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Based on the Hodgkin-Huxley model, the present study established a fully connected

structural neural network to simulate the neural activity and energy consumption of the

network by neural energy coding theory. The numerical simulation result showed that

the periodicity of the network energy distribution was positively correlated to the number

of neurons and coupling strength, but negatively correlated to signal transmitting delay.

Moreover, a relationship was established between the energy distribution feature and the

synchronous oscillation of the neural network, which showed that when the proportion

of negative energy in power consumption curve was high, the synchronous oscillation

of the neural network was apparent. In addition, comparison with the simulation result

of structural neural network based on the Wang-Zhang biophysical model of neurons

showed that both models were essentially consistent.

Keywords: neural energy coding, energy distribution, synchronous oscillation, negative energy, power

consumption curve

INTRODUCTION

Currently, in neuroscience, several conventional encoding theories and decoding technologies are
followed (Amari and Nakahara, 2005; Purushothaman and Bradley, 2005; Natarajan et al., 2008;
Gazzaniga et al., 2009; Jacobs et al., 2009). However, none of these theories and technologies
are well-established globally for analyzing the brain activity (Laughlin and Sejnowski, 2003;
Abbott, 2008; Wang and Zhu, 2016). Our study shows that energy acting as a carrier throughout
all the brain activities provides a novel direction for understanding the cognitive neuroscience
and neural information processing. Both suprathreshold and subthreshold neural activities are
accompanied by energy consumption; however, the relationship between the pattern of brain
energy consumption and perceptual cognition is not yet clarified. From the perspective of global
brain activity, the neural activities which response to environmentally driven demands account for
less than 5% of the brain’s energy budget, leaving the majority devoted to intrinsic neural signaling
(Raichle and Mintun, 2006; Sokoloff, 2008; Zhang and Raichle, 2010). As for the local neuronal
firing, less than 40% of signaling-related energy consumption is for the housekeeping mechanism
and the maintenance of resting potentials of both neuronal and glial cells, while the other is for
the action potentials and postsynaptic potentials (Attwell and Laughlin, 2001; Howarth et al., 2012;
Yu et al., 2017). This highly mismatched ratio of energy consumption implies that an important
mechanism associated with cognitive neural activity underlies the energy consumption of the brain,
but is yet to be elucidated.

The neural activity and operations of the brain obey the principle of minimizing the energy
consumption and maximizing the signal transmission efficiency (Laughlin and Sejnowski, 2003).
And the collaboration of sodium channels and potassium channels contributes substantially to
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energy-efficient metabolism by minimizing the overlap of their
respective ion fluxes (Alle et al., 2009). Owing to these operations,
a novel neural coding theory, termed as neural energy coding,
has been proposed in the field of neuroinformatics in recent
years (Wang et al., 2006, 2008, 2016, 2017; Wang and Wang,
2014; Wang R. et al., 2014; Wang Z. et al., 2014; Yan et al.,
2016). This coding theory states that membrane potential of the
neuron uniquely corresponds to its consumed neural energy,
which enables us to transform the complex and highly nonlinear
spiking pattern of membrane potentials into the distribution
pattern of energy to deal with neural activity (Abbott, 2008;
Wang et al., 2008; Wang and Wang, 2014; Wang R. et al., 2014;
Wang Z. et al., 2014). According to this theory, the neural energy
coding can serve as the foundation for global neural coding
of brain function (Wang et al., 2006; Wang and Zhu, 2016;
Zheng et al., 2016) because of the following reasons: (1) Energy
can be used for analyzing and describing the neuroscientific
experiments at various levels such that the computational results
are no longer mutually unavailable, contradictory, and irrelevant
(Wang and Zhu, 2016). Thus, the neural information can be
expressed as energy at the level of molecule, neuron, network,
cognition, behavior, and their combination such that it can unify
the neural models among various levels. (2) The neural energy
can be combined with spiking pattern of membrane potentials
to resolve the neural information (Wang et al., 2006, 2008, 2016,
2017; Wang and Wang, 2014; Wang R. et al., 2014; Wang Z.
et al., 2014; Kozma, 2016; Yan et al., 2016; Zheng et al., 2016).
(3) Neural energy can describe the interaction of large-scale
neurons referring to the interaction of multiple brain regions
that cannot be achieved by any conventional coding theory
(Wang et al., 2009; Vuksanović and Hövel, 2016; Zhang et al.,
2016; Déli et al., 2017; Peters et al., 2017). (4) Currently, a
simultaneous recording frommultiple brain regions in traumatic
brain injury experiments is challenging. Although EEG andMEG
can sample the neuronal activity from various brain regions, it
is difficult to estimate the cortical interactions based on these
extracranial signals. The main obstacle is the lack of a theoretical
tool to effectively analyze the interaction between cortices in a
high dimensional space (Hipp et al., 2011) and transform the
scalp EEG into cortical potential. Nevertheless, neural energy
resolves this issue (Wang and Wang, 2017). (5) Whether the
neural model is based on a single neuron, neural populations,
networks or behaviors and is linear or nonlinear, their dynamic
response can describe the pattern of neural coding by energy
superposition owing to the scalar property of energy (Wang
et al., 2006, 2008, 2016, 2017; Wang and Wang, 2014; Wang R.
et al., 2014; Wang Z. et al., 2014; Yan et al., 2016; Zheng et al.,
2016). Thus, the global information of functional brain activity
can be acquired, which is not achieved by the other traditional
coding theories. (6) Despite the ever-changing pattern of network
oscillation, the uniquely corresponding relationship between
network oscillations and energy oscillations greatly facilitates
the modeling and numerical analysis of a large scale of neural
networks with large dimensions and strong nonlinearity. This
phenomenon is effectuated by neural energy coding such that the
complex neuroinformatics becomes easy to handle without losing
information.

