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Cerebral micro-bleedings (CMBs) are small chronic brain hemorrhages that have
many side effects. For example, CMBs can result in long-term disability, neurologic
dysfunction, cognitive impairment and side effects from other medications and
treatment. Therefore, it is important and essential to detect CMBs timely and in an
early stage for prompt treatment. In this research, because of the limited labeled
samples, it is hard to train a classifier to achieve high accuracy. Therefore, we proposed
employing Densely connected neural network (DenseNet) as the basic algorithm for
transfer learning to detect CMBs. To generate the subsamples for training and test, we
used a sliding window to cover the whole original images from left to right and from top
to bottom. Based on the central pixel of the subsamples, we could decide the target
value. Considering the data imbalance, the cost matrix was also employed. Then, based
on the new model, we tested the classification accuracy, and it achieved 97.71%, which
provided better performance than the state of art methods.

Keywords: DenseNet, CMB detection, transfer learning, cost matrix, deep learning

INTRODUCTION

Cerebral micro-bleeding (CMB) are small chronic brain hemorrhages that can be caused by
structural abnormalities of the small vessels of the brain. According to the recent research reports,
the causes of CMBs also can be some other common reasons, including high blood pressure,
head trauma, aneurysm, blood vessel abnormalities, liver disease, blood or bleeding disorders
and brain tumors (Martinez-Ramirez et al., 2014). It also can be caused by some unusual
etiologies, such as cocaine abuse, posterior reversible encephalopathy, brain radiation therapy,
intravascular lymphomatosis, thrombotic thrombocytopenic purpura, moyamoya disease, infective
endocarditis, sickle cell anemia/β-thalassemia, proliferating angio-endotheliomatosis, cerebral
autosomal dominant arteriopathy subcortical infarcts, leukoencephalopathy (CADASIL), genetic
syndromes, or obstructive sleep apnea (Noorbakhsh-Sabet et al., 2017). The patients suffering from
CMBs can have symptoms where the corresponding area that is controlled by the bleeding area
malfunctions, resulting in a rise in intracranial pressure due to the large mass putting pressure
on the brain and so on. CMBs could be easily ignored as the similar symptoms and signs of the
subarachnoid hemorrhages, unless the patients have more obvious symptoms, such as a headache
followed by vomiting. Those symptoms can eventually become worse or occur suddenly, based on
the distribution and intensity of the CMBs. Patients suffering from CMBs can result in cognitive
impairment, neurologic dysfunction and long-term disability. CMBs could also induce side effects
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from medication or treatments. The worse thing is that the death
is possible and can happen quickly. Therefore, the early and
prompt diagnosis of CMBs is essential and helpful in timely
medical treatment.

Due to the paramagnetic susceptibility of the hemosiderin
(Allen et al., 2000), CMBs can be visualized by T2∗-gradient
recalled echo (GRE) imaging or susceptibility weighted imaging
(SWI). Traditionally, CMBs are manually interpreted based on
criteria including shapes, diameters and signal characteristics
after imaging. However, the criteria were varied as reported
in different studies (Cordonnier et al., 2007), until 2009 when
Greenberg et al. (2009) published the consensus on standard
criteria for CMB identification. However, manual detection
methods involve the human interventions, which can bring
biases. Meanwhile, the manual detection is labor intensive, hard
to reproduce and difficult to exclude the mimics, which can lead
to misdiagnosis.

Therefore, the development of automatic CMB detection is
important and essential for the accurate detection and early
diagnosis of CMBs. Due to the benefits of advanced imaging
technologies, massive computer vision aided systems have been
developed for automatic CMB detection. For example, Ateeq et al.
(2018) proposed a system based on an ensemble classifier. Their
system consisted of three steps: first the brain was extracted,
then the initial candidates were detected based on the filter and
threshold, and finally, feature extraction and classification model
were built to remove the false alarms. Fazlollahi et al. (2015)
proposed using a multi-scale Laplacian of Gaussian (msLoG)
technique to detect the potential CMB candidates, followed by
extracting a set of 3-dimensional Radon and Hessian based
shape descriptors within each bounding box to train a cascade
of binary random forests. Barnes et al. (2011) proposed a
statistical thresholding algorithm to recognize the potential hypo-
intensities. Then, a supervised classification model based on
the support vector machine was employed to distinguish true
CMBs from other marked hypo-intensities. van den Heuvel et al.
(2016) proposed an automatic detection system for microbleeds
in MRIs of patients with trauma based on twelve characteristics
related with the dark and spherical characteristics of CMBs and
the random forest classifier. Bian et al. (2013) proposed a 2D
fast radial symmetry transform (RST) based method to roughly
detect the possible CMBs. Then the 3D region growing on
the possible CMBs was utilized to exclude the falsely identified
CMBs. Ghafaryasl et al. (2012) proposed a computer aided system
based on following three steps: skull-stripping, initial candidate
selection and reduction of false-positives (FPs) by a two-layer
classifier. Zhang et al. (2017) proposed voxel-vise detection based
on a single hidden layer feed-forward neural network with
scaled conjugate gradient. Chen (2017) proposed a seven-layer
deep neural network based on the sparse autoencoder for voxel
detection of CMBs. Seghier et al. (2011) proposed a system named
MIDAS for automatic CMB detection.

