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Conventionally, brain function is inferred from the magnitude data of the complex-valued

fMRI output. Since the fMRI phase image (unwrapped) provides a representation of brain

internal magnetic fieldmap (by a constant scale difference), it can also be used to study

brain function while providing a more direct representation of the brain’s magnetic state.

In this study, we collected a cohort of resting-state fMRI magnitude and phase data pairs

from 600 subjects (age from 10 to 76, 346 males), decomposed the phase data by group

independent component analysis (pICA), calculated the functional network connectivity

(pFNC). In comparison with the magnitude-based brain function analysis (mICA and

mFNC), we find that the pFNC matrix contains fewer significant functional connections

(with p-value thresholding) than the mFNC matrix, which are sparsely distributed across

the whole brain with near/far interconnections and positive/negative correlations in rough

balance. We also find a few of brain rest sub-networks within the phase data, primarily

in subcortical, cerebellar, and visual regions. Overall, our findings offer new insights into

brain function connectivity in the context of a focus on the brain’s internal magnetic state.

Keywords: magnitude and phase fMRI, independent component analysis (ICA), functional network connectivity

(FNC), functional connectivity sparseness, functional connectivity balance

INTRODUCTION

Phase functional magnetic resonance imaging (fMRI) is an MRI technique dedicated to fMRI
phase data acquisition and post-acquisition processing and analysis. In principle, an fMRI study
produces a timeseries of complex-valued images consisting of pairwise magnitude and phase
components; therefore, the fMRI phase data are generated together with the magnitude data in
an fMRI experiment (at no extra cost). Since the complex-valued fMRI data (magnitude and
phase images in pairs) are formed from the same magnetic source (the internal inhomogeneous
magnetic fieldmap) through intravoxel dephasing signal detection and subsequent complex
modulo/argument calculations (Chen and Calhoun, 2015b), both are useful for brain function
depiction with different representations (in different measurements). In theory, the fMRI phase
data aremore suitable for brain function analysis since phase imaging represents the brainmagnetic
state seen in internal magnetic fieldmaps.
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There is a body of reports on the exploration and exploitation
of phase fMRI for brain function study (Rowe, 2005, 2009; Arja
et al., 2009; Feng et al., 2009; Balla et al., 2014; Bianciardi et al.,
2014; Chen and Calhoun, 2016b; Ozbay et al., 2016). Under
linear imaging conditions, an fMRI phase image represents the
brain internal magnetic field distribution captured at a timepoint
(Chen and Calhoun, 2015b; Chen et al., 2018b). This portrays
a brain magnetic state (a magnetization state in a main field
B0, in preparation for MRI scanning) during brain activity
(Shmueli et al., 2009; Li et al., 2011; Chen and Calhoun, 2013,
2015a; Wang and Liu, 2015).

In theory, the fMRI magnitude signal is calculated from the
complex signal by a nonnegative nonlinearity (e.g., |±1| = 1)
that fails to represent the source of an internal fieldmap (e.g.,
degenerating the signs associated with the bipolar-valued field
distribution). In comparison, the fMRI phase signal is calculated
from the complex MRI signal through a trigonometric operation,
arctan(ϕ), which can be linearly approximated by arctan(ϕ) ≈
ϕ for |ϕ| < 1 (ϕ denotes a phase signal, measured in units
of radian, related to the field value by a constant scale γTE).
Therefore, a phase image is linearly related to the magnetic
field in linear phase fMRI (Haacke et al., 1999; Chavhan et al.,
2009; Chen and Calhoun, 2015b, 2016b). We may infer the
internal fieldmap source from an fMRI phase image under linear
approximation; however, such inverse mapping is not available
from fMRI magnitude data (due to an irreversible magnitude
nonlinearity like |±1|= 1).

The trigonometric arctan(ϕ) gives a good linearization for
a very small ϕ, as mathematically defined by arctan(ϕ) = ϕ

for |ϕ| << 1. In order to maximally reduce the nonlinearity
associated with arctan(ϕ), we adopt an additive perturbation
model, ϕ(t)= ϕ0 ± δϕ(t), to extract the BOLD-only phase signal
(the perturbation term δϕ(t)) from a timeseries of BOLD phase
signals through complex division (aHilbert inner product) (Chen
and Calhoun, 2016b; Chen et al., 2018b). The BOLD-only phase
signal δϕ results in good linear mapping of the source of BOLD-
only magnetic field perturbation by reducing the nonlinearity
associated with arctan(ϕ).

Given a timeseries of fMRI images, we can break down brain
function into a collection of brain subfunctions (subnetworks)
through an independent component analysis (ICA) method
(Calhoun et al., 2001; McKeown et al., 2003; Guo and Pagnoni,
2008; Calhoun and Adali, 2012). Taking advantage of data-
driven multivariate statistics, the ICA method has been
successfully extended to allow population-level group data
analysis (a technique of group ICA) (Calhoun et al., 2001;
Beckmann et al., 2005; Guo and Pagnoni, 2008; Calhoun
and Adali, 2012). Accordingly, we can apply group ICA
to magnitude and phase data separately for brain function
decompositions, as denoted by mICA and pICA (Chen et al.,
2018a). For comparison of mICA and pICA in correspondence,
we constrain the pICA with the magnitude-inferred group

Abbreviations: BOLD, blood oxygenation level dependent; fMRI, functional

magnetic resonance imaging; mICA, magnitude data independent component

analysis (ICA); pICA, phase data ICA; mFNC magnitude-depicted function

network connectivity (FNC); pFNC, phase-depicted FNC.

information and implement group-information-guided
(GIG) pICA (Du and Fan, 2013).