This coding theory has made several research findings
possible (Wang et al., 2006, 2008, 2016, 2017; Wang and Wang,
2014; Wang R. et al., 2014; Wang Z. et al., 2014; Du et al.,
2016; Wang and Zhu, 2016; Yan et al., 2016; Zheng et al., 2016).
Previously,Wang and Zhang proposed a novel biophysical model
of neurons, which provides the membrane potential function of a
single neuron and the corresponding energy function with their
calculation method (Wang et al., 2006). The comparison with
the Hodgkin–Huxley (H–H) model reveal that both models are
essentially consistent (Wang R. et al., 2017). Subsequently, we
investigated the energy coding of a structural neural network
and captured its energy distribution feature under different
parameters (Wang and Wang, 2014; Wang R. et al., 2014;
Wang Z. et al., 2014). Recently, we applied this novel neural
coding theory to mental exploration by regarding the spatial
distribution of the power of place cells in hippocampus as a
type of neural energy field. The result showed that a nearly
optimal exploration path can be found only by about ten times
of mental exploration. Compared to the conventional studies on
mental exploration, this method of neural energy field gradients
greatly improves the efficiency of mental exploration (Wang
et al., 2016).

In our previous study, the structural network model was
based on the Wang–Zhang biophysical model of neurons (Wang
et al., 2006). Herein, we explore the energy consumption
property of structural neural networks based on the classical
H–H model in order to lay the foundation of neural
energy in the field of computational neuroscience. Then,
according to the dynamic feature that neurons firstly absorb
energy followed by consumption while firing the action
potentials, we propose a vital index defined as the ratio of
cumulatively stored energy to cumulatively consumed energy
in order to quantitatively analyze the synchronization of
neural activity. Moreover, the comparison with the previous
studies (Wang et al., 2006; Wang and Wang, 2014) lay a
theoretical foundation for the future investigation of the global
brain function neural model and large scale global neural
coding.

COMPUTATIONAL MODEL

Energy Consumption of the H–H Neuron
Herein, the classical Hodgkin–Huxley model (Hodgkin and
Huxley, 1990) is used for calculating the energy consumption
of neurons. The equivalent circuit diagram of Hodgkin–Huxley
model is shown in Figure 1. The differential equation is described
as follows:

Cm
dVm

dt
= gl(El − Vm)+ gNam

3h(ENa − Vm)

+ gKn
4(EK − Vm)+ I (1)

Where Cm is the membrane capacitance, Vm is the membrane
potential, ENa and EK are the Nernst potentials of sodium
and potassium ions, respectively, and El is the potential at the
time when the leakage current is zero. In addition, gl is the
leakage conductance, gNa and gK are the maximum conductance
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FIGURE 1 | The equivalent circuit diagram of the Hodgkin–Huxley model.