All above methods have reached great progress in CMB
detection. However, their detection accuracy and robustness are
still in need of improvement.

Therefore, in this paper, we employed the SWI for CMB
imaging, which was because SWI could provide high resolution

as reported in Haacke et al. (2009) and work as the most sensitive
techniques to visualize CMBs. Considering the limited amounts
of labeled images, and knowledge to recognize representative
characters about the medical images, we considered utilizing
the DenseNet as the basic algorithm for transfer learning.
The reason for this is because the amount of labeled CMB
images is typically very limited, and it is hard to effectively
train a classifier to get high detection accuracy. In summary,
we proposed using transfer learning of DenseNet for CMB
detection based on the collected images, which means we use the
knowledges obtained from training the related tasks by DenseNet
for CMB detection.

The remainder of this paper is organized in a structure as
follows: “Materials and Methods” section describes the method
used in this research, “Transfer Learning” section explains why
we employed the transfer learning, “CMB Detection Based on the
Transfer Learning and DenseNet” section describes the research
materials used in this paper, including the training set and test set,
and also offers the experiment results, and finally, “Discussion”
section provides the conclusion and discussion.

MATERIALS AND METHODS

In recent years, Deep Learning (DL) has achieved great progress
in object recognition (Tong et al., 2019; Xie et al., 2019),
prediction (Yan et al., 2018; Hao et al., 2019), speech analysis
(Cummins et al., 2018), noise reduction (Islam et al., 2018),
monitoring (Li et al., 2018; Wang et al., 2018), medicine (Raja
et al., 2015; Safdar et al., 2018), the recommendation system
(Zhang and Liu, 2014), biometrics (Xing et al., 2017) and
so on. Traditionally, DL consists of multiple layers of non-
linear processing units to obtain the features. The cascaded
layers take the output from their previous layer as input. In
order to explore the potential of DL, many researchers tried
to make the network deeper and wider. However, it suffers
from either exploding or the vanishing gradient problem (VGP).
Therefore, multiple different structures of DL were proposed.
For example, AlexNet, the winner of ImageNet Large Scale
Visual Recognition Competition (ILSVRC) 2012, was proposed
by Krizhevsky et al. (2012) and has the same structure as
LeNet but has max pooling and ReLU non-linearity. VGGNet,
proposed by Karen Simonyan (2015), won the second place
in ILSVRC 2014 and consisted of deeper networks (19 layers)
compared to AlexNet. GoogLeNet, the winner of ILSVRC 2014,
provides a deeper and wider network that incorporates 1 × 1
convolutions to reduce the dimensionality of the feature maps
before expensive convolutions, together with parallel paths with
different receptive field sizes to capture sparse patterns of
correlations in the feature map stacks. ResNet, the winner of
ILSVRC 2015, offers a 152-layer network that introduces a skip
at least two layers or shortcut connections (He et al., 2016).
Huang et al. (2017) proposed DenseNet where each layer takes
the output from all previous layers in a feed-forward fashion
and offers L(L+1)/2 connections for L layers, while traditional
convolution networks with L layers provide L connections.
According to the report in Huang et al. (2017), DenseNet
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can beat the state-of-the-art ResNet structure on ImageNet
classification task.

Considering the outstanding performance of DenseNet, we
proposed employing DenseNet for cerebral microbleed detection
in this paper. The detail of DenseNet was introduced as follows.
However, before providing the illustration of the DenseNet,
we would first introduce the traditional convolution neural
network (CNN) and figure out the difference between CNN
and DenseNet later.