Using mICA and pICA, we then calculate their functional
network connectivity (FNC) matrices (denoted by mFNC
and pFNC) based on the temporal correlation of mICA
and pICA timecourses (Jafri et al., 2008; Arbabshirani and
Calhoun, 2011). For larger population data analysis, we
may discard the insignificant functional connections based
on statistical significance (based on p-value assessment). For
example, a p-value thresholding (<10−10) removes insignificant
connections in mFNC, enhancing identification of significant
whole-brain connections such as sparsity, balance, and near and
far couplings.

We have recently reported on a method of comparing
magnitude and phase-based brain functional connectivity in
the resting state via statistical analysis over 100 subjects
(Chen et al., 2018a). This revealed interesting similarities and
distinctions between mFNC and pFNC. Here, we used a
larger cohort of subject data (N = 600) to analyze the brain
functional connectivity patterns in mFNC and pFNC matrices.
We addressed the following aspects: intra-domain (short-range,
near) and inter-domain (long-range, far) connections, positive
and negative connections, sparseness and nonuniformity of
connection distribution, and robustness and significance of
group-level connections.

METHODS

Data Collection
A collection of 600 subject datasets (in pairs of magnitude and
phase images) were acquired from a cohort of participants (age:
10–76 years, 346 male/254 female) by subject scanning in a
Siemens TrioTim 3T scanner at the Mind Research Network.
Informed consent was obtained for each subject and the subject
scanning protocol was approved by the IRB at the University
of New Mexico. The data were gained from the subjects
anonymously prior to group analysis.

The fMRI experiments were performed with the following
parameter settings: 12-channel coil, GRE-EPI sequence, TE =

29ms, TR = 2 s, flip angle = 75◦, field of view = 240 cm ×

240 cm, matrix size = 64 × 64, voxel size = 3.75mm × 3.75mm
× 4.55mm, slice thickness = 3.5mm, slice gap = 1.05mm,
total slices 33, acquisition time (TA) = 5min, and total volumes
150. Subjects were instructed to keep their eyes open during the
scanning and fixate on a foveally presented cross. We obtained
two groups of fMRI data, using magnitude and phase images in
pairs, with each in a 4D format (64 × 64 × 33 × 150, 3D spatial
and 1D temporal in dimension).

Data Processing
Preprocessing the fMRI magnitude images included removing
the first two timepoints to avoid T1 equilibration effects;
realignment using INRIalign; slice-timing correction using the
middle slice as the reference frame; spatial normalization into
MNI space with resampled isotropic voxels (3 × 3 × 3mm);
and spatial smoothing with a Gaussian kernel (FWHM= 9mm).
Through data processing, each 4D subject data (magnitude and
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phase separately) in 64× 64× 33× 150 format was converted to
53 × 63 × 46 × 148. For fMRI magnitude image preprocessing,
we used the SPM8 automated pipeline (Chen et al., 2018a) as
reported (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/).

Extracting BOLD-Only Phase Signals
The raw phase images were first converted to a range in radian
(–π, π) and denoted by ϕ (bipolarly valued). Then, the phase
series images were subjected to spatial realignment through the
3D affine transformation using the motion correction parameters
(4 × 4 affine transformation) as derived from the magnitude
image realignment in the corresponding magnitude timeseries.
Upon phase timeseries image realignment, a complex division
(Equation A2 in Appendix) was used to extract the temporal
phase changes (BOLD-only phase response) with respect to the
middle frame at the middle timepoint in the series (Chen et al.,
2018b), as denoted by δϕ (bipolarly valued). This calculation is
a time-domain phase-unwrapping technique that can extract the
small temporal phase changes (<< π) buried in phase-wrapped
timeseries signals (Chen and Calhoun, 2016b). Using the phase
image processing, we obtained a 4D phase data δϕ(r,t) for each
subject in a format of 53× 63× 46× 148.

Group mICA and GIG-pICA
The SPM-processed magnitude data were decomposed into
functional networks using a group-level spatial ICA as illustrated
(Chen et al., 2018a) and implemented in the GIFT toolbox
(http://mialab.mrn.org/software/gift/). We decomposed the
group magnitude data into a number of 100 brain subfunctions
(a relatively high model order brain functional ICA), denoted
by mICA. The Infomax spatial ICA algorithm was repeated
10 times in ICASSO (http://www.cis.hut.fi/projects/ica/icasso).
The aggregate spatial maps were estimated as modes of
spatiotemporal ICA(r, t). Subject-specific spatial maps {mICA
j(r)} and timecourses {mICAj(t))} (j = 1, 2, . . . , 600) were
estimated using a back-reconstruction method (Calhoun et al.,
2001; Erhardt et al., 2011). Then, we selected a subset of 50
components (intrinsic connectivity networks) from the 100
plenary by excluding mICAs obviously affected by physiological,
motion, and imaging artifacts as characterized by noncortical
activation in spatial maps and high-frequency fluctuations in
timecourses (Beckmann et al., 2005; Allen et al., 2011, 2014).

