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The choice of reference for the electroencephalogram (EEG) is a long-lasting unsolved

issue resulting in inconsistent usages and endless debates. Currently, both the average

reference (AR) and the reference electrode standardization technique (REST) are two

primary, apparently irreconcilable contenders. We propose a theoretical framework to

resolve this reference issue by formulating both (a) estimation of potentials at infinity, and

(b) determination of the reference, as a unified Bayesian linear inverse problem, which

can be solved by maximum a posterior estimation. We find that AR and REST are very

particular cases of this unified framework: AR results from biophysically non-informative

prior; while REST utilizes the prior based on the EEG generative model. To allow for

simultaneous denoising and reference estimation, we develop the regularized versions

of AR and REST, named rAR and rREST, respectively. Both depend on a regularization

parameter that is the noise to signal variance ratio. Traditional and new estimators are

evaluated with this framework, by both simulations and analysis of real resting EEGs.

Toward this end, we leverage the MRI and EEG data from 89 subjects which participated

in the Cuban Human Brain Mapping Project. Generated artificial EEGs—with a known

ground truth, show that relative error in estimating the EEG potentials at infinity is

lowest for rREST. It also reveals that realistic volume conductor models improve the

performances of REST and rREST. Importantly, for practical applications, it is shown

that an average lead field gives the results comparable to the individual lead field.

Finally, it is shown that the selection of the regularization parameter with Generalized

Cross-Validation (GCV) is close to the “oracle” choice based on the ground truth. When

evaluated with the real 89 resting state EEGs, rREST consistently yields the lowest

GCV. This study provides a novel perspective to the EEG reference problem by means

of a unified inverse solution framework. It may allow additional principled theoretical

formulations and numerical evaluation of performance.
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INTRODUCTION

The human electroencephalogram (EEG) has been an
indispensable technology for both cognitive and clinical
neuroscience for almost 90 years. Ultrahigh temporal resolution,
low cost, and non-invasiveness single it out as a translational tool
of choice to study the brain. Nevertheless, two main drawbacks
of EEG detract from its ability to localize the brain activity: (i)
spatial blurring due to volume conduction; (ii) the inherent
indeterminacy of potentials measurements which are always
carried out with respect to a given reference (Teplan, 2002).
Spatial blurring is being addressed by advanced source imaging
techniques that however will not be the focus of our attention.
We will rather concentrate on the vexing and still incompletely
resolved “EEG reference problem.” To precisely define this issue,
we note that it is due to the intrinsic nature of EEG recordings
that are the measurement of potential differences between two
sites shown in Figure 1. Ideally, one would like to record the
potentials of an “active electrode” that is only picking up the
activities due to a few brain structures in comparison to a neutral
“reference electrode” with zero activity. One might think that
such a reference electrode could be placed at infinity, yielding the
ideal potentials ϕ∞. However, this would not work in practice,
since this configuration would serve as an antenna, picking
unwanted activity from the environment. Some researchers
therefore experimented with reference electrode placed on
the body so that EEG differential amplimers could eliminate
environmental noise with high common mode rejection ratio.

FIGURE 1 | EEG reference problem. EEG recordings measure the potential differences between active electrodes marked in yellow (only 3 for illustration) and

reference marked in red which may be (A) a point at infinity, (B) an electrode placed on the body, e.g., the base of neck, (C) the cephalic reference (here, Cz), and (D)

average reference: the mean of potentials over all active electrodes. All reference techniques (B–D) attempt to approximate infinity reference in (A). The issue is that all

the proposals results in different EEG waveforms originating the “EEG reference problem.” It should be noted that with the identical source activities j, the different

waveforms (ϕ∞, vBR, vCz,vAR ) could be taken as well as the outcome of different lead fields (K∞, KBR, KCz,KAR).

Unfortunately, because there is no neutral or inactive point upon
the body, these proposals are also inadequate. A physical neutral
reference seems therefore to be out of our reach.

However, the non-neutrality of the reference has
consequences cascading through the following processing
stages, including the final statistical result. In view of the failures
of physical references, attention was turned to the construction
of “virtual” estimators of the neutral references, namely, virtual
estimators of ϕ∞.

One popular virtual estimator is the “average reference” (AR,
Figure 1D), which based on the following logic: (i) the integral
of the electrical potential over a sphere, due to a current source
inside it, is zero (Goldman, 1950; Offner, 1950); (ii) the head can
be approximated as a sphere; (iii) therefore, a neutral reference
may be obtained by summing or averaging the activities of all
electrodes. Re-referencing proceeds by subtracting this average
from all channels. Unfortunately, recent work (Yao, 2017) has
shaken the theoretical foundation of AR: the potential integral
for a realistic head surface is not zero.

A more biophysics-based virtual estimator of ϕ∞ can be
obtained by the reference electrode standardization technique
(REST, Figure 2) which directly estimates the ideal potentials
referenced to a point at infinity (Yao, 2001). REST uses a head
model and equivalent sources to localize source activities, then
project the source activities to electrodes—now with reference
to infinity. Early work on REST was based upon a simple
spherical head model. It was soon shown that EEG power maps
(Yao et al., 2005), ERP peak values and latencies (Li and Yao,
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FIGURE 2 | Diagram of REST. (A) measured EEG potentials vCz with reference to Cz; j and KCz are the actual source activities and the actual lead field with reference

to Cz, respectively; (B) for REST, one first builds the lead field K̂∞ with estimated head model and equivalent sources, then transforms the lead field with reference to

Cz as K̂Cz; with this lead field, one enables to estimate the equivalent source activities ĵ; after, the equivalent source activities are taken the forward calculation through

K̂∞ to ϕ̂∞ which is the approximation of EEG potentials at infinity.

