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Alzheimer’s disease (AD), a neurodegenerative diseases (neuro-diseases) which is
prevalent in the elderly and seriously affects the lives of individuals. Many studies have
discussed the relationship between immune system and AD pathogenesis. Here, the
meta-analysis of differentially expressed (DE) genes based on microarray data was
conducted to study the association between AD and immune system. 9519 target
genes of hippocampus in 146 subjects (73 AD cases and 73 controls) from 4 microarray
data sets were compiled and DE genes with p < 1.00E − 04 were selected to conduct
the pathway-analysis. The results indicated that the DE genes were significantly enriched
in the neuro-diseases as well as the immune system pathways.
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INTRODUCTION

Alzheimer’s disease (AD), the common shared and complicated neurodegenerative disorder, is
characterized as functional impairment, progressive cognitive dysfunction, and memory loss in the
elderly (Pedersen, 2010; Hu et al., 2016). It is likely caused by a series of complex interactions of
environmental, lifestyle and genetic factors. About 70% of the risk is believed to be genetic (Girard
et al., 2018). However, the specific genes that contribute to AD are largely unknown and a great deal
of effort has been put into detecting the genetic determinants of AD. There are many methods to
investigate the pathogenesis of AD (Cheng et al., 2016a; Yang et al., 2016; Liang et al., 2018) and we
used meta-analysis of microarray data to explore the differentially expressed (DE) genes associated
with AD (Evangelou and Ioannidis, 2013). Since 2009–2017, large-scale AD studies reported the
related impact of genes such as CLU, BIN1, CR1, MS4A6E/MS4A4, PICALM, EPHA1, CD2AP,
TREM2, DRB1/ HLA-DRB5, SORL1, SLC24A4-0RING3, PTK2B, MEF2C, DSG2, INPP5D, NME8,
FERMT2, CELF1, GAB2, CASS4, and ZCWPW1 (Jiang et al., 2017; Hu et al., 2017a). Recent studies
discovered AD was related to genes including WWC1, ABCA7, APOE, CD33 TRIM22, FOXO3,
PP4R3A, DAPK1 (Christopher et al., 2017; Cheng et al., 2018b; Chung, 2018; Gusareva et al., 2018;
Moreno-Grau et al., 2018). However, some genes like IGF1 and IGFBP3 may not be contacted with
AD (Williams et al., 2017; Hu et al., 2017b, 2018).

Amyloid hypothesis and neurofibrillary tangles have been considered as the most important
pathogenesis of AD in the past decades (Heppner et al., 2015; Cheng et al., 2016b). The
sequences of AD based on amyloid hypothesis are the disposition of the astrogliosis and amyloid-
β peptide, then the presence of neurofibrillary tangles which are largely composed of tau
fragments and hyperphosphorylated tau protein, and eventually the loss of neuronal and synaptic
function. Inflammatory response is also a character of AD and escalates with disease progression
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(Hardy and Selkoe, 2002). The relationship between immune
system and AD has not attracted much attention in until recently.
However, new research suggests that the immune system, a
host defense system, is related with the pathogenesis of AD
(Blasko and Grubeck-Loebenstein, 2003; Cheng et al., 2017). The
importance of immune system pathways for the pathogenesis of
AD is highlighted by the results of this article.

We noted that previous studies of microarray datasets applied
DE genes with different thresholds of significance including a q-
value (false discovery rate) with threshold of 0.2 (Rhodes et al.,
2002), p-value with threshold of 0.01 (Bhargava et al., 2013)
and so on. However, the different threshold value chosen for
DE genes can reflect the different disease models (Dumur et al.,
2004; O’dushlaine et al., 2009). Thus, a significant pathway using
DE genes with a smaller threshold might reflect a role for less
DE genes of larger effects and a significant pathway enriched by
DE genes with a larger threshold may reflect the role of more
DE genes with smaller effects (O’dushlaine et al., 2009; Cheng
et al., 2018a). In this article, the DE genes with the cut-off of
p-value 1.00E−04 were selected to perform the pathway analysis
for exploring the relationship between immune system-mediated
actions and Alzheimer’s disease.