of sodium and potassium ion channels, respectively. The two
variable conductances are described by the following set of
nonlinear differential equations:











dn
dt

= αn(1− n)− βnn

dm
dt

= αm(1−m)− βmm

dh
dt

= αh(1− h)− βhh

(2)

where:

αn =
0.01(10+ Vm − Vr)

exp
[

((10+ Vm − Vr)/10)− 1
] ;

βn = 0.125 exp(
Vm − Vr

80
);

αm =
0.1(25+ Vm − Vr)

exp
[

((25+ Vm − Vr)/10)− 1
] ;

βm = 4 exp(
Vm − Vr

18
)

αh = 0.07 exp(
Vm − Vr

20
);

βh =
1

exp
[

(30+ Vm − Vr)/10+ 1
]

Vr is resting potential.
The procedure involves the following steps for the neuron firing
action potentials: (1) The postsynaptic neurons are stimulated
by presynaptic neurons, which increases the permeability of the
cell membrane to sodium ions. Then, the sodium ions begin
to flow inward, while the membrane potential approaches the
threshold for the preparation of depolarization (subthreshold
activity); (2) The permeability of the cell membrane to sodium
ions increases further, and the sodium ions flow inward
largely, while the membrane potential increases rapidly
(suprathreshold activity); (3) The permeability of the cell

membrane to sodium ions are weakened, while the permeability
to potassium ions increases such that the potassium ions flow
outward. Then, the membrane potential begins to decrease
after reaching the peak to perform repolarization; (4) The
permeability of the cell membrane to potassium ions increases
further such that they flow outward until hyperpolarized;
(5) The permeability of the membrane to potassium
decreases, and membrane potential increases to the level of
resting.

The flow of ions include active and passive transport across the
membrane. Active transport is that the sodium-potassium pump
consumes ATP to carry in potassium ions and carry out sodium
ions of the membrane, while passive transport is that ions flow
with the driving force of the gradient differences of concentration
and potential (Zheng et al., 2014). Ion diffusion through the ion
channels doesn’t consume biological energy under the effect of
concentration gradient. And the flow of ions under the effect of
potential gradient is actually caused by the work of electric field
force rather than the consumption of ATP. Thus, only the energy
consumed by active transport should be regarded as the biological
energy consumed by the neuron.

Since the energy consumed by active transport can’t be
directly calculated, we firstly consider the energy of the whole
electric circuit of the Hodgkin–Huxley neuron. The electric
energy is accumulated in membrane capacitor and equivalent
batteries generated by Nernst potentials of ions at a particular
moment (Moujahid et al., 2011), which can be expressed as:

Eall(t) =
1

2
CmV

2
m +HNa +HK +Hl

Due to the difficulty of calculating the last three terms, we get the
first order differential of Eall(t) to focus on the electric power:

Pall(t) =
dEall

dt
= Cm

dV

dt
Vm + PNa + PK + Pl

where the last three terms are the power of equivalent batteries
represented by Nernst potentials of ions.
While

Cm
dV

dt
= I − iNa − iK − il,

thus,

Pall(t) = IVm + PNa + PK + Pl − Vm(iNa + iK + il)

in which, IVm is the power of external stimuli, (PNa + PK +

Pl) is the power of the voltage sources represented by the
Nernst potentials, whereas Vm(iNa + iK + il) is the power
consumed by the driving force of the membrane potential
gradient (electric field force), which should be regarded as
the power of passive transport. However, in the course of the
firing action potentials by neurons, if the energy consumed
by the changes in the permeability of the cell membrane is
not considered, then the involved energy includes the energy
provided by surrounding environments, the energy in the
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potential differences between the internal and external cell
membrane, as well as the biological energy (ATP) consumed
by the ions pump. During the transformation of subthreshold
neurons into functional neurons, the sum of these three types
of energy is dynamically equivalent to the total energy in the
circuit system of H–H model. The former two types correspond
to IVm and Vm(iNa + iK + il) in the circuit, respectively. Then,
the power (PNa + PK + Pl) of the voltage source represented by
the Nernst potential is nearly equal to the biological power of the
sodium-potassium pump which is the power consumed by the
neuron. In this process, the sodium-potassium pump continually
transports ions, thereby directly consuming the biological energy
which means that 1 ATP can pump out three sodium ions and
pump in two potassium ions (Attwell and Laughlin, 2001). This
also confirms that the existence of the ion pump helps tomaintain
the Nernst potential (Laughlin et al., 1998) by continuously
transporting ions. As the sodium ions flow inward and the
potassium ions flow outward, the membrane potential goes up
above zero, and the sodium-potassium pump can pump out
sodium ions with the help of potential difference but pump into
potassium ions against potential difference. It can be regarded
as that the voltage source represented by the Nernst potential of
sodium ions is storing energy, while the counterpart of potassium
ions is consuming energy. Consequently, PNa is negative but PK
is positive. The situation about Pl is the same asPK . Therefore, we
can calculate the power consumed by the ion pump through the
power of voltage source represented by the Nernst potential as
below:

P = PNa + PK + Pl = |iKEK | + |ilEl| − |iNaENa| (3)

For an action potential, the neuronal energy consumption can be
calculated by the above equation (Figure 2). All parameter values
in the calculation refer to the experimental values (Hodgkin and
Huxley, 1990) and are shown in Table 1.

FIGURE 2 | The action potential and corresponding power consumption

curve.

The power consumption curve of the neuron can be obtained
as shown in Figure 2 according to Equation (3). At the start
of the action potential, the neuron absorbs some energy from
ATP hydrolysis. Meanwhile, the sodium-potassium pump works
weakly due to a few sodium ions and a great many potassium
ions inside the membrane, thereby consuming merely a small
amount of energy. Thus, the energy absorbed by the neuron is
more than the energy consumed by the sodium-potassium pump
in the initial stage of the action potential, which is reflected by the
negative region in the power consumption curve before the peak
of the membrane potential. As the membrane potential goes up,
there accumulates a large number of sodium ions gradually inside
the membrane and some potassium ions flow outward, which
increases the work demand of the sodium-potassium pump that
can pump out the sodium ions and pump in the potassium
ions to maintain the Nernst potential (Laughlin et al., 1998).
Hence, the power consumption of the neuron begins to change
toward positive and the energy consumption is greatly increased
when the membrane potential reaches the peak, and the peak of
the energy consumption lags behind the peak of the membrane
potential (∼0.4ms), which is consistent with the previous results
(Wang et al., 2006;Wang R. et al., 2014). Importantly, the positive
and negative regions of this power consumption curve have
profound neurobiological significance that they correspond to
the experimental result, which states that the blood flow rises
by about 31% while the accompanying oxygen consumption
increases by only 6% in the stimulation-induced neural activity
(Lin et al., 2010; Tozzi and Peters, 2017).

Structural Neural Network Model
In this study, the connection structure of the neural network
is illustrated in Figure 3. The dynamic characteristics of each
neuron are represented by the H–H model as described
above, and thus, the network structure is strictly defined
neurobiologically. Figure 3 is an example of a fully connected
neural network consisting of 20 excitatory neurons. Since the
scope of this article focused on understanding the energy coding
pattern of the neural network under different parameters, the
neural network connection is simplified to some degree. The
neurons are connected with bidirectional and asymmetrical
coupling strengths. According to the principle of synaptic
plasticity, the statistical data from the experiments demonstrate
that the synaptic coupling strength between the neurons is
uniformly distributed (Rubinov et al., 2011).

TABLE 1 | The parameter values in the calculation.

Ion Nernst Maximum

potential/mV conductance/mS/cm2

Na 55 120

K −72 36

L −50 0.3

Membrane capacitance/µF/cm2 1

Resting potential/mV −60
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FIGURE 3 | The schematic of a fully connected structural neural network.

The coupling strength matrix:

W =













w1,1 w1,2 . . . w1,n

w2,1
. . . w2,n

...
. . .

...
wn,1 wn,2 . . . wn,n













,

wi,j is coupling strength when the ith neuron is coupled to the jth
neuron, and n is the number of neurons in the network.
The network operates as follows:

Iin(t) = W × Q(t − τ )′

I(t) = Iin(t)+ Iext(t) (4)

where I(t) is the sum of stimulated currents to the neuron at
timet, Iin(t) is the interaction between neurons, and Iext(t) is the
external stimulated current to the neuron; Q(t − τ ) = [Q1(t −
τ ),Q2(t − τ ), . . . ,Qj(t − τ ), . . .Qn(t − τ )], indicating the firing
state of each neuron at time t − τ , which assigns the value of
0 at resting and 1 at firing. τ indicates the interval from the
presynaptic neuron firing a spike to the postsynaptic neuron
receiving stimulus, which is the signal transmitting delay. In this
study, its value is subjected to a uniform distribution.