2007) did, in fact, critically depend on the choice of reference.
In a further study, it was shown (Tian and Yao, 2013) that
scalp statistical parametric mapping with REST for audiovisual
stimulus evoked potentials provided closer correspondence
to the source localization by low resolution electromagnetic
tomography than that with AR. These encouraging results about
REST have been bolstered by several simulation experiments.
Using a spherical head model for simulation, Marzetti et al.
(2007) and Qin et al. (2010) indicated that REST led to better
estimates of EEG spectra and coherence than AR. Several papers
unsurprisingly showed that realistic head model for REST gives
superior results for the reconstruction of simulated EEG scalp
topographies (Liu et al., 2015), functional connectivity (Chella
et al., 2016), and bispectral analysis (Chella et al., 2017).

In spite of these suggestive results in favor of REST, there
is still an intense and to a certain extent unresolved debate on
which reference is preferable (Nunez, 2010; Kulaichev, 2016).
The lack of resolution is due to that simulation studies, while
useful, are not enough to demonstrate the superiority of one
reference technique over another. In addition to simulations, the
evidence is needed on which reference achieves the “best fit”
to actual data. The choice of the best model is a well-studied
problem in modern statistics (Robert, 2007) and can be resolved
by model selection criteria that approximates the Bayesian model
evidence (Konishi and Kitagawa, 2008). However, to apply these
techniques, an explicit Bayesian model of the “EEG reference
problem” must be stated. Thus, one of the primal goals for
this study is to uncover a unified estimator of EEG reference
at infinity.

In the current study, we formulate, to our best knowledge
for the first time, the “EEG reference problem” as a generalized
Bayesian inverse problem. One surprising consequence of this
approach is the insight that AR and REST share the same model
and just differ in the prior distribution for the covariance of EEG
potentials at infinity. On the one hand, assuming uncorrelated
activities over electrodes leads to the AR estimator. On the other
hand, if the correlations between electrodes are assumed to be
caused by sources filtered through a volume conductor model,
the resulting estimator is REST.

Our theoretical formulation will allow us to examine different
reference estimators within a common statistical framework. We
note that the REST estimator (Yao, 2001) was originally defined
for the case of exact noise-free. In some situations, this might
be unrealistic, since the scalp EEG may have quite low signal to
noise ratio (Ferree et al., 2001; Lemm et al., 2006; Guruvareddy,
2013; Bigdely-Shamlo et al., 2015). Our framework allows using
regularization technique as a way to accommodate noise in the
data (Phillips et al., 2002, 2005). The regularized version of
REST is developed which we call “rREST.” It is evident that a
regularized version of AR is also possible, which we term as
“rAR.” AR and REST are just the special cases of rAR and rREST
when regularization parameter tends to zero, respectively.

We further investigate the effect of the volume conduction
model on rREST. To avoid the “inverse crime” (Kaipio and
Somersalo, 2007), the volume conduction model used in the
simulation should be different with the one used to generate EEG
potentials. We call this “volume conduction model matching
problem” for REST that may produce the spurious results in
simulation. Although equivalent source models are used for
REST in simulation, the volume conduction model matching
problem still cannot be neglected (Hu et al., 2018). Within this
framework and using extensive simulations, the performances of
AR, REST, rAR, and rREST are compared in terms of the relative
error of estimation of ϕ∞. Additionally, in these simulations,
we explore the performances of the model selection criteria for
selecting the regularization parameter.

Finally, we assess their performances of all the estimators
using real EEG data from 89 subjects with both regularization and
volume conduction matching problem tested exhaustively.

MATERIALS AND METHODS

Unified Reference Estimator
In what follows, we denote scalars with lowercase italic symbols
(e.g., x), vectors with lowercase bold (e.g., x), matrices with
uppercase bold (e.g., X); unknown parameters will be denoted by
Greek letters (e.g., ξ ). Furthermore, 1 is the vector of ones; INe is
aNe byNe identity matrix;N(µ, 6) is the multivariable Gaussian
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distribution with mean vector µ and covariance matrix 6; (·)T is
the transpose of (·); X+ is the pseudo-inverse of X; tr(·) is the
trace of (·); X̂ is the estimation of X; ‖·‖2, ‖·‖F , and ‖·‖M are
the Euclidean norm, the Frobenius norm, and the Mahalanobis
norm, respectively.

General Reference Model
The EEG is always recorded with respect to a time-varying
reference. This is usually modeled as a constant subtracted from
all electrodes at each instant. In the general case, we can consider
that there are two separate reference constants, one for the scalp
EEG signal, and another for the sensor noise (if they come from
distinctly different source). In this case, the online recorded EEG
signal at a given instant is modeled as

v = ϕ − 1× ρ + ε − 1× ζ (1)

where ϕ is the pure EEG signal with the neutral reference over
Ne electrodes, i.e., abovementioned ϕ∞, and its distribution is
N(0,6ϕϕ); ε is the sensor noise with N(0, σ 2INe ); ρ and ζ are
two reference constants of EEG signal ϕ and sensor noise ε ,
respectively.ρ is assumed from a cephalic source, but ζ may come
from either cephalic, non-cephalic or the coupled sources. Due
to the uncertainty of these constants, the reference of v is an
unknown variable. Note that other distributions for ϕ and ε may
be used with our same general framework.

Applying a reference process is just a linear transformation of
EEG data. Formally, it is the pre-multiplication of the reference
transformation matrix with the EEG data. Thus, supposing a
reference transformation matrixH = I− 1fT (Hu et al., 2018), a
referential recording is

vr = Hv = H(ϕ + ε)− (I− 1fT)× 1× (ρ + ζ )

Notably, the equation fT1 = 1 is satisfied for all the unipolar
references, such as monopolar recording references (e.g., Cz, Fz,
Oz, etc.), linked mastoids and average reference.

Thus, the general EEG reference model becomes

vr = Hϕ + e, e = Hε (2)

where r denotes a specific reference. Note that H is a matrix of
the rank as Ne− 1. Thus, the estimate of ϕ is transformed into an
undetermined generalized linear inverse problem.