The timecourses mICA(t) underwent postprocessing that
included (1) detrending, (2) removing outliers, and (3) low-
pass filtering with a cutoff frequency at 0.15Hz. Finally, the
postprocessed mICA(t) were normalized to have a unit variance
such that the covariance matrices correspond to correlation
matrices (Allen et al., 2014).

Considering the mICA as the brain functional template for
group information guidance, we conducted brain functional
decomposition on the group phase data δϕ using the GIG-ICA
method (Du and Fan, 2013), thus implementing GIG-pICA. We
use the GIG-ICA method for phase data decomposition for two
reasons: (1) facilitating mICA and pICA correspondence and
comparison; and (2) in comparison with the direct ICA phase
data decomposition (in our previous 100-subejct experiment
Chen et al., 2018a) to show the convergence in phase-inferred

features; for example, both pICA methods produce functional
cliques in subcortical region.

The pICA timecourses were then postprocessed in ways
similar to the mICA timecourse postprocessing. As a result, we
obtained a set of 50 pICA components in counterpart to the 50
mICA components.

Group mFNC and Group pFNC Matrices
According to brain structure and functional organization, we
classified the 50 selected mICA components roughly into seven
brain domains based on spatial activation locations, as ordered
by subcortical region (SC(4)), auditory (AUD(2)), sensorimotor
(SM(8)), vision (VIS(10)), cognitive control (CC(14)), default
mode network (DMN(9)), and cerebellum (CB(3)).

An aggregate ICA timecourse was back-reconstructed using
data from 600 subjects to generate the same number of individual
subject ICA timecourses. For each subject, we calculated a
temporal correlation matrix (i.e., producing a subject-specific
FNC matrix). In the results, we obtained 600 single-subject
{mFNCj} and {pFNCj} matrices, j = 1, 2, . . . , 600, for magnitude
and phase data, respectively. We converted the entries in
{mFNCj(n1, n2)} and {pFNCj(n1, n2)} matrices (in size of
50×50×600) to Fisher z-scores (via a Matlab routine atanh(x)).
By averaging the assemblies, we obtained group-level mFNC and
pFNC matrices (in size of 50×50).

Null-Hypothesis Tests on Group mFNC
and pFNC
An entry at (n1, n2) in mFNC(n1, n2) matrix represents a
specific functional connection between subfunction mICAn1 and
subfunctionmICAn2, for n1, n2 = 1, 2, . . . , 50. All the entry values
collected from the 600 subject-specific connections constitute
an assembly of 600 samples. Through a one-sample t-test (on
the null hypothesis that an entry at (n1, n2) in the group-
level mFNC matrix assumes a zero-mean distribution across
the 600 samples {mFNCj}), we obtained a p-value and an H-
rest value. From all of the t-tests on the assembly {mFNCj(n1,
n2), j = 1, 2,. . . , 600, n1, n2 = 1, 2,. . . ,50}, we obtained a p-
value matrix PmFNC (n1, n2) in a value range [0,1] and a H-
test matrix HmFNC(n1, n2) (binary valued {1,0}), in size of 50
× 50. In the same procedure, we obtained a p-value matrix
PpFNC and an H-test matrix HpFNC from the phase data assembly
{pFNCj}. Each entry of the p-value matrix was calculated from
a statistic t-test over the 600 subject-specific FNCs with a
confidence interval. The confidence intervals associated with
the p-value matrix calculation may vary from entry to entry,
which may assume different bounds delimited by positive and
negative values.

The statistical hypothesis test may mistakenly produce some
rejections of null hypothesis (zero mean), which we can control
using the false discovery rate (FDR) through a FDR correction
procedure (Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001, 2005). This is a more powerful method for
correcting FDR for multiple comparisons than the standard
Bonferroni correction. It offers a strong control of the family-wise
error rate (i.e., the probability that one or more null hypotheses
are mistakenly rejected). The FDR correction leads to adjusted
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p-values. We made FDR corrections on PmFNC and PpFNC for a
specified desirable FDR (default p= 0.05).

Based on the binary HmFNC(n1, n2) (H = 1 for zero-
mean rejection, H = 0 for zero-mean accepted at the 5%
level), we excluded the functional connections that have
zero-mean distributions (entries with H = 0). We focused
on the connections in mFNC(n1,n2) whose entries take on
nonzero-mean distributions (determined by H = 1). We edited
pFNC(n1, n2) based on the binary HpFNC(n1, n2).

