motion
onset to the end of the hand movement around 0.5 s, there
is an ascending trend in phase roughly from π to 3π/2.
In a word, the temporal course of the low-delta EEG signal
amplitude and phase features are generally in line with those
reported in Sburlea et al. (2017), whose aim, however, is to
detect the motion intention before the movement onset with
the low-delta phase features. In our paper, such temporal
profiles of low-delta EEG signals will be employed for the
decoding of the continuous hand movement parameters after the
movement onset.

Decoding Performance
Evaluation Results Against the Decoding Models

With the Low-Delta Amplitude Feature
Figures 8, 9 present the center-out reaching hand movement
kinematics (i.e., the positions along the X and Y axis: X-Position,
Y-Position; the speed values along the X and Y axis: X-Speed
and Y-Speed) six-fold cross validation decoding performance
of the Phase model and the Amplitude model for each subject
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FIGURE 7 | The temporal course of the low-delta amplitude and phase features across multiple trials over the channel FCz for the 2nd session of subject 5 along the

four directions: (A) Left. (B) Right. (C) Up. (D) Down. Left panel: the amplitude feature. Right panel: the phase feature.

and each session using MLR and KF, respectively. Table 1 gives
the six-fold cross validation decoding results across the subjects
and sessions.

From Figures 8, 9, we find that the Phase model clearly
proves to be substantially superior over the Amplitude model
for almost all subjects and sessions, with both MLR and KF.
Moreover, for the phase features, the correlation coefficients
between actual and estimated position/speed are significantly
higher than those for the amplitude features for almost all
the subjects and sessions (except the X-Position decoding
results with MLR, see Table 1). Representative hand movements
reconstruction results for a single block and a single subject
(the first block of the first session, subject 4) are shown in
Figure 10, where the estimated absolute movement position
and speed are also shown. It can be observed that the
overlaps between the predicted and ground-truth parameters
with the Phase model are more significant than those with the
Amplitude model.

Evaluation Results Against the Decoding Models

With Other-Band Power and Amplitude Features
Table 2 summarizes the configurations of the proposed decoder
and the decoders with other-band power and amplitude features.
TheMLR andKFmodel based decoding CV performancemetrics

are given in Tables 3, 4, respectively. The best approach is
underlined for each dataset.

With the MLR model, the proposed decoder is the best one
on 8 out of the 10 datasets for both the position and speed
reconstruction. Similarly, with the KF model, the proposed
approach wins on 9 out of the 10 datasets for both the
position and speed reconstruction. Moreover, all the Jarque-
Bera test results have demonstrated the failure to reject the
null hypothesis that the CV performance comes from a normal
distribution at the 0.05 significance level. Pairwise comparisons
between our proposed method and each of the rest indeed
shows statistically significant differences (p < 0.05) for all the
results presented in Tables 3, 4. In contrast, the mu-band and
beta-band power feature based decoders (µ/β-pwr-MLR/KF) fail
to show advantageous performance over the rest counterparts.
In addition, µ-amp/pwr-MLR/KF, high δ-amp/pwr-MLR/KF,
and θ-amp/pwr-MLR/KF produced similar performance, but
none of the pairwise performance comparisons among them is
statistically significant (P > 0.05).

Evaluation Results Against the Chance-Level

Decoding Models
The chance-level results are considerably worse than
the authentic models, and the performance difference
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FIGURE 8 | The correlation coefficients obtained from the multiple linear regression model with the low-delta EEG amplitude feature and the phase feature for each

subject and each session. (A) X-Position. (B) Y-Position. (C) X-Speed. (D) Y-Speed.

is statistically significant (see Table 5). This indicates
that the proposed Phase decoding model has indeed
employed the neural correlates of the hand movement
kinematics and the decoding performance obtained not
by chance. Taken together, these results clearly suggest
that the phase is the major carrier of the low-delta EEG
movement-related information.

DISCUSSION

Role of Low-Delta EEG Phase Features in
Decoding Kinematics for Motor Control
In the domain of sensory processing, it has been recently
suggested that the instantaneous phase patterns of the
oscillatory activity in theta and alpha bands contain neural
correlates of the brain response to visual/auditory stimuli
(Ng et al., 2013; Wang et al., 2018). For cognition, there is

also accumulating evidence that the phase patterns of slow
EEG oscillation can be informative about the cognitive
task being performed (Höhne et al., 2016; Barry et al.,
2018). Moreover, these works suggest that the sensory
or cognitive information carried by low-frequency EEG
signals is richer and greater in their precise temporal
dynamics (phase) compared with their amplitude. These
studies have demonstrated the phase of low- frequency
EEG signals as an effective neural correlate for sensory and
cognition processing.