By means of maximum a posterior estimation (Murphy,
2012), or maximum penalized likelihood estimation (LaRiccia
and Eggermont, 2009), we have the objective function.

l = (vr −Hϕ)T6+
ee(vr −Hϕ)+ ϕ

T6+
ϕϕ

ϕ (3)

After finding the partial derivative of (3) with respect to ϕ , it
follows that

ϕ̂ = (HT6+
eeH+ 6+

ϕϕ
)
+
HT6+

eevr

Referring to the matrix inversion lemma (Hager, 1989; Tarantola,
2005), ϕ̂ is re-expressed as

ϕ̂ = 6ϕϕH
T(H6ϕϕH

T + 6ee)
+
vr (4)

which is taken as the unified Bayesian estimator in reconstructing
EEG potentials at infinity.

To derive the explicit expression of (4), in addition to
assuming 6ee = σ 2HHT, 6ϕϕ is assumed to have one of the
following two different forms.

Uncorrelated Prior

6ϕϕ = α2INe (5)

which means that the EEG potentials ϕ have independent priors
across all the channels; α2 is the mean of variances of the
potentials over each electrode.

Substituting (5), vr = Hv and 6ee = σ 2HHT into (4), it
becomes

ϕ̂ = H+Hv/(1+ σ 2/α2 ) (6)

We show that H+H = INe − 11T/Ne which is the average
reference transforming matrix in the Appendix. Defining the
sensor noise to the scalp EEG signal ratio as nsr1 = σ 2/α2 and
Har = INe − 11T/Ne , (6) is rewritten as

ϕ̂ = Harv/(1+ nsr1) (7)

which we shall call the regularized average reference (rAR). It
is obvious that the usual AR is the special case of rAR when
nsr1 = 0.

Correlated Prior

6ϕϕ = K∞6jjK
T
∞ (8)

which models the EEG potentials across all the channels as
correlated due to the effect of volume conduction on neural
current sources, that is, we assume that ϕ = K∞j; K∞ is the
lead field matrix with infinity reference; j is the primal current
density of the neural current sources with j ∼ N(0,β2INs ); Ns is
the number of neural current sources; β2 is the variance of the
multivariate Gaussian signal j.

(4) is transformed by substituting (8) and definingKr = HK∞

as

ϕ̂ = K∞ · 6jjK
T
r (Kr6jjK

T
r + 6ee)

+
vr (9)

which is the estimator for reconstructing the EEG potentials
at infinity named as the regularized reference electrode
standardization technique (rREST). This process can be
interpreted as processing in two stages,

Stage 1 : ĵ = 6jjK
T
r (Kr6jjK

T
r + 6ee)

+
vr

Stage 2 : ϕ̂ = K∞ ĵ

Frontiers in Neuroscience | www.frontiersin.org 4 May 2018 | Volume 12 | Article 297

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Hu et al. Unified EEG Reference Estimator: rREST

TABLE 1 | EEG reference model, unified estimator and schemes.

General reference model vr = Hϕ + e,e = Hε

Unified reference estimator ϕ̂ = 6ϕϕH
T(H6ϕϕH

T + 6ee)
+
vr

Prior of ϕ 6ϕϕ = α2INe 6ϕϕ = K∞6jjK
T
∞

Solutions ϕ̂ = Harv/(1+ nsr1) ϕ̂ = K∞ · 6jjK
T
r (Kr6jjK

T
r + 6ee)

+
vr

Prior of j 6jj = β2INs 6jj 6= β2INs

Sensor noise zero nonzero zero nonzero nonzero

Reference schemes AR rAR REST rREST

the first one of which is solving the inverse problem with lead
field Kr that has the same reference as the EEG potentials vr
and the second one of which is taking the forward calculation
to reconstruct the EEG potentials with the theoretical neutral
infinity reference. In stage 1, ĵ is the standard form of
solving linear inverse problems and the reference problem,
simultaneously.

Defining the sensor noise to the brain source signal ratio as
nsr2 = σ 2/β2 and plugging 6jj = β2INs , 6ee = σ 2HHT into
(9), it becomes

ϕ̂ = K∞ · KT
r (KrK

T
r + nsr2 ·HHT)

+
vr (10)

which is the solution to reconstruct the EEG potential at infinity
through solving the inverse solution by incorporating the identity
diagonal structure of 6jj. Apparently, REST (Yao, 2001) ϕ̂ =

K∞ · K+
r vr is the special case of rREST when nsr2 = 0 in (10).

For clarity, we summarize the general reference model and
unified reference estimator in Table 1.

Reference Evaluation
Table 1 shows that both AR and REST are special cases of rAR
and rREST if either the sensor noise is supposed to be zero or no
regularization is applied. In this section, after transforming the
general reference model into the standard ridge regression form,
we evaluate the references via statistical model selection criteria.

Standard Regression Form
The objective function (3) of reference estimation is equivalent to
the general ridge regression form (Chung et al., 2014)

ϕ̂(λ) = argmin
ϕ

{
∥

∥vr −Hϕ

∥

∥

2

M
+ λ

∥

∥Lϕ

∥

∥

2

2
} (11)

where λ ≥ 0 is the regularization parameter; L is the
regularization matrix. For convenience, we call the regularization
of λ and L as “parameter regularization” and “structure
regularization,” respectively.

Ridge regression is the name in statistics for Tikhonov
regularization (Hoerl and Kennard, 1970). The difference
between the general and the standard form of ridge regression is
whether the regularizationmatrix L is identity and themisfit term
is the Euclidean norm (Chung et al., 2014). Thus, we redefine
ϕ
′ = Lϕ to make the regularization matrix being identity, and

e′ = DTUTe (decompose HHT = USUT and S+ = DDT)
to transform the Mahalanobis norm of the misfit term as the
Euclidean norm. To the end, the standard ridge regression form is

ϕ̂
′(λ) = argmin

ϕ′

{
∥

∥vr
′ −H′

ϕ
′
∥

∥

2

2
+ λ

∥

∥ϕ
′
∥

∥

2

2
} (12)

with vr
′ = DTUTvr and H′ = DTUTHL+. Then, the posterior

mean of ϕ′ given vr
′ is

ϕ̂
′ = (H′TH′ + λINe )

+
H′Tvr

′ (13)

then, the estimate of ϕ is ϕ̂ = L+(H′TH′ + λINe )
+
H′Tvr

′ which
is equivalent to the formula (10).