Numerical Characteristics of mFNC
and pFNC
Based on the FDR-corrected p-value matrices, PmFNC and
PpFNC, we assessed the significance and robustness of the
functional connections through a p-value thresholding as
given by

mFNC<(n1, n2) =

{

mFNC(n1, n2), P
mFNC(n1, n2) <pthresh

0, else

(1a)

pFNC<(n1, n2) =

{

pFNC(n1, n2), P
pFNC(n1,n2) <pthresh

0, else

(1b)

where pthresh denotes a specified p-value (pthresh = 0.05 for the
default statistics significance) and the superscript “<” denotes
a smaller-than p-value thresholding. As pthresh decreases, the
p-value thresholding produces a smaller number of survival
entries ( 6= 0) in mFNC< and pFNC< matrices, representing
the sparsity of higher significant functional connections; high
significant connections are also strong connections.

For comparative pattern analysis of matrices mFNC< and
pFNC<, we expect the following characteristics:

(1) Statistically significant connections through p-value
thresholding in Eq. (1a,1b) with a span of pthresh = {0.05,
10−10, 10−50, 10−100, 10−150, 10−200}.

(2) Positive/negative connections and connectivity balance in
terms of mean(FNC) ± std(FNC) (Chen et al., 2018a). The
connectivity balance can be also be characterized by the entry
number difference between positive count (denoted by #(+))
and negative count (denoted by #(-1)) of signs in mFNC<

or pFNC <.
(3) Intra-domain (near, in a diagonal block) and inter-domain

(far, in an off-diagonal submatrix) connections.
(4) Sparseness and nonuniformity of significant connections.

The sparsity can be numerically characterized by the small
fractions #(+)/1225 and #(-)/1225, where 1225= 50(50-1)/2
is the number of total entries in a symmetrical 50× 50matrix
excluding the self-connections on the diagonal line. The
nonuniformity is visibly inspected in mFNC< and pFNC<

as some submatrices disappear while some other submatrices
persist during the p-value thresholding.

RESULTS

Group mFNC and pFNC
Considering ICA components as coherent brain functional
networks, we calculated the functional network connectivity
matrix by the temporal correlations (Pearson correlations)
among the ICA timecourses. In Figures 1A,B are shown the
magnitude and phase-depicted mFNC and pFNC matrices (in
size 50× 50), as calculated by the average over the subject-specific
{mFNCj(n1, n2)}and {pFNC

j(n1, n2)} matrices, respectively. Note
the 50 mICA components were arranged in seven domains:
SC(4), AUD(2), SM(8), VIS(10), CC(14), DMN(9), and CB(3), as
shown at the left vertical labels in Figure 1A. Correspondingly,
the 50 pICA components were arranged with the same labels
in Figure 1B.

The ICA-decomposed brain subfunctions are distributed over
the brain geometrical space partitioned in seven domains. In
general, the intra-domain connections are short connections,
whereas the inter-domain connections are always long
connections (except for rare inter-domain connections at
the domain boundary). In an FNC matrix, an intra-domain
short-range (near) connection constitutes the on-diagonal
blocks and an inter-domain long-range (far) connection is
located in the off-diagonal regions. In Figure 1, the magnitude
data show strong positive near couplings in the on-diagonal
blocks (Figure 1A), which differs from the phase-depicted loose
connections (Figure 1B).

One Sample t-tests of Group-Level mFNC
and pFNC
The group-level mFNC and pFNCmatrices were calculated using
an average from assemblies {mFNCj} and {pFNCj}, respectively.
The t-test on themFNCmatrix gives rise anH-test matrix HmFNC

and a p-value matrix PmFNC (in size of 50 × 50), as shown
in Figures 2A,C. The averaged confidence interval for PmFNC

is [0.02, 0.06]. Meanwhile, the pFNC t-test gives rise to HpFNC

and PpFNC, as shown in Figures 2B,D. The averaged confidence
interval for PpFNC is [−0.02, 0.02]. Note that the p-value matrices
were displayed in a magnification by log10. The binary H-test
matrices were interpreted as H = 1 for rejecting null hypothesis
(nonzero mean distributions) and H= 0 for true null hypothesis
(zero mean distributions).

In Figure 2C, there are 1,119 entries (H = 1 for significant
connection) and 106 entries (H = 0 for noisy or random
connection) in the H-test matrix HmFNC (50 × 50, with a total
number of 1,225 entries in the upper triangle). In Figure 2D,
there are 1,092 entries (H = 1) and 133 entries (H = 0) in the
H-test matrix HpFNC. The entries with H = 0 usually take on
small values in mFNC and pFNC matrices, which we consider
as noise and omit accordingly (by resetting them to zeros).