MATERIALS AND METHODS

Data
The microarray database, Gene Expression Omnibus database
(GEO database)1 (Davis and Meltzer, 2007), was searched for
datasets related to AD. Focusing our search on hippocampus
brain of human as objects, we identified four publicly available
microarray datasets of AD. The gene expression data and detail
information about the collecting datasets were available through
GEO accession numbers GSE1297 (Blalock et al., 2004), GSE5281
(Liang et al., 2007, 2008; Readhead et al., 2018), GSE28146
(Blalock et al., 2011), and GSE48350 (Berchtold et al., 2008, 2013;
Astarita et al., 2010; Cribbs et al., 2012; Sarvari et al., 2012; Blair
et al., 2013). Some details about the four microarray datasets of
AD are given below.

Dataset GSE1297 was contributed by Blalock et al. (2004).
The investigation explored gene expression data on hippocampal
brain of nine controls, 22 AD cases and 31 subjects in total.
The participants of this microarray dataset were aged from 65 to
110 years with median age 85 years. The platform of GSE1297 was
Affymetrix Human Genome U133A Array (GPL96). For the aim
of our investigation we used the data of all 31 samples.

Dataset GSE5281 was provided by Liang et al. (2006). It
collected 161 individual brain specimens from three AD Centers
including the Washington University Alzheimer’s Disease
Centers, the Duke University Alzheimer’s Disease Centers and
the Arizona Alzheimer’s Disease Centers. The participants of this
microarray dataset were aged from 61 to 101 years with median
age 79 years. The platform of GSE5281 was Affymetrix Human
Genome U133A Array (GPL570). The study contained gene
expression levels on six brain regions including hippocampus,

1https://www.ncbi.nlm.nih.gov/geo/

posterior cingulate, entorhinal cortex, primary visual cortex,
medial temporal gyrus, and superior frontal gyrus. For the
aim of our study, we used only data on the brain regions
of the hippocampus. The GSE5281 contained 23 samples on
hippocampal brain, of which 10 samples were AD cases and 13
samples were controls.

Dataset GSE28146 was provided by Blalock et al. (2011) for the
aim of exploring the association between AD and the distinction
of gray and white signatures on hippocampus. It collected 30
individual brain specimens including eight controls and 22 AD
cases. The participants of this microarray dataset were aged from
65 to 101 years with median age 86 years. The platform of
GSE28146 was Affymetrix U133 Plus 2.0 array (GPL570). We use
the dataset of 30 samples in total.

Dataset GSE48350 was provided by Berchtold et al. (2014).
The datasets contained gene expression levels on four brain
regions including entorhinal cortex, hippocampus, post-central
gyrus, superior frontal cortex. The participants of this microarray
dataset of AD were aged from 20 to 97 years with median age
69 years. The platform of GSE48350 is Affymetrix U133 Plus 2.0
array (GPL570). For the aim of our analysis, we used only data
on the brain regions of the hippocampus. Detailed information
about the four datasets is presented in Table 1.

We downloaded the series matrix files of the four different
microarray expression profilings and the four datasets on AD
were pre-processed by the authors. We applied log2 transform for
the datasets. R packages including hgu133a.db (Carlson, 2016a)
and hgu133plus2.db (Gautier et al., 2004; Carlson, 2016b) were
used to annotate the datasets. The expression data of the probe
sets corresponding to more than one gene were deleted. If a gene
was mapped by more than one probe set, the average value of
these probe sets was calculated. Then the function MetaDE.merge
of MetaDE package (Gentleman et al., 2004; Wang et al., 2012)
was used to extract the same genes from all studies. After that,
the function MetaDE.filter of MetaDE package was used to filter
out genes with very low gene expression level or small variation
(cutoff = 0.10). Finally, the meta-analysis was conducted on 9519
target genes in 146 samples (73 AD cases and 73 controls) to
explore the relationship between immune system and AD.