Synchronization Index
In order to quantitatively estimate the synchronization of the
network activity, the traditional synchronization index of the
mean-max correlation coefficient (MCC) and the novel negative
energy ratio were used in this article.

The MCC is defined as follow:

ρmean =

N
∑

i=1
max(Ci,1,Ci,2, . . .Ci,j, . . . ,Ci,n)

N
(i 6= j)

Where Ci,j is the Pearson correlation coefficient between the
membrane potentials of the ith and jth neurons. If the Pearson’s
correlation coefficient between any two neurons is closer to 1, the
synchronization between these two neurons is stronger. Previous
studies have found that if the network reaches a steady state under
the transient stimulus, two or more synchronous oscillation
groups might occur (Wang and Wang, 2014). It can be seen that
the approaching to 1 of MCC denotes that the synchronization
within the oscillation group is salient, and the network coexists
multiple synchronous oscillation groups. On the other hand,
the approaching to 0 of MCC denotes that the synchronization
within the oscillation group is weak and only a subset of neurons
are in a synchronized state.

The negative energy ratio is defined as the ratio of negative
energy to the sum of negative and positive energy consumed by
the network during the period from moment 0 to t; i.e.,

α(t) =
Enegtive

Epositive + Enegtive
× 100%

Enegtive =

n
∑

i=1

∫ t

o
Pi(t) · sgn(−Pi(t))dt

Epositive =

n
∑

i=1

∫ t

o
Pi(t) · sgn(Pi(t))dt

Where Pi(t) is the power consumed by the ith neuron at
time t, and the integration of Pi(t) in [0,t] represents the
energy consumption during this period. sgn(x) is the sign

function which is defined as sgn(x) =

{

1, x > 0
0, x ≤ 0

. Enegtive and

Epositive represent the negative and positive energies, respectively,
consumed by the network in [0,t].

RESULTS AND DISCUSSION

Energy Consumption Property During
Oscillation in Various Parameters
The Energy Consumption Property of the Neural

Network With Different Sizes Under Continuous

Stimulus
Given the fully connected neural network consisting of 20
neurons, the total energy consumed by the overall network and
the spike record under continuous stimulus is shown in Figure 4.

The 20 neurons are numbered from 1 to 20, and the coupling
strength between the neurons is uniformly distributed in [0,
0.5], and the signal transmitting delay is uniformly distributed
in [0.3ms, 1.8ms]. The 1st and 2nd neurons are continuously
stimulated with the intensity of 10µA/cm2 from t =0–450ms.
The left panel in Figure 4 shows the total energy consumed by
the overall network during the simulation, and the right records
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the spike within the first 250ms (the red dot at the coordinate (t,i)
represents the ith firing a spike at timet). Themore streak-like the
record, the stronger the synchronization of the network.

According to the left panel in Figure 4, the total power
consumption curve does not demonstrate a stable periodicity
over time, and the peaks of power consumption differ greatly;
the streak of the spike record is not clear from the right
panel in Figure 4. Taken together, it can be speculated that the
synchronization of the network is weak; however, this is an
intuitive prediction based on the figure and cannot estimate
the synchronization of the network quantitatively. Therefore,
the following two synchronization indexes (the mean-max
correlation coefficient ρmean and negative energy ratio α ) are
used for an enhanced description of the response of the network
under the continuous stimulus.

The number of neurons is increased to 30, 50, 100, and 200
in the network, where the 1st and 2nd neurons are continuously
stimulated with the intensity of 10µA/cm2 from t = 0–450ms.
The total energy consumption and the spike record of the overall
network under continuous stimulus are shown in Figure 5. The
corresponding negative energy ratio and MCC for Figure 5 is
shown in Table 2.