Model Selection Criteria
Since ridge regression is a linear estimator (v̂r

′ = Pvr
′) with

P = H′(H′TH′ + λINe )
+
H′T where P is the projection (“hat”)

matrix. The residual sum square error (RSS) is defined as

RSS =
∑Nt

t= 1

∥

∥vrt
′ −H′

ϕ̂t
′
∥

∥

2

2

where vrt
′ and ϕ̂t

′ with subscript t denote vr
′ and ϕ̂

′at the tth(t =
1, · · · ,Nt) time sample, respectively; Nt is the number of time
samples in the whole EEG recording.

Under the standard ridge regression form (12), we explore
three information criteria for the model selection: generalized
cross-validation (GCV) (Chung et al., 2014), Akaike information
criteria (AIC), and Bayesian information criteria (BIC) (Konishi
and Kitagawa, 2008) to compare the reference schemes in
Table 1. To apply these, we define the degree of freedom (DF) as

DF(λ) = tr(P) =
∑Ne

i=1

si

si + λ

where {si} are the eigenvalues ofH
′TH′. Since EEG reference acts

as adding or subtracting a time-varying constant over all sensors
at each instant, this instantaneous effect results in the dynamical
alteration in the temporal domain. To investigate the difference
of references, we extend the model selection criteria from single
instant to the whole recording, approximately. PredefiningNet =

Ne · Nt , GCV, AIC and BIC are expressed as
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GCV(λ) = RSS/(Net − DF)2 (14)

AIC(λ) = Net log(RSS/Net )+ Nt · 2 · DF (15)

BIC(λ) = Net log(RSS/Net )+ Nt · DF · log(Net) (16)

Note that GCV, AIC, and BIC at a single instant are the special
cases of (14–16) with Nt = 1, respectively.

Regularization Parameter
The regularization parameter λ balances the goodness of fitting
(i.e., likelihood) and the prior constraint on the EEG potentials
at infinity. One may try to interactively estimate the hierarchal
Bayesian hyperparameter via iteration (MacKay, 1992; Trujillo-
Barreto et al., 2004). However, this may work for rREST but
poorly for rAR because the noise term will be assimilated into
the pure EEG signal in (6) due to the uncorrelated covariance
prior. Namely, the objective function of AR is non-convex and
it cannot converge to a global or local optimal point. Thus,
we adopt a search strategy to explore how DF, GCV, AIC and
BIC vary with the values of λ (Phillips et al., 2005). The idea
is to plot the DF against λ, as well as GCV, AIC and BIC
against DF. The theoretical solutions (7) and (10), indicate
that the optimal λ is around nsr1 for rAR, and approximates
to nsr2 for rREST, respectively. Since volume conduction acts
as a lowpass spatiotemporal filter, it results in nsr2 ≪ nsr1
(Srinivasan et al., 1998; Stinstra and Peters, 1998; Srinivasan,
1999; Nunez and Srinivasan, 2006). Supposing the intervals of
SNR are [35, 10] dB for rREST, and [30, −10] dB for rAR,
we generate 1,000 values of λ from 1e-3.5 to 1e-1 for rREST,
and from 1e-3 to 10 for rAR, by using sampled logarithm,
respectively.

In the simulation, we can evaluate the reference estimators
with an “oracle” regularization parameter, namely, one for
which the smallest relative error regarding the ground truth.
Additionally, the efficacy of the model selection criteria (GCV,
AIC, and BIC) for selecting the regularization parameter is
evaluated. It will be trickier to find a proper λ with actual EEG
data where the ground truth is unknown. The value with which
one model selection criteria reaches to a global or local minimum
is regarded as the optimal λ chosen by themodel selection criteria
for actual EEG data.

It has been suggested to avoid regularization when applying
REST so as not to lose high-frequency information (Yao, 2001).
Instead, a truncation of singular value decomposition (TSVD)
was proposed to suppress the effect of sensor noise for REST
(Zhai and Yao, 2004). Therefore, we empirically adopt the
recommended truncation parameter 0.05 for REST but use the
model selection criteria for rREST.

Regularization Matrix
The choice of regularization matrix L depends on the prior
covariance structure of the potentials at infinity. Table 1 shows
that the prior covariance structure of ϕ as 6ϕϕ = α2INe for
AR and rAR, and 6ϕϕ = K∞6jjK

T
∞, for REST and rREST,

respectively. Therefore, the choices of L are:

for AR and rAR, Lar = INe

for REST and rREST, Lrt = [(K∞KT
∞)

+
]
1/2

(17)

Several cases of K∞ are detailed in the next section. The degree
of faithful biophysical regularization by Lrt increases from the less
realistic approximation of volume conductor to themore realistic
one.

Volume Conduction Model
For rREST, we study the volume conduction model matching
problem, that is, to what extent, the lead field for rREST may
be different from the actual one that generated the simulated
EEG data or the real EEG recordings. Here, we evaluate several
types of lead fields. The well-known spherical lead field (SLF) is a
frequently adopted standard lead field. The most precise volume
conductionmodel is the individual lead field (ILF)matched to the
structural Magnetic Resonance Image (sMRI) of each subject. We
also evaluate the average lead field (ALF) as a substitute for the
individual lead field. Finally, we evaluate the “sparse individual
lead field” (sILF) for which we switch off the voxels not used in
the simulations. We will use suffixes to distinguish between types
of lead fields.