In the motor control domain, most studies have explored
the EEG amplitude or power representation of the movement-
related neural correlates (Miao et al., 2016; Robinson and
Vinod, 2016; Zeng and Song, 2016)(Miao et al., 2016; Robinson
and Vinod, 2016; Zeng and Song, 2016). In the past decades,
the connectivity metric among brain areas has been gradually
investigated mainly using the phase patterns of the mu
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FIGURE 9 | The correlation coefficients obtained from the Kalman filter model with the low-delta EEG amplitude feature and the phase feature for each subject and

each session. (A) X-Position. (B) Y-Position. (C) X-Speed. (D) Y-Speed.

TABLE 1 | The six-fold CV decoding results with low-delta EEG phase or amplitude feature.

X-Position Y-Position X-Speed Y-Speed

MLR Phase 0.63 ± 0.11 0.56 ± 0.11 0.63 ± 0.11 0.57 ± 0.10

Amplitude 0.51 ± 0.11 0.43 ± 0.10 0.53 ± 0.12 0.46 ± 0.10

Signed-rank test p-value 0.0539 0.0018 0.034 0.003

KF Phase 0.65 ± 0.10 0.58 ± 0.08 0.66 ± 0.10 0.60 ± 0.07

Amplitude 0.54 ± 0.06 0.45 ± 0.08 0.54 ± 0.07 0.47 ± 0.08

Signed-rank test p-value 0.0173 0.0091 0.0211 0.0036

band, which have demonstrated to contain the motor imagery
information (Hamedi et al., 2016). Moreover, recent studies
have reported that the instantaneous phase representation of
the low-delta (0.1–1Hz) band not only yields higher motion
detection accuracy before the movement onset, but also detects
the motion intention much earlier than the amplitude (Sburlea
et al., 2017; Zeng et al., 2017b). Based on these findings,

the starting point of our study is to investigate whether the
continuous kinematic information after the movement onset
could be decoded from the phase representation of the 0.1–
1Hz delta band, and whether it is superior to the amplitude
representation of the same signal. Our neurophysiological
analysis results indicate that on representative channels, the
instantaneous phase representation of the lower delta band shows
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FIGURE 10 | The Kalman filter reconstructed movements parameters (normalized for visualization) with the low-delta EEG amplitude feature (left column) and the

phase feature (right column). The correlation coefficient between the predicted and the ground-truth parameters is given in the top of each subfigures. (A) Top panel:

X-Position. Middle panel: Y-Position. Bottom panel: Absolute-Position. (B) Top panel: X-Speed. Middle panel: Y-Speed. Bottom panel: Absolute-Speed.

higher signal-to-noise ratio and stronger modulation by the
movement tasks than the amplitude one. Such characteristics
of phase have led to higher decoding accuracy of the kinematic

information after the movement onset compared to the slow-
oscillation amplitude based decoders. Taken together, these
results clearly suggest that the motor control imprints more on
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TABLE 2 | The configurations of the proposed low-delta EEG phase based decoder and the decoders based on power and amplitude features from other-band EEG.

Decoder name Configuration Decoder name Configuration

Low δ-pha-MLR Low δ (0.1–1Hz) EEG phase based MLR Low δ-pha-KF Low δ (0.1–1Hz) EEG phase based KF

High δ-pwr-MLR High δ (1–4Hz) EEG power based MLR High δ-pwr-KF High δ (1–4Hz) EEG power based KF

θ-pwr-MLR θ (4–8Hz) EEG power based MLR θ-pwr-KF θ (4–8Hz) EEG power based KF

µ-pwr-MLR µ (8–12Hz) EEG power based MLR µ-pwr-KF µ (8–12Hz) EEG power based KF

β-pwr-MLR β (12–30Hz) EEG power based MLR β-pwr-KF β (12–30Hz) EEG power based KF

High δ-amp-MLR High δ (1–4Hz) EEG amplitude based MLR High δ-amp-KF High δ (1–4Hz) EEG amplitude based KF

θ-amp-MLR θ (4–8Hz) EEG amplitude based MLR θ-amp-KF θ (4–8Hz) EEG amplitude based KF

µ-amp-MLR µ (8–12Hz) EEG amplitude based MLR µ-amp-KF µ (8–12Hz) EEG amplitude based KF

β-amp-MLR β (12–30Hz) EEG amplitude based MLR β-amp-KF Beta (12–30Hz) EEG amplitude based KF

TABLE 3 | The six-fold CV position/speed reconstruction performance of the proposed low-delta EEG phase based decoder and the other-band EEG power and

amplitude features based decoders using MLR.