Traditional Convolution Neural Network
The traditional CNN usually includes convolution layer, ReLU
Layer, pooling layer, fully connected layer and softmax layer
(Zeng et al., 2014, 2016a,c, 2017a,b). The functions of different
layers are introduced as follows:

Convolution layer works as the core session of a CNN.
The feature maps are generated via the convolution of
the input with different kernels. Mathematically, it can
be expressed as Figure 1, which shows a toy example of
convolution operation.

Then, following the convolution layer, we have non-linear
activation function, named ReLU, which works to obtain the non-
linear features. The purpose of the ReLU layer is to introduce
non-linearity into the network. The mathematic expression of
ReLU is shown as Eq. 1:

f (x) = x+ = max(0, x) (1)

The pooling layer works by resizing the feature maps spatially
to decrease the number of parameters, memory footprint and to
make the computation less intensive in the network. The pooling
function works on each feature map, the main approaches used
for pooling are max pooling as Eq. 2, average pooling as Eq. 3:

aj = max
i∈Rj

(Mi) (2)

aj =
1
|Rj|

∑
i∈Rj

Mi (3)

In which M stands for the pooling region and Rj represents for
the number of elements within the pooling region.

Fully connected layers will calculate the confidential scores,
which are stored in a volume of size 1× 1× n. Here, n means the
number of categories, and each element stands for class scores.

FIGURE 1 | A toy example of convolution operation in CNN with stride size as
1, in which, the left matrix means the input, the second matrix means the
kernel, and the right matrix stands for the generated feature map after
convolution operation. It is different from the convolution defined in purely
mathematic terms.

Every neuron of the fully connected layer is connected to all the
neurons in the earlier layers.

Structure Revision of the CNN
In the traditional CNN, all layers are connected gradually
as in Eq. 4:

xl = Hl(xl−1) (4)

However, as the network becomes deeper and wider,
the networks may suffer from either exploding or gradient
vanishing. Therefore, researchers proposed different network
structures to overcome this problem. For example, ResNet
revised this behavior by short connection, and the equation is
reformulated as (5).

xl = Hl(xl−1)+ xl−1 (5)

Instead of making the sum of the output feature maps of the
layer with the incoming feature maps, DenseNet concatenates
them sequentially. The expression is reformulated into Eq. 6:

xl = Hl([x0, x1, x2, ..., xl−1]) (6)

In which l means the index of the layer number, H stands for a
non-linear operation and xl stands for the output of the lth layer.

DenseNet
As expressed in Eq. 6, DenseNet introduces straight forward
connections from any layers to all following layers. In other
words, the lth layer receives feature-maps from all previous
l – 1 layers. However, if the feature maps’ size changes,
the concatenation operation is not feasible. Therefore, down-
sampling to change the size of the feature maps are introduced.
In order to make the down-sampling in the structure of DenseNet
possible, multiple densely connected dense blocks are introduced
to divide the network. The layers between the blocks are named
as transition layers that have batch normalization, convolution
and pooling operations, as shown in Figure 2. Figure 2 describes
a case of DenseBlock, in which the layer number is 5 and the
growth rate is set as k. Each layer receives feature maps from
all earlier layers.

For each operation Hl, it generates k feature maps, which is
defined as growth rate. Therefore, the lth layer will have k0 +

k(l− 1) feature maps, and k0 is the number of channels in the

FIGURE 2 | Structure of the DenseBlock (5 layers and each layer takes
feature maps from all previous layers).
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Input

Convolution

Convolution +pooling

Convolution+ pooling

Pooling +Linear

Prediction

CMB

Dense Block 1 Dense Block 2

Dense Block 3

FIGURE 3 | The structure of the DenseNet.

FIGURE 4 | Non-CMB samples.
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FIGURE 5 | CMB samples.

input layer. As the network typically has a large number of inputs,
a 1× 1 convolution is employed as the bottleneck layer before the
3 × 3 convolution layer to reduce the feature maps and improve
the computation efficiency.

To further compress the model to improve the model
compactness, the feature maps are further reduced by the
transition layer. For example, if a dense block generates m
feature maps and the compression factor is set as θ ∈ (0, 1],
then the feature maps will be reduced to bθmc via the followed
transition layer. If θ = 1, the number of feature maps will
be the same. Figure 3 shows the structure of DenseNet,
which is composed of three DenseBlocks, an input layer and
transition layers. The cropped samples are used as the input,
the final layer will tell us whether it is CMB or Non-CMB
in this research.