Spherical lead field (SLF)
Ks
∞, is estimated based on the standard 3-layers concentric

spherical head model comprising of brain, skull, and scalp with
the conductivities being 1, 0.0125, and 1, respectively. For the
spherical head shape, the radii are 1.0, 0.92, and 0.87 for the
scalp surface, outer and inner skull surface, separately. The source
space consists of 2600 discrete dipole sources evenly and radially
distributed on the cortical surface with radius r = 0.86 and
400 discrete dipole sources uniformly located perpendicularly
to the transverse plane with Z = −0.076. Here, the values
of conductivities, radii, and coordinates are not the actual
measurements but the relative ratios of conductivities and radii
between the head layers, and the relative coordinates in the unit
sphere space (Yao, 2001; Hu et al., 2018).

Individual lead field (ILF)
Ki
∞, is defined by normalization as

Ki
∞ = Kiraw

∞ /[tr(Kiraw
∞ Kiraw

∞
T
)]
1/2

where Kiraw
∞ is the raw individual lead field matched to the

ith(i = 1, · · · ,Nb) subject who underwent the EEG recording
in Cuban Human Brain Mapping Project (CHBMP) (Uludag
et al., 2009; Valdés-Hernández et al., 2010; Hernandez-Gonzalez
et al., 2011; Bosch-Bayard et al., 2012). It is estimated by the
finite element method based on the segmented cortical surface
through CIVET pipeline (Yasser Ad-Dab’bagh, 2006) with sMRI.
The cortical surface is formed by 6003 vertices and 11998∗3
faces. In total, 6003 dipole sources are located at the vertices and
activated perpendicularly to the cortical surface, individually. The
normalization allows for comparison across subjects.
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FIGURE 3 | Source activities for EEG simulation. (A) Location of two source patches; (B) activities of two source patches.

Average lead field (ALF)
Ka
∞, is the average of all the normalized ILFs of Nb subjects as

Ka
∞ =

1

Nb

∑Nb

i=1
Ki
∞

Sparse individual lead field (sILF)
Ksi
∞, (for use in simulation) is obtained after transforming ILF as

follows

Ksi
∞ = [Kiraw

∞ ◦Wi]/[tr(K
iraw
∞ ◦WiW

T
i ◦ Kiraw

∞
T
)]
1/2

where ◦ means the matrix elementwise multiplication operation
(i.e., Hadamard product); Wi is a matrix that consists of binary
weights and has the same size with Kiraw

∞ ; the entries at the
columns of un-activated brain sources are zeros and the other
columns are full of ones. In the simulation, the position of two
patches of sources is incorporated into the covariance of the EEG
potentials at infinity for rREST. In place of adopting l0 norm or
l1 norm to sparse the brain electrical source signal j, we set the
entries corresponded to non-activated sources of ILF being zeros
to constrain the brain source signal indirectly.

RESULTS

Simulation
EEG Generation
The simulation scheme is based on the forward equation below,

{

vr = Hϕ +Hε,ϕ = Kiraw
∞ j

SNR = 10log10(α
2/σ 2 )

(18)

where vr is the simulated EEG potentials with unipolar reference;
without loss of generality, the linear combination vector f =

[0, · · · , 0, 1]T with the last entry being one and the others
being zeros; two patches consisting of 150 dipole sources in
j are activated, meeting 4-order bivariate autoregressive model
(Figure 3); SNR is the scalp EEG signal to the sensor noise
variance ratio in dB unit.

With the Kiraw
∞ of 89 subjects from the CHBMP database, the

simulated EEG data of one group is 89 samples ∗58 channels
∗5120 instants. Totally, we generated the dataset A: 4 groups
where the SNR values are different between groups but the same

for all the samples in each group, and the dataset B: one group
where the SNR values are different for all the samples. The
simulation provides the ground truth of EEG potentials with the
neutral reference, thus making it possible to intuitively compare
the performances of references in terms of the relative error
of potentials. For each data sample, the relative error (RE) of
potentials is defined as

RE =
∥

∥ϕ̂ − ϕ

∥

∥

2

F
/
∥

∥ϕ

∥

∥

2

F
(19)

where ϕ denotes the ground truth; ϕ̂ is the EEG potentials
estimated by the references in Table 1.

Relative Error of Reference Estimators
The relative error (RE) is calculated using the simulated dataset
A of 4 groups where the SNR values are 20dB, 8dB, 4dB, and
2dB for each group, respectively. Figures 4A–D show the REs of
the reference estimators, including the lead fields variants (SLF,
ILF, ALF, and sILF) for REST and rREST. Boxplots in black,
green, red, and blue, show the REs of AR, rAR, REST and rREST,
separately. It is evident from the boxplots (Figures 4A–D),
that the REs of regularized references (rAR, rREST) are
always less than that of unregularized references (AR, REST).
Unpaired t-tests were applied to check the differences between
unregularized references (AR, REST) and regularized references
(rAR, rREST). Figure 4E lists the statistical significance levels (p-
values) between AR and rAR, as well as between REST and rREST
with various lead fields tested, separately. Except for the case
between AR and rAR with SNR = 20dB, the p-values all reach
very small values (<1e-7).

With regularization, the decreases of REs from REST to rREST
are more obvious than the decreases of REs from AR to rAR.
Especially, regularization with sILF is much more effective than
SLF, ILF, and ALF. This is not surprising since the sparse prior
information was incorporated into the covariance structure. By
contrast, by the simplest volume conduction model, i.e., SLF, the
REs of rREST seems to be even larger than that of AR, and REST
performs worst among all the references, when SNR = 20 and
8 dB. Comparing the REs by sILF and that of rREST by SLF with
the REs of REST by SLF, we found that structure regularization by
precise covariance seems to be more effective than the parameter
regularization by selecting the optimal λ which led the least
RE among all the tested values of λ . And the REs of rREST
with sILF are the least among all the REs of other references.
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FIGURE 4 | Relative error (RE) of reference estimators. (A–D) The boxplots of REs with SNR = 20, 8, 4, and 2 dB, respectively. Volume conduction model tested for

REST and rREST are spherical lead field (SLF), individual lead field (ILF), average lead field (ALF), and sparse individual lead field (sILF). (E) The p-values of REs

between ordinary references (AR, REST) and regularized references (rAR, rREST) under different SNR and various lead fields, separately.