Thresholding mFNC and pFNC
We assessed the statistical significance of the functional
connections in FNC matrices based on p-value thresholding
in Equations (1a,b). In Figure 3, the thresholded matrices
(mFNC<) are drawn from p-value thresholding with pthresh =

{0.05, 10−10, 10−50, 10−100, 10−150, 10−200} using the upper
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FIGURE 1 | Brain resting-state subfunction arrangement and functional network connectivity. (A) Magnitude data depiction: a set of 50 mICA components are

classified into seven (7) brain domains {SC(4), AUD(2), MOT(8), VIS(10), CC(14), DMN(9), and CB(3)} and the mFNC matrix (mean ± std: 0.04 ± 0.23); (B) Phase data

depiction: the pICA components are classified into 7 domains and the pFNC matrix (mean ± std: −0.0005 ± 0.18).

triangle portions of the symmetric matrices. For each mFNC<

matrix (after FDR correction), we calculated the following
characteristics: mean ± std, the number of positive couplings
(#(+)), the sum of positive couplings (

∑

(+)), the number of
negative couplings (#(–)) and the sum of negative couplings
(
∑

(–)). The connectivity balance can be characterized as
mean(mFNC<). We can also quantify the functional connectivity
imbalance by the quantity #(+) – #(–) in mFNC< or alternatively
by

∑

(+) –
∑

(–).
Correspondingly, in Figure 4 we show the thresholded pFNC

matrices using the same p-value thresholdings and numerical
characterizations {#(+), #(–),

∑

(+),
∑

(–)} as used formFNC. In
Figure 4E, the subcortical nuclei (SC) reveal significant negative
couplings with VIS and CB, along with significant positive
couplings with CC (p < 10−150).

In Figure 5, we present the magnitude- and phase-depicted
whole-brain connectivity behaviors for significant connections
as determined by p-value thresholding. Specifically, we show
the plots on the numerical characteristics (in terms of mean,
counts of positive and negative connections (#(+), #(–)), and
sums of positive and negative connections (

∑

(+),
∑

(–)) of
mFNC< and pFNC< matrices under p-value thresholding with
pthresh = {0.05, 10−10, 10−50, 10−100, 10−150, 10−200.}. In
Figure 5A,we show the whole-brain connection balance in terms
of mean(mFNC<) and mean(pFNC<), in which a large mean
value indicates a connection imbalance (deviation from balance
0). In Figure 5B, we use the average of whole-brain connection
strength in terms of mean(|mFNC<|) and mean(|pFNC<|), in
which a large value indicates a strong connection. It is noted
that for small mean(mFNC) and mean(pFNC) values (close to
0), we may use the std(mFNC) and std(pFNC) values to quantify
connection strengths instead what was used in (Chen et al.,
2018a). In Figures 5C,D, we show the positive and negative

numbers (#(+) vs. #(–)) in mFNC< and pFNC< matrices with
respect to the p-value thresholding, where the difference #(+)
– #(–) can be used to quantify the whole-brain connection
imbalance. In Figures 5E,F, we also the show the positive
and negative connections in terms of

∑

(+) and
∑

(–) with
respect to pthresh, where the difference

∑

(+) –
∑

(–) can
also be used to evaluate the connection imbalance. Overall,
our experimental results in Figure 5 show in comparison with
fMRI magnitude data usage that the fMRI phase data reveal
more connection balance (mean(pFNC<) < mean(mFNC<))
in Figure 5A, higher connection strength (mean(|pFNC<|) >

mean(|mFNC<|)) in Figure 5B, andmore balance in positive and
negative distributions as determined by a smaller #(+) – #(–) in
Figures 5C,D. and a smaller

∑

(+) –
∑

(–) in Figures 5E,F.

Significant Couplings in mFNC
We used p-value thresholding on mFNC to examine robustness
and significance of the magnitude-depicted brain functional
connections for whole brain space in resting state (Figure 3).
Here, in Figure 6, we see significant connections survived in
a very strong p-value thresholding (p < 10−200, Figure 3F).
Specifically, we show in Figure 6A the functional connections
across the seven domains (MOT(8), CC(14), AUD(2), DMN(9),
SC(4), CB(3), VIS(10) in an arrangement around a circle)
along with links of intra-domain (all are positive, in bright
red), positive inter-domain (in dim red), and negative inter-
domain (in blue). We observed the following aspects: (1) there
are 60 positive connections and 1 negative connection; (2) the
domains (MOT, VIS, DMN) each contain dense intra-domain
connections; (3) there is no inter-domain connection between
(MOT, VIS), (DMN,CC), (DMN, AUD), (DMN, SC), (DMN,
CB), (SC, CB), (AUD, SC), and (AUD, CB); and (4) there is no
intra-domain link in CB. In Figure 6B, we displayed the only
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FIGURE 2 | One-sample t-tests for the assemblies {mFNCn} and {pFNCn} (n = 1,2,…,600). (A,B) The t-test p-value matrices (displayed by a log10 magnification)

using PmFNC(50,50) for {mFNCn} and PpFNC(50,50) for {pFNCn}; (C,D) The null-hypothesis test results (the entries with H = 1 were used for connection

significance analysis).

negative connection survived in p < 10−200 during brain resting
state, which shows the inter-domain connection between (CC,
CB) in a connection strength 0.41 (p = 2 × 10−209). Obviously,
the magnitude depicted high significant connections in Figure 6

(p < 10−200) in resting brain state are nonuniformly distributed
over the brain space: dense connections in VIS, MOT, and DMN,
sparse connections in CC and SC, and no connections within CB.