Dataset low δ-pha-MLR high δ-pwr-MLR θ-pwr-MLR µ-pwr-MLR β-pwr-MLR high δ-amp-MLR θ-amp-MLR µ-amp-MLR β-amp-MLR

S1-1 0.48/0.49 0.27/0.28 0.36/0.32 0.31/0.28 0.17/0.16 0.26/0.27 0.33/0.33 0.31/0.27 0.17/0.15

S1-2 0.49/0.51 0.28/0.37 0.34/0.34 0.23/0.26 0.12/0.12 0.27/0.31 0.35/0.37 0.21/0.26 0.11/0.13

S2-1 0.67/0.67 0.51/0.53 0.38/0.39 0.43/0.41 0.22/0.23 0.50/0.52 0.39/0.39 0.39/0.41 0.23/0.23

S2-2 0.72/0.71 0.46/0.52 0.45/0.45 0.42/0.45 0.28/0.27 0.47/0.52 0.42/0.45 0.41/0.44 0.24/0.27

S3-1 0.56/0.58 0.62/0.66 0.54/0.56 0.50/0.57 0.33/0.33 0.59/0.63 0.53/0.55 0.50/0.54 0.28/0.29

S3-2 0.67/0.68 0.53/0.65 0.53/0.56 0.47/0.48 0.25/0.25 0.56/0.59 0.54/0.55 0.47/0.45 0.22/0.21

S4-1 0.69/0.69 0.51/0.54 0.42/0.42 0.52/0.54 0.24/0.25 0.48/0.51 0.43/0.44 0.49/0.53 0.22/0.22

S4-2 0.66/0.66 0.42/0.44 0.50/0.53 0.48/0.46 0.41/0.42 0.43/0.46 0.53/0.53 0.46/0.49 0.41/0.41

S5-1 0.54/0.53 0.51/0.53 0.55/0.58 0.44/0.49 0.23/0.25 0.51/0.52 0.55/0.57 0.43/0.45 0.24/0.24

S5-2 0.48/0.48 0.42/0.41 0.34/0.38 0.41/0.44 0.27/0.26 0.41/0.41 0.35/0.36 0.38/0.41 0.23/0.24

Mean 0.60/0.60 0.45/0.49 0.44/0.45 0.42/0.44 0.25/0.25 0.45/0.48 0.44/0.45 0.40/0.43 0.23/0.24

The best approach is underlined for each dataset.

the precise dynamics than on the amplitude of the slow rhythmic
brain activity.

Toward Understanding the Strength of
Methods and Paradigms Used
In section Decoding Performance, we have shown quantitative
evidences suggesting that the instantaneous phase of the
low-delta EEG constitutes a powerful representation for
reconstructing the hand movement parameters. In this section,
we shall provide closer analysis and visualization to further
understanding the strength of the low-delta EEG signal phase
representation and the movement paradigm.

First, it is necessary to point out an important characteristic
of the center-out reaching movement paradigm in our two-
session experiments. Namely, all the subjects completed the
self-paced center-out reaching movement within 0.5 s, and the
minimum movement duration was 0.2 s. Next, from Figure 7,
we can observe that the low-delta EEG signal phase during
the hand movement interval [0, 0.5] s is distributed roughly in
the interval [π, 3π/2], rather than the interval [0, 2π] where
a general phasic circular variable is distributed and possibly
with sharp discontinuities as well. In addition, the extremities
of such an interval [π, 3π/2] are not close to each other

in the polar coordinates. Moreover, the phase value varies
continuously along the motor task across trials. Such a phase
representation is further investigated on several representative
channels (see Figures 4, 6). Here, it is necessary to point out
that such representative channels are particularly screened over
the frontal and parietal cortices, since such two brain regions
have been extensively reported to contain necessary information
for decoding planning and execution of reaching movements
in the literature (Lew et al., 2014; Robinson et al., 2015).
On such representative channels, the phase representation has
demonstrated similar sharp transit around the motion onset as
the corresponding kinematic parameters (see Figures 4, 6), and