This means that structure regularization in combination with
parameter regularization will have the best effect. In addition,
injecting higher sensor noise with SNR being from 20 to 2 dB,
the REs of rAR increase from less than 15% to higher than 60%
accordingly, while the REs of rREST with SLF excluded rise from
4.1 to 40%.

These results indicate that: (1) except for the case of AR and
rAR with SNR = 20 dB, AR, rAR, REST, and rREST by using
SLF that roughly approximated the actual volume conduction
model may be not able to reconstruct the EEG signal at infinity
due to the quite large REs; (2) the effects of REST and rREST are
volume conductionmodel dependent; (3) stronger regularization
applied, better effect of rREST obtained; (4) for REST and rREST,
the REs by using ALF seems to be almost same with the REs
by ILF; (5) rAR may not have the effect of denoising. Over all,
AR and rAR may be the alternative option when SNR is very
large (≥20 dB), while rREST with precise volume conduction
model should be the first option to estimate the EEG signal at
infinity.

Model Selection for Estimators With Simulated Data
The model selection is analyzed using the simulated dataset B
where SNR values uniformly distributed in the interval of [5
20] dB are set for the 89 samples to mimic the different SNRs

of subjects in the real EEG recordings. The results summarized
in Figure 5 allow determining the optimal reference via the
model selection criteria. The plotted DF (degree of freedom), RSS
(residual sum square), and the model selection criteria (GCV,
AIC, BIC) are the average of them explored individually over
the 89 data samples with all the regularization parameters λ (i.e.,
LMD) tested. The curves in Figure 5A show how the DF and
GCV vary with the LMDs as well as how the RSS changes with
DF. It is easy to see that the DF of rREST are always smaller
than the DF of rAR. This means that rREST adopts the simpler
model to reconstruct the EEG signal at infinity but employ the
more realistic prior information for regularization than rAR.
The lower RSS of rREST than rAR indicate that the EEG signal
reconstructed by rREST is closer to the truth compared with the
EEG signal restored by rAR. The curves in Figure 5B display
how the model selection criteria (GCV, AIC, BIC) vary with the
DF. Apparently, the model selection criteria values of rREST are
always smaller than them of rAR. The prevalent lower values of
model selection criteria provide the evidence to prefer rREST
over rAR.

Regularization Parameter
For rREST, it is crucial to pick the best regularization parameter,
i.e., the value of λ . Figure 6 displays that, to what extent, the
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FIGURE 5 | Model selection with simulated data. DF, RSS, GCV, AIC, and BIC are the average over the 89 EEG data samples individually simulated with a different

SNR among [5 20] dB. (A), DF and GCV against LMD, and RSS varying with DF; (B), model selection criteria (GCV, AIC, and BIC) against DF. DF, degree of freedom;

RSS, residual sum square; GCV, generalized cross validation; AIC, Akaike information criteria; BIC, Bayesian information criteria; SLF, spherical lead field; ILF, individual

realistic lead field; ALF, the average of realistic lead fields; sILF, sparse individual lead field.

FIGURE 6 | Regularization parameter selection. Each square and the error bar are the mean relative error (mRE) and standard deviation over the 89 data samples

individually simulated with a different SNR among [5 20] dB. (A), The truth where the best λ is picked by the least RE; (B–D), the results where the best λ is selected

by the least GCV, AIC, and BIC values, respectively.

values of λ selected by the model selection criteria (GCV, AIC,
and BIC) are close to the truth, that is, the oracle picked by the
least RE based on the simulated dataset B. Note that the best λ

identified by ground truth and the model selection criteria is in

the individual data sample level rather than in the group level
due to the averaged model selection criteria curves. Comparing
the mean relative error (mRE) and the standard deviations in
Figures 6B–D with those in Figure 6A, GCV is easily found
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FIGURE 7 | The illustration of a real EEG data sample. (A) The electrodes position, (B) the waveform of one epoch.

FIGURE 8 | Model selection with actual EEG. DF, RSS, GCV, AIC, and BIC are the average of them individually explored over the 89 real EEG recordings. (A) DF and

GCV against LMD, and RSS varying with DF; (B), model selection criteria (GCV, AIC, and BIC) against DF. DF, degree of freedom; RSS, residual sum square; GCV,

generalized cross validation; AIC, Akaike information criteria; BIC, Bayesian information criteria; SLF, spherical lead field; ILF, individual realistic lead field; ALF, the

average of realistic lead fields; sILF, sparse individual lead field.

as the best one to select the proper regularization parameter
due to the almost same mRE and standard deviations to the
truth; AIC is worse than GCV since except for the rREST by
using sILF, the regularized reference (rAR, rREST) show the
same or larger mRE and standard deviations than the ordinary

reference (AR, REST); BIC is the worst one to select the proper

regularization parameters because all the regularized references

(rAR, rREST) present the larger mREs and standard deviations

than the ordinary references (AR, REST).

Model Selection for Estimators With Real
Data
We take the EEG of 89 subjects from the CHBMP database
to evaluate the reference estimators. The EEG recordings were
carried out in accordance with the recommendations of Ethics
committees ofMinistry of Public health and CubanNeuroscience
Center with written informed consent from all subjects. The
EEG was acquired with 58 channels, 10–10 electrode placement
system, sampling rate 200Hz, recording period 2.5–5minutes,
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and with the resting-state of “eyes-closed-open” intermittently
conditioned. Figure 7 displays a real EEG data sample. To
compare the performance of references over all subjects, we
normalize the EEG data by

vr = vrawr /
∥

∥vrawr

∥

∥

F

The model selection criteria GCV, AIC, and BIC are calculated
for each subject with the matched ILF, sILF, the identical ALF
and SLF. The mean model selection criteria are averaged over 89
subjects.