Significant Couplings in pFNC
In comparison with the most significant connections in
mFNC in Figure 6, we scrutinize the phase-depicted significant
connections in mFNC under the same p-value thresholding
(p-value < 10−200) in Figure 7. We observed the following
aspects: (1) there are a few connections survived in p-value <

10−200 (10 positive connections and 2 negative connections);
(2) there is no intra-domain connections in MOT,CC, AUD,
DMN; (3) there are 2 negative far inter-domain connections
between (CB, SC); (4) there is 1 positive far inter-domain
connection between (CC, SC); (5) there are no inter-domain
connections among {MOT, CC, AUD, DMN, VIS, CB}; and
(6) only SC has inter-domain connections (1 with CC,

2 with CB). In Figure 7B, we displayed the connections
among {SC1(pICA1),SC3(pICA3),CB1(pICA48)}, which assume
2 negative far inter-domain connections and 1 positive near intra-
domain connection. The subcortical subfunction SC1(pFNC1)
is strongly coupled with SC3(pFNC3) with pFNC(1,3) =

0.80 and a high significance (p-value = 8×10−250), which
constitutes a functional clique in the subcortical nuclei. It
seems plausible for the phase data analysis to show that the
subcortical nuclei (consisting of basal ganglia and thalamus)
form a functional clique that acts as a hub in couplings with
other cortical subfunctions in the resting state. This observation
is consistent with our previous report on the functional
subcortical clique observed from a 100-subject rest fMRI
experiment (Chen et al., 2018a).

DISCUSSION

Inferring BOLD-Only Internal Magnetic
Field Perturbation From Phase MRI
The rationale of phase fMRI for brain function study lies
in the fact that we can infer the brain internal magnetic
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FIGURE 3 | (A–F) Significant connections in group mFNC matrix under p-value thresholding with pthresh = {0.05, 10−10, 10−50, 10−100, 10−150, 10−200}. The

numbers of positive and negative connections (denoted by #(+) and #(–) respectively), and the sums of positive and negative connections (denoted by
∑

(+) and
∑

(–)

respectively) were calculated from the survival entries in the pthresh-thresholded matrices (mFNC<).

field distribution from an fMRI phase image under linear
approximation (a small phase angle condition). For reference
convenience, we provide the approximation theory of phase-to-
field inverse mapping in the Appendix. An fMRI phase image
represents a snapshot capture of the brain magnetic state (in
terms of magnetic field distribution) under linear phase fMRI
approximation. A voxel phase signal represents an intravoxel-
average magnetic field value.

As seen in Equation (A3), phase fMRI procures a phase
image ϕ from the MRI quadrature detection by a trigonometric
operation, arctan(ϕ), which is nonlinear in a general setting.
Mathematically, we have a linear approximation, arctan(ϕ) = ϕ

for |ϕ| << 1 radian (a small phase angle condition). Numerical
simulation (Chen and Calhoun, 2015b) has shown that the phase
fMRI nonlinearity (arctan(ϕ)) is weak for large phase angles
(|ϕ| ∼ π rad). In reality, an fMRI phase image always has
phase wrapping due to the dominant phase background (|ϕ0|
> π radian). In practice, an unwrapped phase image is always
assumed to represent the internal magnetic fieldmap with the
associated nonlinearity of large phase angles (|ϕunwrap| > π).

For fMRI data analysis, we extract the dynamic phase
perturbations (δϕ) using a complex-division approach in
Equation (A8), which are considered the BOLD-only phase
response signals during a brain activity. Then we infer the BOLD-
only magnetic field perturbation (δb) by a linear scaling mapping

in Equation (A9). The small phase perturbation (typically |δϕ| <
0.2 radian) ensures a good linear approximation: arctan(δϕ) =
δϕ for |δϕ| << 1. Note that we cannot infer the brain magnetic
fieldmap from magnitude fMRI due to irreversible nonlinearity.

Bipolar-Valued Brain Magnetic Field
Distribution
A magnetic field may assume positive and negative values. For
brain fMRI study, the brain internal magnetic field is from a
brain tissue magnetization in a main field B0. Specifically, this
brain tissue magnetic susceptibility property (denoted by χ)
undergoes a dipole-convolved magnetization in B0 to establish
an inhomogeneous magnetic fieldmap. Due to the spatial
derivative property of the dipole kernel, even a nonnegative
susceptibility distribution (χ ≥ 0) could induce a bipolar-
valued fieldmap (Chen et al., 2018b). The negative signs in
a χ-induced fieldmap are maintained during the forward
phase fMRI, which result in the fieldmap reconstruction by
an inverse mapping from phase to fieldmap. In comparison,
the negative signs are completely suppressed (inverted) in the
fMRI magnitude signals due to its nonnegativeness (Chen and
Calhoun, 2011). In this sense, the phase fMRI provides a
direct, accurate representation of the brain magnetic state for
bipolar-valued magnetic fieldmaps. Nevertheless, the magnetic
fieldmap still differs from the underlying brain tissue magnetic
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FIGURE 4 | (A–F) Significant connections in group pFNC matrix under p-value thresholding with pthresh ={0.05, 10−10, 10−50, 10−100, 10−150, 10−200}. The

numbers of positive and negative connections (denoted by #(+) and #(–) respectively), and sums of positive and negative connections (denoted by
∑

(+) and
∑

(–)

respectively) were calculated from the survival entries in the pthresh-thresholded matrices (pFNC<).

susceptibility map using a 3D dipole convolution (Chen and
Calhoun, 2013), which in principle can be completely resolved
through functional quantitative susceptibility mapping (fQSM)
or functional susceptibility mapping (Balla et al., 2014; Chen
and Calhoun, 2015a, 2016a,c). More accurate brain functional
connectivity analysis using original magnetic susceptibility
source data is an important research in future.