Figure 5 further reveals that the phase representation strongly
correlated with the corresponding kinematic parameters. Such

observations, to some extent, support our conjecture that the

hand movement kinematic parameters during the movement
tasks in our experiment paradigm can be obtained from the

linear decoding models with the phase representation distributed
in [π, 3π/2]. Therefore, instead of treating it as a circular

variable, we simply applied the z-score procedure as well as the

linear decoding model on the continuous phase variable during
the motor task period. According to the decoding results, the
feasibility and effectiveness of our approach have been validated.
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TABLE 4 | The six-fold CV position/speed reconstruction performance of the proposed low-delta EEG phase based decoder and the other-band EEG power and

amplitude features based decoders using KF.

Dataset low δ-pha-KF high δ-pwr-KF θ-pwr-KF µ-pwr-KF β-pwr-KF high δ-amp-KF θ-amp-KF µ-amp-KF β-amp-KF

S1-1 0.53/0.54 0.32/0.23 0.43/0.39 0.33/0.30 0.17/0.20 0.28/0.23 0.40/0.36 0.31/0.28 0.18/0.17

S1-2 0.52/0.55 0.27/0.34 0.38/0.42 0.26/0.28 0.09/0.13 0.30/0.33 0.36/0.41 0.22/0.28 0.11/0.13

S2-1 0.69/0.68 0.55/0.58 0.43/0.39 0.34/0.40 0.27/0.30 0.54/0.55 0.42/0.40 0.36/0.38 0.28/0.28

S2-2 0.72/0.71 0.38/0.41 0.45/0.49 0.43/0.45 0.29/0.32 0.38/0.43 0.44/0.48 0.41/0.44 0.28/0.30

S3-1 0.61/0.64 0.53/0.58 0.55/0.58 0.50/0.50 0.32/0.33 0.56/0.58 0.53/0.54 0.47/0.49 0.30/0.32

S3-2 0.68/0.68 0.53/0.57 0.59/0.58 0.50/0.51 0.26/0.26 0.52/0.53 0.55/0.57 0.50/0.50 0.26/0.23

S4-1 0.69/0.69 0.44/0.47 0.41/0.48 0.54/0.55 0.26/0.22 0.44/0.47 0.43/0.45 0.51/0.53 0.24/0.24

S4-2 0.66/0.67 0.42/0.42 0.58/0.51 0.48/0.50 0.42/0.45 0.42/0.43 0.55/0.55 0.46/0.47 0.43/0.44

S5-1 0.48/0.49 0.46/0.51 0.53/0.63 0.42/0.55 0.22/0.24 0.45/0.49 0.54/0.61 0.41/0.50 0.19/0.24

S5-2 0.59/0.59 0.46/0.47 0.48/0.43 0.55/0.56 0.28/0.27 0.47/0.48 0.44/0.44 0.51/0.53 0.25/0.26

Mean 0.62 /0.63 0.44/0.46 0.49/0.49 0.44/0.46 0.26/0.27 0.43/0.45 0.47/0.48 0.42/0.44 0.25/0.26

The best approach is underlined for each dataset.

TABLE 5 | Reconstruction results by chance-level models with the low-delta EEG phase feature.

X-Position Y-Position X-Speed Y-Speed

Phase-MLR Authentic model 0.63 ± 0.11 0.56 ± 0.11 0.63 ± 0.11 0.57 ± 0.10

Chance-level model 0.23 ± 0.06 0.22 ± 0.06 0.24 ± 0.07 0.24 ± 0.06

Rank-sum test p-value << 1e-5 << 1e-5 << 1e-5 << 1e-5

Phase-KF Authentic model 0.65 ± 0.10 0.58 ± 0.08 0.66 ± 0.10 0.60 ± 0.07

Chance-level model 0.21 ± 0.05 0.20 ± 0.06 0.22 ± 0.05 0.23 ± 0.06

Rank-sum test p-value << 1e-5 << 1e-5 << 1e-5 << 1e-5

Comparison of Executed 2D Hand
Movement Decoding Performance of
Previous Methods With EEG
The EEG signals have been investigated in many studies (Lv et al.,
2010; Heger et al., 2012; Agashe et al., 2015; Robinson et al., 2015)
for the decoding of the hand/finger/elbow kinematic parameters
during 2D/3D center-out movement, natural grasping, filling a
glass of water, and etc. These studies have employed either the
EEG amplitude or power representation from some particular
band, whereas the phase representation in the low-frequency
band EEG has not yet been explored for the continuous kinematic
parameters decoding after the movement onset.