TRANSFER LEARNING

DenseNet has been widely applied in the medical research. For
example, Gottapu and Dagli (2018) proposed using DenseNet
for Anatomical Brain Segmentation. Khened et al. (2019)

proposed cardiac segmentation based on fully convolutional
multi-scale residual DenseNets. Wang H. et al. (2019) offered
a system for recognition of mild cognitive impairment (MCI)
and Alzheimer’s disease (AD), based on the ensemble of
3D densely connected convolution network. Considering the
limited amounts of labeled training samples, it is far way
from enough to retrain the whole network of DenseNet from
scratch to get a high classification accuracy. Therefore, in this
paper, we proposed transfer learning, which means frozen the
earlier layers and retrain the later layers of DenseNet for
CMB detection task. The structure of DenseNet used here
is DenseNet 201.

In order to make the pretrained DenseNet 201 for CMB
detection feasible, which was a binary classification of
CMB or non-CMB, the fully connected (FC) layer with

TABLE 1 | Dividing of the dataset for training and testing.

Train Test

CMB 58, 847 10000

Non-CMB 56, 572, 536 10000
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FIGURE 6 | Images padded for DenseNet.

1000 neuron was replaced by a new FC layer with 2
neurons. The structure of the remaining part of DenseNet
201 was unchanged.

CMB DETECTION BASED ON THE
TRANSFER LEARNING AND DENSENET

Materials
The subjects used in this research are ten healthy controls and
ten patients of CADASIL. Twenty 3D volumetric images were
obtained from the 20 patients. Then, Software Sygno MR B17 was
utilized to rebuild the 3D volumetric image. Each 3D volumetric
image’s size is uniformly set as 364∗448∗48.

In order to mark the CMBs from the subjects manually,
we employed three neuron-radiologists with more than twenty-
years’ experience. The rules were set as follows: (1) via tracking
the neighbor slices, blood vessels were first excluded, (2) lesions
should be smaller than 10 mm in diameter. The potential
CMBs were labeled as either “possible” or “Definite,” Otherwise,
regarded as non-CMB voxels. In case of the conflictions, we
proposed to obey the rule that the minority should be subordinate
to the majority.

The sample images were generated from the original image.
We applied the sliding window whose size is set as 61 by 61 to
the original image. The border pixels were discarded due to the
fat and brain skull. All the pixels located within a sliding window
were used as one input, and the point located in the center of the
sliding window was used as the target value. It means that if the
central pixel is true or 1, then the target value is 1, otherwise, the

Conv+pooling

FCL Softmax

FIGURE 7 | Flowchart of DenseNet 201.
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target label is set as 0. It is expressed in the Eqs 7 and 8:

I =W(p) (7)

Ou =
{

1, Central pixel p is true (CMB)

0, Central pixel p is false (non− CMB)
(8)

Where I stands for the cropped sample images generated via the
sliding window, p represents for the central pixel, W(p) means
the pixels which centered on pixel p and were located inside the
sliding window, and Ou means the label value. Figures 4, 5 show
the sample of CMB and non-CMB centered images.

The sliding window was supposed to cover the image from left
to right and top to bottom with the stride size as 1. Therefore,
we got the total CMB voxels as 68, 847 and non-CMB voxels as
56, 582, 536. The training and test set was divided as Table 1. We
randomly selected 10000 images for each category of the test, and
the remaining images were used for training.

To make the images suitable for DenseNet, which should be
resized as 224 × 224 × 3, we padded the images with zero.
The preprocessed image sample is shown as Figure 6. Then,
Figure 7 shows the flowchart of the DenseNet, including number
of feature maps generated by each layer.

From Table 1, we can find that the Non-CMB training data
dominates the majority type CMB, which will cause the classifier
more bias toward to the Non-CMB. Therefore, it may cause
difficulties in controlling false positives and false negatives, which
means the model is hard to find the CMB samples. Therefore, in
order to overcome this challenge, we introduced cost matrix (Wu
and Kim, 2010). The cost ratio ct was set as 961 via Eq. 9:

ct = Nnon−CMB/NCMB (9)

In which Nnon−CMB means the number of non-CMB training
samples and NCMB stands for number of CMB training samples.
The reason for why we employ the cost matrix instead of
over sampling or down sampling is mainly because we have
more concerns about the false positives and false negatives,
therefore it is better to highlight the imbalanced learning problem
by using cost matrices instead of creating a balanced data
distribution forcefully.