Meta-Analysis
Adaptively weighted Fisher’s method was used to detect the DE
genes with p<1.00E−04. Adaptively weighted Fisher’s method

TABLE 1 | Patient and sample characteristics of Alzhemer’s gene expression
datasets.

Characteristics GSE1297 GSE5281 GSE28146 GSE48350

No. of participants 31 23 30 62

Group, AD:Control 22:09 10:13 22:08 19:43

Median age, ye 85 (65–110) 79 (62–101) 86 (65–101) 69 (20–97)

ars (range)

Gender, M:F 13:18 16:07 12:18 32:30

Platforms GPL96 GPL570 GPL570 GPL570

GPL96, affymetrix human genome U133A array; GPL570, affymetrix human
genome U133 Plus 2.0 array.

Frontiers in Neuroscience | www.frontiersin.org 2 January 2019 | Volume 12 | Article 1026

https://www.ncbi.nlm.nih.gov/geo/
https://www.frontiersin.org/journals/neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-12-01026 January 14, 2019 Time: 14:43 # 3

Wang et al. Alzheimer’s Disease and the Immune System

assigned different weight to each individual study:

Ug(ωg) = −
∑k

i=1
ωig ln(pig), ωi = 0 or 1

where i represents the ith genetic study(i = 1, 2, · · · , k), k
represents the number of microarray studies, g represents the
gene g, the p-value in the ith genetic study of gene g is
represented bypig , and assumingpig ∼ unif (0, 1), ωig represents
the specific weight assigned to the ith microarray study of
gene g Thus, Ug(ωg) ∼ Gamma(

∑k
i=1 ωig, 1). Assuming ωg =

(ω1g, ω2g, · · · , ωkg) and W = [ωg |ωig =0 or 1], AW method
searches ωg through W to find the best weights that provide the
minimum final p-value.

Pathway-Based Test
A pathway analysis was conducted based on the DE genes
with thresholds of 1.00E− 04 using a pathway analysis web
tool, the Web-based Gene Set Analysis Toolkit provided by
Zhang et al. (2005). WebGestalt performs enrichment analysis
by incorporating available functional and biological data (Zhang
et al., 2005). Here, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway in WebGestalt was selected to
perform pathway analysis.

RESULTS

The number of DE genes with p<1.00E−04 detected by AW
method was 586 (Supplementary Table 1). The top 10 DE gene
KEGG pathways are listed in Table 2.

The significant pathways were associated with some specific
diseases including Huntington’s disease, AD and Parkinson’s
disease. And these enriched pathways were connected mainly
with the immune system, like Epithelial cell signaling in
Helicobacter pylori infection pathway, Vibrio cholerae infection
pathway, Pathogenic Escherichia coli infection pathway, and
Phagosome pathway. The results of the meta-analysis suggested
that AD is connected with the immune system.

DISCUSSION

The differentially expressed genes with threshold of p<1.00E−04
in the meta-analysis were reported. A pathway analysis in
KEGG of the DE genes detected by AW method was conducted
and the top 10 significant KEGG pathways were reported.
Most of pathways were connected with neuro-diseases and the
immune system. Here, we further compared our investigation
based on the meta-analysis of microarray datasets with other
studies.

Stopa et al. (2018) analyzed six healthy controls and seven
patients of advanced AD using transcriptome-wide Affymetrix
microarrays, and they reported immune system and metabolic
pathways such as cytokine, interferons, cell adhesion, JAK-STAT,
acute phase response, and mTOR pathway. However, Cribbs et al.
reported that the extent of immune gene upregulation in AD was
modest to the robust response apparent in the aged brain (Cribbs
et al., 2012).