In previous studies using low-delta band amplitude based
linear decoding models and similar 2D executed handmovement
tasks as ours, Lv et al. (2010) has achieved an average CC around
0.46 and Robinson et al. (2015) has reported values around
0.57. Our implemented low-delta band amplitude based model
resulted in the best decoding accuracy (CC = 0.54 ± 0.06, mean
± standard deviation) for position in X-axis with Kalman filter,
and are thus consistent with the previous low-delta amplitude
based decoding investigations. By contrast, with the proposed
delta band instantaneous phase representation in our study, the
Kalman filter decoding accuracy for position in X-axis can be
improved up to CC = 0.65 ± 0.10 (mean ± standard deviation),
with statistical significance. In addition, although the mu or beta
bandpower features have been found to be effective for estimating
the 3D imagined upper limb continuous movements in Korik

et al. (2016, 2018), such representations and the amplitude
features in mu or beta band are demonstrated to be less effective
than the low-delta phase feature for the decoding of continuous
kinematic parameters in our 2D executed movement tasks.

Limitations and Future Work
For the decoding models in our study, we set the time lag to
be 11 according to the suggestions in Bradberry et al. (2009,
2010) and Robinson et al. (2015)(Bradberry et al., 2009, 2010;
Robinson et al., 2015). Optimization of such a parameter through
cross-validation may further lead to improved performance.
Besides, since the average decoding accuracy has been greatly
improved from 0.54 (amplitude) to 0.66 (phase) with statistical
significance using all the 33 channels, we have not performed
the channel selection procedure in our approach. It may
certainly result in enhanced performance by conducting the
channel selection.

As in most studies on kinematics decoding with EEG signals,
only the linear decoding models such as MLR and KF were
employed in our paper. In the future, we will further investigate
whether the phase based non-linear decoding model would
improve the performance of the linear ones. Moreover, the
low-delta phase feature as well as the amplitude/power features
from other bands, were employed separately for reconstructing
the center-out reaching hand movement trajectories. They may
reflect different aspects of the EEG signals during the motor
control process. For instance, the low-delta phase describes the
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temporal dynamics of the movement-related brain activities,
while the low-delta amplitude and mu band power characterize
the intensity information. For the future work, we will try to
build advanced decodingmodels with these three representations
combined together in order to fully utilize the complementary
information in them. Last but not least, we have only studied
the trajectory reconstructing problem for an executed 2D
center-out reaching task in the current work. To realize the
futuristic neuroprosthesis control for paralyzed patients using
non-invasive EEG, it is desirable to investigate the trajectory
reconstructing problem for the imagined movements. Although
we have shown that the low-delta EEG phase has yielded better
decoding accuracy than the compared features, for a 2D hand
center-out reaching movement task, it is unknown whether such
a feature could still provide the best performance among these
investigated features in the paper, for decoding the imagined 2D
or 3D continuous movements. As a future work, this study will
be further extended to systematically examine such an issue.

CONCLUSION

In this paper, we have investigated the phase representation
of low-delta EEG signals in decoding 2D center-out reaching
hand movement parameters. The neurophysiological analysis
has shown that on representative channels over the cortices
that are known to encode the execution information of
reaching movements, the low-delta EEG instantaneous phase
representation has a higher signal-to-noise ratio and stronger
modulation by the movement tasks, compared to its amplitude
representation. Next, we have compared the performance of
the low-delta EEG phase based liner decoding model and its
amplitude based one, and the results demonstrate that the
decoding accuracy based on amplitude is substantially lower than

that based on phase, with statistical significance. Furthermore,
the experimental results have also validated the advantages of
the low-delta phase feature over the time-resolved power and

amplitude series from other frequency bands for such a 2D
executed movement task. Our findings clearly pinpoint that the
low-delta EEG phase contains comprehensive movement related
information, demonstrating its potential for the futuristic fine
neuroprosthesis control with continuous movement parameters
reconstructed from non-invasively recorded scalp EEG.
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