Positive and Negative Functional
Connections
Research has shown positive and negative functional connections
exist among ICA-decomposed brain networks (subfunctions)
(Xu, 2015; Xu et al., 2015), either in the resting state or
in task performance. Most reports on balanced connectivity
(Marino et al., 2005; Fox et al., 2009; Murphy et al., 2009;
Litwin-Kumar and Doiron, 2012; Liu et al., 2015) were based
on fMRI magnitude data analysis in which the negative
magnitude connections (anticorrelations) were reported as
a result of a “de-mean” preprocessing that is prone to
artifactual negative connections. Using bipolar-valued fMRI
phase data, we found more negative connections that cancel
the positive connection(s) to make a balanced network for
the whole-brain functional connectivity without a de-mean
preprocessing (Chen et al., 2018a).

Overall, the phase-depicted balanced brain functional
connectivity draws from the bipolarity of phase signals
(Figure 1B), while magnitude-depicted positively-biased
connectivity stems from the nonnegative magnitude signals
(Figure 1A). These observations are consistent with our previous
report with a 100-subject experiment data analysis (Chen
et al., 2018a). Since the linear inverse mapping from fMRI
phase to magnetic fieldmap maintains the negative signs, the
δb-depicted negative connections come from negative phase
signals and anti-correlations.

Near and Far Functional Connections
The magnitude-based brain functional connectivity study
(Rosenbaum et al., 2017) has shown that nearby neurons
are positively correlated, pairs at intermediate distances are
negatively correlated, and distant pairs are weakly correlated. We
found similar connection patterns in mFNC (Figure 1A): the
on-diagonal positive blocks indicate strong near (intra-domain)
connections, while off-diagonal blocks have negative and small
values indicating weak far (inter-domain) connections.

In comparison, the phase-based brain function connectivity in
pFNC (in Figure 1B) reveals some different patterns. Figure 1B
reveals negative near connections within domains VIS, CC,
and DMN in small and negative entries in the on-diagonal

Frontiers in Neuroscience | www.frontiersin.org 8 March 2019 | Volume 13 | Article 204

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Chen et al. Phase fMRI Sparse Functional Connectivity

FIGURE 5 | Numerical characteristics of mFNC and pFNC under p-value thresholding. (A) mean(mFNC<) and mean(pFNC<) whole-brain network balance;

(B) mean(|mFNC< |) and mean(|pFNC< |) whole-brain network coupling strength; (C) Counts of positive and negative couplings in mFNC<; (D) Counts of positive and

negative couplings in pFNC<; (E) Sums of positive and negative couplings in pFNC<; and (F) Sums of positive and negative couplings in pFNC<.

blocks; also seen are off-diagonal negative and positive blocks
indicating strong far (inter-domain) connections. In particular,
the subcortical subfunctions (SC(4)) show strong negative
connections with both the visual subfunctions (VIS(10)) and the
cerebellum subfunctions (CB(3)), while the VIS(10) are generally
positively connected with CB(3).

Sparseness and Nonuniformity of Brain
FNC
Given a set of ICA-decomposed brain subfunctions, the whole-
brain functional connectivity is numerically characterized in
an FNC matrix (e.g., mFNC from magnitude data and pFNC
from phase data). An entry value in the FNC matrix represents
the correlation between two subfunctions in a range [−1, 1]:
a large value (∼1) indicates a synchrony and a negative sign
an anti-correlation. The entries with small values (∼0) are
largely due to noise (randomness and instability). For brain
function connectivity depiction, we are concerned with the
strong connections (negative or positive) over the brain space
(near or far connections). By omitting the entries in small
values (i.e., via thresholding like Equation 1), we have a small

number of survival entries in the FNC matrix showing the
sparseness (counting entries in a thresholded FNC matrix) and
nonuniformity of their distribution over the brain space.