Using the DE genes with p<1.00E−04 of meta-analysis
methods, we reported significantly enriched top 10 KEGG
pathways and discovered that the pathways were associated
with neuro-diseases like Huntington’s disease pathway
(hsa05016), Parkinson’s disease pathway (hsa05012), and
Synaptic vesicle cycle pathway (hsa04721). Furthermore,
most DE genes identified by AW methods were enriched
in the immune system including Epithelial cell signaling in
H. pylori infection (hsa05120), Pathogenic E. coli infection
(hsa05130), V. cholerae infection (hsa05110), and Phagosome
(hsa04145).

The infection of H. pylori associated with AD was
investigated using histology for diagnosis (Kountouras
et al., 2006). The study showed that the pathophysiology
of AD was influenced by H. pylori infection through one
of the following mechanisms: (1) H. pylori may produce
reactive oxygen metabolites and lipid peroxides which
accelerate the occurrence of AD (Malaguarnera et al.,
2004). (2) Increasing platelet-leukocyte aggregation and
platelet reactivity (Kountouras et al., 2002). Platelets are

TABLE 2 | Significant pathways by pathway analysis of differentially expressed (DE) genes detected by AW method in KEGG.

PathwayID Pathway name C O E R P-Value FDR

hsa04721 Synaptic vesicle cycle 63 19 2.43 7.81 1.01E-12 3.06E-10

hsa00190 Oxidative phosphorylation 133 24 5.13 4.67 1.69E-10 2.57E-08

hsa05016 Huntington’s disease 193 26 7.45 3.48 1.94E-08 1.96E-06

hsa03050 Proteasome 44 12 1.69 7.06 6.04E-08 4.57E-06

hsa05120 Epithelial cell signaling in
Helicobacter pylori infection

68 14 2.62 5.33 2.22E-07 1.35E-05

hsa05012 Parkinson’s disease 142 19 5.48 3.46 1.90E-06 9.59E-05

hsa05010 Alzheimer’s disease 171 21 6.60 3.18 2.25E-06 9.72E-05

hsa05130 Pathogenic Escherichia coli
infection

55 11 2.12 5.18 6.13E-06 0.000232

hsa05110 Vibrio cholerae infection 51 10 1.96 5.07 1.96E-05 0.000661

hsa04145 Phagosome 154 17 5.94 2.85 8.43E-05 0.002554

The pathways are ordered by their p-values. C, represents the number of reference genes in the category; O, represents the number of genes in the gene set and also in
the category; E, represents expected number in the category; R, represents the ratio of enrichment.
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a key component of amyloid which contributes to AD and causes
the occurrence of senile plaque (Kountouras et al., 2006). (3)
The cell apoptotic process might be influenced by H. pylori and
the cell death has a close relationship with neurodegenerative
diseases (neuro-diseases) such as AD (D’Andrea, 2005). (4)
H. pylori may release a large amount of vasoactive substances
and proinflammatory, such as eicosanoids, cytokines and acute
phase proteins connected with a sea of disorders of the nervous
system including AD (Kountouras et al., 2002). (5) H. pylori
might contribute to down syndrome that drives the early onset
of the neuro-diseases such as AD (Hallam et al., 2000). E. coli has
been found to be closely associated with AD, and E. coli LT and
LT (R192G) have been used as mucosal adjuvants to treat AD in
mice (Lemere et al., 2002). Rheumatoid arthritis is closely related
to AD and anti-inflammatory agents might be beneficial for AD
(McGeer et al., 1996). In this article, we discovered that AD may
be related to H. pylori infection, E. coli infection, Rheumatoid
arthritis through pathway analysis of KEGG. Moreover, we also
found that AD may be related to V. cholerae infection.

In summary, AW meta-analysis method was used to detect
the DE genes with strict threshold of p < 1.00E− 04. The study
reported the top ten significantly enriched pathways of the DE
genes detected by AW method and our results show that these
DE genes are significantly enriched in immune pathways.
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