Experiment Design
The goal of this research is to identify the input image as either
CMB or Non-CMB. In order to achieve this goal, we proposed
using DenseNet 201 as the basic algorithm for transfer learning,
based on the excellent performance of DenseNet on ImageNet
classification task. Section “Materials” stated the materials used
in this research. Based on the original images, we created 68, 847
CMB subsamples and 56, 582, 536 Non-CMB subsamples. 10000
samples were randomly selected as test samples. The remaining
sub-samples were used for training. In order to overcome the
problem of data imbalance, we proposed cost matrix to show
the more concerns in false positive and false negatives. The
experiment is carried on by Matlab on the Windows 10 Operation
System with 2.88 GHz processor and 8 GB memory. The
following experiments were carried out: (1) CMB detection based
on DenseNet. The measurements used here include accuracy,

Convolution+Pooling

Dense Block 1

Transition Layer 1

Dense Block 2

Transition layer 2

Dense Block 3

Transition layer 3

Dense Block 4

FC-2 Layer

Softmax

Classification layer

Batch Normalization

Average Pooling

Input

A

B
C

D

FIGURE 8 | Different cases of transfer learning (the original fully connected
layer with 1000 neurons was replaced by a new fully connected layer with
2 neurons).

TABLE 2 | Confusion matrix of detected CMB and Non-CMB.

Predicted

Actual CMBs Non-CMBs

CMBs (10000) 9777 223

Non-CMBs (10000) 236 9764

sensitivity and specificity. The definition of the measurements
can be found in Zhang et al. (2018b). (2) Different cutting points
of transfer learning. (3) In order to show the performance of
proposed methods, we compared with other state of art work.
Considering the measurements provided in other research, we
only used sensitivity, specificity and accuracy.
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In order to provide better illustration of DenseNet, we added
a flowchart with feature map size, learnable weights of each layer.
As we only noted the size of the width, the length should be
same with the width.

CMB Detection Result Based on
DenseNet
The rebuilt network was composed of four DenseBlocks, one
input layer, three transition layers, one fully connected layer
with two neurons, a softmax layer and a classification layer, as
described in Figure 8.

Table 2 provides the detection result. The correctly detected
CMBs were 9777, and for Non-CMB they were 9764. 236 non-
CMBs were incorrectly detected as CMBs, and 223 CMBs were
wrongly detected as non-CMBs. The sensitivity was achieved as
97.78%, the specificity was 97.64%, the accuracy was 97.71% and
the precision was 97.65%. Above measurements were obtained
based on the average of 10 runs as shown in Table 3.

Comparison to the Different Cases of
Transfer Learning
In order to achieve the best performance of transfer learning,
different cutting points for transfer learning were designed as
shown in Figure 8. Due to the limited subjects, we mainly focused
on retraining the later layers of DenseNet. Therefore, in case A,
the DenseNet 201 except for the last three layers, was used as the
feature extractor for this research, and we retrained the newly
added three layers.

In case B, C, and D, we included extra layers for retraining. For
example, case B retrained the DenseBlock 4, Batch normalization,
Average pooling, Fully connected (FC) layer, softmax layer and

TABLE 3 | Measurements value CMB detection based on transfer learning of
DenseNet (Units: %).

Measurements Sensitivity Specificity Accuracy Precision

R 1 96.69 96.73 96.71 96.72

R 2 97.82 97.87 97.84 97.90

R 3 98.71 98.51 98.61 98.52

R 4 96.71 96.27 96.49 96.29

R 5 96.69 96.19 96.44 96.22

R 6 96.93 96.99 96.96 97.00

R 7 98.44 98.40 98.42 98.39

R 8 98.77 98.58 98.67 98.58

R 9 98.71 98.62 98.67 98.62

R 10 98.30 98.22 98.26 98.22

97.78 ± 0.88 97.64 ± 0.94 97.71 ± 0.90 97.65 ± 0.93

TABLE 4 | Comparison of different cases of transfer learning (Unit: %).