To validate the preference of rREST over rAR, a similar
analysis as descried before for simulations regarding performance
is now applied to the realistic resting state EEG dataset of 89
subjects from the CHBMP database. The results in Figure 8

show how the DF (degree of freedom) and GCV (generalized
cross validation) change with the regularization parameter λ

(i.e., LMD) and how the RSS (residual sum square) and model
selection criteria (GCV, AIC, and BIC) vary with the DF.
The plotted DF, RSS, and model selection criteria are the
average of them individually explored over the 89 subjects.
Since the reference transformation matrix H and the limits of
regularization parameter λ (i.e., LMD) are the same as that
in simulation, the curves of DF against LMDs in Figure 8A

are identical to them in Figure 5A. The lower RSS and model
selection criteria curves in Figure 8B confirm, for real data,
our previous findings in simulations, that (1) the EEG signal
reconstructed by rREST has lower RSS than that restored by rAR;
(2) rREST has the smaller values of GCV, AIC, and BIC than
rAR, except for the almost same BIC between rREST and rAR
around DF = 28. Since GCV was found to be the best criteria to
choose the proper regularization parameter λ in the simulation
shown in Figure 6, we suggest adopting GCV to select the value
of λ for each EEG recording in practice when the ground truth
is unknown. The curves in the middle of Figure 8A shows how
GCV varies with the values of λ (i.e., LMDs). For rREST, the
global minimum of GCV occurs around λ= 1e-2 or DF= 10.We
therefore conjecture that for the group analysis, it is possible to
find the best regularization parameter by the lowest GCV which
may offer an empirical example for the possible optimal LMD for
rREST. However, it will be the safest to choose the regularizer
parameter by using GCV for each individual recording as what
we have shown in Figure 6. By contrast, GCV of rAR seems to
be one constant which is caused by the nonconvex solution of
rAR where it is hard to find the proper λ. These results indicate
that the preference of rREST over rAR is validated for real EEG.
Moreover, for rREST, the best regularization parameter can be
picked at the global minimum of GCV curves.

DISCUSSION

Although the reference electrode standardization technique
(REST) was put forward some time ago, its theoretical
underpinnings have not been deeply studied, particularly from
a mathematical statistics perspective. Prior to REST, the average
reference (AR) had been broadly adopted, e.g., in the microstates
analysis (Khanna et al., 2015), and as well offered as the final

solution to “reference electrode problem” in the inverse solutions
(Pascual-Marqui, 1999, 2002, 2007; Pascual-Marqui et al., 2011).
Currently, both AR and REST are the main competing estimators
(Nunez, 2010). Many comparative studies have been carried out,
however, without providing the definitive evidence to prefer one
over another (Qin et al., 2010; Chella et al., 2016, 2017; Lei and
Liao, 2017). The need to settle this issue has been reinforced
recently by the theoretical results of Yao, who demonstrated that
the main assumption of AR—the cancelation of brain potentials
averaged over the scalp is, in general, false (Yao, 2017). However,
it is difficult to decide the reference issue solely by the biophysical
interpretations. Empirical verification of the best reference using
a full statistical model is also essential.

In this study, we propose to view the estimation of the
potentials at infinity and the determination of reference as a
linear inverse problem that can be attacked using well known
Bayesian techniques. To our surprise, both AR and REST are
two special cases with different prior distributions for the
covariance of the EEG potentials referenced to infinity. By
explicitly introduced the sensor noise term into the reference
model, we combined the estimation of the potentials at infinity
with denoising. The formulation, based on maximum a posterior
estimation, leads to the regularized estimators, rAR and rREST.
Finally, recognizing that the reference is a linear inverse problem
leads to the use of model selection criteria to examine several
issues. It is found, for both simulated and actual data, that (1)
regularization is critical to solving the reference problem and
denoising simultaneously; (2) the regularized reference (rAR/
rREST) has a better performance than the ordinary reference
(AR/REST), respectively; (3) rREST outperforms rAR; (4) to
apply rREST to real EEG data, generalized cross-validation is
recommended as an effective measure to select the optimal
regularization parameter. In our opinion, the definitive argument
in favor of rREST is that for 89 resting state EEGs it provides a
smaller Generalized Cross Validation. This is the first empirical
comparison of references using an information criterion that
approximates the Bayesian model evidence.

We have demonstrated that AR is not “the final solution to the
reference electrode problem” (Pascual-Marqui et al., 2011), but
rather a special case of uncorrelated prior and noise-free of the
unified reference estimator. Pascual-Marqui et al derived ARwith
the assumption of exact noise-free, or say, under the condition
that the covariance matrix for the measurement noise is identity.
Before the inverse solution, the reference problem is solved by
the derived AR which is supposed to achieve the best fit for the
reference process. However, in this study, if the reference process
is also involved for the measurement noise but not only for the
EEG signal, AR cannot be derived. Since the inverse solution
does not depend on the reference electrode, both AR and the
monopolar reference can be used to transform the lead fields and
the EEG recordings with the same reference before the inverse
solution. This is described as the stage 1 of the implementation of
rREST following the Equation (9).

REST has attracted attention due to its theoretically sound
basis (Yao, 2001; Kayser and Tenke, 2010; Nunez, 2010).
However, some studies with ordinary REST suggest that it does
not uniformly dominate AR (Yao, 2001; Hu et al., 2018). Though
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ordinary REST was found to be more effective than AR for
vertically oriented and shallow dipole sources, this was not so
for transverse or deep dipoles. These findings, in our perspective,
were due to that the covariance structure for ordinary REST
is derived from the two factors, a spherical volume conductor,
and limiting sources to the equivalent distributed dipoles layer
(Yao and He, 2003), i.e., the sources over the 2D cortical sheet
with radial orientation (Yao, 2001). By contrast, we tested here
more realistic volume conduction models. Also, our simulations
were based on multiple cortical patches. Our results indicate that
more realistic volume conductor and source space do make the
reference estimator better, and that in fact, REST does dominate
AR in all cases.