In our experiment, we had a large number of subject
data (N = 600) for statistical brain function study. Based
on the FNC assemblies {mFNCj} and {pFNCj}, we conducted
t-tests on the group-level functional connections to obtain
p-value matrices, PmFNC and PpFNC, and H-test matrices,
HmFNC and HpFNC, respectively. We omitted the entries in
mFNC on the condition of HmFNC = 0, whereby we suppress
the small insignificant connection values. By using p-value
thresholding in Equation (1a), we see significant connections
as determined by the p-value thresholds (pthresh = {0.05,
10−10, 10−50, 10−100, 10−150, 10−200.})shown in mFNC< (see
Figure 3).There are sparse (in terms of positive and negative
counts) and nonuniform connections (in dense and sporadic
links) in the brain space as pthresh increases (as seen in
Figure 6), for the most significant connections (pthresh =

10−200). Similar sparsity and nonuniformity of phase-depicted
connectivity occurs in pFNC< (Figures 4, 7). Under a specific
p-value thresholding, the pFNC< is sparser than mFNC< (as
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FIGURE 6 | Illustrations of the most significant couplings in mFNC< (p < 10−200). (A) There are 36 intra-domain positive couplings (near, in bright red color) and 18

inter-domain positive couplings (far, in soft red color), and 1 inter-domain negative coupling (far, in blue color). (B) Features of the negative interdomain coupling

mFNC(29, 48).

FIGURE 7 | Illustrations of the most significant couplings in pFNC< (p < 10−200). (A) There are nine (9) intra-domain positive couplings (near, in bright red color) and

one (1) inter-domain positive coupling (far, in soft red color), and two (2) inter-domain negative couplings (far, in blue color). (B) Features of the two negative

interdomain couplings pFNC(1,48) and pFNC(3, 48).
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indicated in #(pFNC< 6= 0) < #(mFNC< 6= 0); for pthresh
< 10−50, pFNC< is more balance than mFNC< in terms of
|#(pFNC<(+) – #(pFNC<(–)| < |#(mFNC<(+) – #(mFNC<(–
)| or |

∑

(pFNC<(+) –
∑

(pFNC<(–)| < |
∑

(mFNC<(+) –
∑

(mFNC<(–)| (see Figure 3 through Figure 5).
We conclude the subcortical nuclei make a functional clique

(with strong intra-domain couplings) that is negatively coupled
with VIS and CB subfunctions (Figure 4) while positively joined
with the strongest couplings.

Significant connections are survived from p-value
thresholding in Equations (1a,b) with a significance level
specified by pthresh. For connection balance analysis in this
particular 600-subject experiment, we suggest the use of a pthresh
< 10−10 (in Figures 3, 4). For connection sparseness analysis,
we may use a very small pthresh to examine a few number of
high significant connections, as demonstrated in Figures 6, 7
for the extreme scenarios with pthresh = 10−200. Comparing
mFNC< (Figure 3) and pFNC< (Figure 4), the pFNC contains a
smaller number of significant connections than mFNC and that
the connections in pFNC are more balanced than those in the
mFNC. In pFNC analysis, the brain resting state contains two
strong negative connections between subcortical nuclei (SC) and
cerebellum (CB) and the sparse intra-domain connections. Thus,
basal ganglia in the SC domain have the strongest and most
significant function connections with CB during brain resting
state. We found one strong negative connection between CB and
CC and other massive intra-domain connections (specifically
#(+)= 60) from the mFNC analysis.

In neuroscience, it is well-established (Alexander et al., 1986;
Amos, 2000; Stocco et al., 2010) that the central subcortex
(primarily basal ganglia and thalamus) plays a “relay station”
for brain functional information traffic, acting as a cohesive
functional unit with strong connections to the cerebral cortex
and other brain areas. Experimental data analysis (Bell and Shine,
2016) suggests the basal ganglia and thalamus are functional
hubs with a core circuit supporting large-scale integration. Our
600-subject experimental results (reported herein) show strong
subcortical functional cliques in the whole-brain resting state,
which agree with the centralized subcortical hubs concept (Bell
and Shine, 2016; Sherman, 2016; Hwang et al., 2017).

CONCLUSION

Our rationale of using fMRI phase data for brain function study
is based on the fact that fMRI phase imaging (unwrapped)
represents the brain internal magnetic field distribution (the
magnetic source for fMRI complex signal formation, the brain
magnetic state at a stage prior to MRI scan and detection). We

can extract the BOLD-only phase perturbation in small phase
change values through calculations of the timeseries of phase
images, thus ensuring a linear scale mapping to BOLD-only
magnetic field perturbation (magnetic source of fMRI). Using
an fMRI dataset from the cohort of 600, we compared the
phase-depicted brain functional connectivity (pFNC) and the
magnitude-depicted connectivity (mFNC) in terms of measures
of positive and negative connections; near and far connections;

sparsity and nonuniformity; and statistical significance (based
one p-value thresholding).

Our experiments (600-subject resting-state phase fMRI) show
the phase fMRI data has a smaller number of significant whole-
brain connections (sparse connection) in the brain resting
state than the magnitude data depiction. Perhaps, the reduced
number of significant connections in phase fMRI is largely
due to the positive and negative cancellation of linear phase
signals. We found the basal ganglia networks (in subcortical
nuclei) have strong negative connections with other brain
regions in a few of the significant connections in the resting
state. These findings are different from the magnitude-depicted
functional connectivity in prevailing positive connections.
Although we cannot prove or disprove due to a lack of
in vivo brain function connection truth, we cannot completely
confirm our findings from phase fMRI data analysis, but
can justify the phase usefulness within the context of linear
phase fMRI.
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