Sensitivity Specificity Accuracy Precision

Case A 97.78 ± 0.88 97.64 ± 0.94 97.71 ± 0.90 97.65 ± 0.93

Case B 97.56 ± 0.83 97.65 ± 0.76 97.60 ± 0.79 97.67 ± 0.76

Case C 97.36 ± 1.05 97.66 ± 0.8 97.51 ± 0.92 97.66 ± 0.82

Case D 97.61 ± 0.63 97.54 ± 0.65 97.58 ± 0.64 97.57 ± 0.65

classification layer. It was implemented via setting the learning
rate to 0 for earlier layers and setting learning rate factor to 10 for
layers to be retrained. Table 4 illustrates the comparison results.

From Table 4, we can find that Case A performed slightly
better than the other three cases in the terms of sensitivity and

FIGURE 9 | Error bar.

TABLE 5 | Comparison to the state of art methods.

Method Sensitivity Specificity Accuracy

SNP+SLFN+LReLU (Zhang
et al., 2018c)

93.05 93.06 93.06

4-layer SAE (Zhang et al., 2016) 93.20 ± 1.37 93.25 ± 1.38 93.22 ± 1.37

7-layer SAE (Zhang et al.,
2018d)

95.13 ± 0.84 93.33 ± 0.84 94.23 ± 0.84

CNN + RAP (Wang et al., 2017) 96.94 97.18 97.18

CNN (Lu et al., 2017) 97.29 92.23 96.05

NBC (Bao et al., 2018) 74.53 ± 0.96 74.51 ± 1.05 74.52 ± 1.00

GA-BPNN (Cloutie, 2018) 72.90 ± 1.38 72.89 ± 1.18 72.90 ± 1.28

CNN-SP (Wang S. et al., 2019) 97.22 97.35 97.28

Our method 97.78 ± 0.88 97.64 ± 0.94 97.71 ± 0.90

FIGURE 10 | Comparison of the state of art methods (Blue means the
sensitivity, red means the specificity, and yellow means the accuracy).
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accuracy. Considering that in medical research, we focus more
on the sensitivity and accuracy than on the other two terms,
we thought Case A provided the best performance among all
the cases. Figure 9 shows the error bar of the measurement
values. From the point of storage consuming, all four cases
take about the same RAM as we did when not using the
precomputation method.

Comparison to the State of Art Work
In order to validate our proposed method, we compared different
state of the art methods, including traditional machine learning
methods and DL methods.

From Table 5, we compared our method with single-hidden
layer feed-forward neural-network (SLFN)+ (leaky) rectified
linear unit, 4-layer sparse encoder, 7-layer sparse encoder,
different layers of CNN, Naive Bayesian Classifier and so on. We
can find that our proposed method offers the best performance.
DenseNet works as a logical extension of ResNet but provides
more compact models and fully uses the features.

Figure 10 shows the bar chart of the comparison of the
state of the state of art methods. It shows that our proposed
method performs slightly better than the current best method,
but largely improved compared to the traditional method naïve
Bayes classifier (NBC).

DISCUSSION

In this paper, we proposed to employ DenseNet to detect
CMBs in patients with CADASIL. DenseNet was proposed by
Huang et al. (2017) and competed the other DL methods for
ImageNet classification task because of its model compactness
and fully used features. DenseNet are quite similar with ResNet,
however, instead of the summation, DenseNet proposed the
concatenation of all feature maps from previous layers, which
encourages the feature reuse, the VGP alleviation, and the
decreased number of parameters.

Therefore, in this paper, we proposed using DenseNet for
CMB detection by supposing CMB detection has similarity with
ImageNet classification. However, because of the data imbalance,
we utilized cost matrix to avoid the model bias toward non-
CMB, which means the model would be hard to find CMBs if
trained under the imbalanced dataset. As there are some other

methods for data imbalance, such as over sampling and down
sampling, we have more concerns about the false negatives or
false positives. Therefore, instead of enforcing the data into
balanced distribution, we employed the cost matrix. In order to
check the best cutting point, we test different cases of transfer
learning and the results are shown in Table 4, however, the
difference is not so obvious. On the other hand, training less
layers can help us save time and decrease the computation cost
if we import the strategy of precomputation.

In the future, we will try to collect more samples and test more
different structures for CMB detection. Meanwhile, the training
cost long term is very high (Zeng et al., 2018), therefore it is
necessary to optimize the algorithm to make the training fast
(Zeng et al., 2016b,d). We will consider other precomputation
and some optimization methods (Zhang et al., 2018a).
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