We emphasize multi-possibilities of source modeling and
restate the conception of the generalized inverse problem. As
REST is a generalized inverse solution, the multipole sources
(Daunizeau et al., 2006) and the general 3D distributed sources
at each grid of brain volume (Michel et al., 2004) can be also
be adopted for REST as well (Yao, 2000). We have shown that
all generalized inverses are not equal and an interesting line of
research will be to explore how different sourcemodel procedures
can be translated into variants of REST.

The volume conduction model matching test showed that
REST and rREST is volume conduction model dependent and
the importance of the adequate volume conduction model. This
is in agreement with the findings of Hu et al. (2018) and Liu
et al. (2015). Liu et al reported that a realistic volume conduction
model is critical to ordinary REST. Hu et al stated that ordinary
REST is volume conduction model dependent but imprecise
or slightly perturbated lead fields does not deteriorate ordinary
REST much. This is in line with our simulation results that better
estimates of both the volume conductor and source lead to better
reference estimates. The result that sILF achieves the least relative
errors among all the volume conduction models tested for rREST
is obvious since the prior sILF matches the forward calculation.
The only point of this simulation is to caution that the prior for
rREST should be as close as possible to the actual. Of course,
this can only be known to an actual approximation. In future, a
promising way to account the uncertainty for a correct prior is to
employ Bayesian Model Averaging (Trujillo-Barreto et al., 2004).

However, it is computational costly to estimate the individual
lead field which requires the subject’s sMRI—something not usual
in many clinical settings. However, we found that the average
lead field achieves the almost same performance as obtained with
the exact individual lead field. This validates the proposal that
approximate head models without individual MRI can be quite
useful (Valdés-Hernández et al., 2009).

A critical point for rREST is to choose the optimal
regularization parameter which has been the topic of intense
research in statistics (Konishi and Kitagawa, 2008). Our
simulations and validation on the real EEG recording suggest that
the generalized cross validation criteria could be a simple and
sensitive procedure to solve this issue. Once again, in practice,
we recommend adopting the generalized cross validation criteria
to select the regularization parameter for each individual EEG
recording.

Main contributions of this paper are:

(1) We propose that reference estimation is a unified Bayesian
linear inverse problem.

(2) This framework explicitly models sensor noise as a part of the
EEG generative model.

(3) AR and REST are shown to be the special cases of the linear
inverse problem, with a spatially independent prior for AR
and a spatially correlated prior for REST due to volume
conduction.

(4) Regularized estimators, rAR and rREST, are developed
to implement reference estimation and denoising
simultaneously.

(5) We adopted the model selection criteria (GCV, AIC, BIC) for
not only to select the hyperparameter but also to compare
model families. GCV was found to be the most useful
indicator.

(6) We propose the average lead field as a practical substitute for
the individual lead field to construct near optimal estimators.

Several extensions of this study are being explored:

• Artifact suppression may be incorporated together with
reference estimation and denoising. For example, outliers can
be eliminated by utilizing a likelihood function designed for
robust statistics (Huber and Ronchetti, 2009).

• More biophysical information may be built into the prior
distributions to more effectively differentiate the EEG signal
from the sensor noise. Particularly, covariance matrices
corresponding to different types of structured sparsity source
models should be examined (Paz-Linares et al., 2017).

• We have dealt only with spatial priors for the covariance
matrix of the EEG. Dynamical priors can easily be
incorporated. Temporal autocorrelations may be modeled as
state space models and estimated via the Kalman filter (Galka
et al., 2004). Alternatively, formulations for the frequency, or
time frequency domain are possible.

• The framework may be also extended to event related
potentials incorporating prior work from our group in this
direction (Carbonell et al., 2004).

CONCLUSION

We state the EEG reference problem as a unified inverse
problem that can be solved via Bayesian techniques. To our
best knowledge, this is a novel approach to the problem. This
formulation allows us to:

• Adopt regularization methods to estimate the potential
referenced to infinity.

• Demonstrate that REST and AR are the special cases of the
unified estimator with different EEG spatial covariance priors.

• Simultaneously carry out denoising as part of the reference
estimation procedure.

• Usemodel selection criteria to determine the optimal reference
estimator. These results can be summarized as:

◦ Regularized references (rREST or rAR) are superior to the
ordinary REST or AR, with rREST having the overall best
performance for both simulations and real data.
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◦ The optimal choice of volume conductor model is the
individual or averaged lead field.

Regularized REST (rREST) may be used in clinical settings, as an
improved estimator of EEG potentials referenced to infinity.
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APPENDIX: DEMONSTRATION THAT
H+H = I − 11T/Ne

Recall fT1 = 1, H = I − 1fT (Hu et al., 2018) which reduces the
matrix rank by one. Keeping same form with the formula (1.2) in
Baksalary et al. (2003), we rewrite

M = A+ bcT, withM = H,A = I, b = − 1, c = f

Referring to the Theorem 1.1 in Baksalary et al. (2003), it follows
that rank(M) = rank(A) − 1, since λ = 1 + cTA+b = 1 +

fT(−1) = 0 and both b and c belong to the column space of
A = I. By utilizing the case (↓) of List 2 in Theorem 2.1 in
Baksalary et al. (2003) , we take

M+M = A+ − δ−1ddT

The formulas in (1.3) and (1.4) from Baksalary et al. (2003) are
d = ATb and δ = dTd. Applying these relations to our problem,
it turns to be

H+H = I− 11T/Ne

which is the classical average reference.
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