According to Figure 5, when the distribution interval of
the coupling strength and signal transmitting delay between
neurons remains [0, 0.5] and [0.3ms, 1.8ms] unchanged, the
periodicity of the total power consumption curve is increasingly
apparent and the spike record exhibits clear streaks with
the increasing size of the network. This indicates that the
synchronization of neuronal activity is getting stronger. Based on
the statistical results in Table 2, with the increase of the number
of neurons, the corresponding MCC and negative energy ratio
are both increasing monotonically, which shows that the raised
synchronization of the network is in agreement with that in
Figure 5. Combining Figure 5 and Table 2, it can be concluded
that the distribution feature of the power consumption curve is
closely related to the size of the network. That is, in the mutually
coupling neural network under the continuous stimulus, the
synchronization of the network and the periodicity of its power
consumption curve are positively correlated to the number of

neurons. Physiologically, the functional realization of the neural
network depends on the common activity of a large number
of neurons, and the neural population with the same function
generally exhibits a high synchronization, thus the corresponding
energy consumption changes periodically.

Correlation Between Energy Distribution and

Coupling Strength
Given the fully connected neural network consisting of 100
neurons, the signal transmitting delay between neurons is
uniformly distributed in [0.3ms, 1.8ms]. The 1st and 2nd
neurons are continuously stimulated with the intensity of
10µA/cm2 from t = 0–450ms. The total energy consumed
by the overall network and the spike record under continuous
stimulus is shown in Figures 6A–E when the coupling strength
between the neurons is uniformly distributed in [0, 0.05], [0,
0.1], [0, 0.3], [0, 0.5], [0, 1], respectively. The corresponding
negative energy ratio and MCC for Figure 6 is shown in
Table 3.

According to the results of Figure 6 and Table 3, as the
coupling strength between the neurons increases, the periodicity
of the total power consumption curve, MCC, negative energy
ratio, and the synchronization reflected by spike record exhibit
a consistent monotonicity. This indicates that the synchronous
oscillation and energy distribution of the network are closely
related to the coupling strength, that is, the synchronization
of the network under identical conditions (the number of

TABLE 2 | The corresponding negative energy ratio and MCC for Figure 5.

Number of neurons α (%) ρmean

30 1.0453 0.8769

50 1.1452 0.9012

100 1.6556 0.9724

200 2.2379 0.9822

Iext = 10µA/cm2. The coupling strength is uniformly distributed in [0, 0.5]; the signal

transmitting delay is uniformly distributed in [0.3ms, 1.8ms].

FIGURE 4 | Total power consumed by the overall network of 20 neurons and the spike record under continuous stimulus. The coupling strength is uniformly

distributed in [0, 0.5]; the signal transmitting delay is uniformly distributed in [0.3ms, 1.8ms].
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FIGURE 5 | The total power consumption and the spike record of the overall network under continuous stimulus. The number of neurons in (A–D) are 30, 50, 100,

200, respectively. The coupling strength is uniformly distributed in [0, 0.5]; the signal transmitting delay is uniformly distributed in [0.3ms, 1.8ms]. The periodicity of the

total power consumption curve is increasingly apparent and the spike record exhibits clear streaks with the increasing size of the network which indicates the

synchronization of neuronal activity is getting stronger.
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FIGURE 6 | The total power consumption and the spike record of the overall network under continuous stimulus. The distribution interval of the coupling strength in

(A–E) are [0, 0.05], [0, 0.1], [0, 0.3], [0, 0.5], [0, 1], respectively. The number of neurons is 100 and the signal transmitting delay is uniformly distributed in [0.3ms,

1.8ms]. The periodicity of the total power consumption curve and the synchronization of the network are positively correlated to the coupling strength.
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TABLE 3 | The corresponding negative energy ratio and MCC for Figure 6.

Coupling strength α (%) ρmean

[0, 0.05] 0.4296 0.8292

[0, 0.1] 1.0215 0.7942

[0, 0.3] 1.5540 0.9381

[0, 0.5] 1.9046 0.9609

[0, 1] 2.2193 0.9692

Iext = 10µA/cm2. The number of neurons is 100; the signal transmitting delay is uniformly

distributed in [0.3ms, 1.8ms].

neurons and signal transmitting delay remains unchanged) and
the periodicity of its power consumption curve are positively
correlated to the coupling strength. It’s consistent to the
experimental result that the thalamocortical neurons with high-
synaptic-strength exhibited well-synchronized activities during
early sleep but exhibited a weak synchronization during late sleep
due to the decreasing synaptic strength (Esser et al., 2007; Riedner
et al., 2007). Since neural energy consumption reflects the law
of global brain activity, the synchronous oscillation of neural
populations corresponds to the periodic energy consumption of
brain regions. Therefore, the larger the coupling strength, the
more active the brain region and more salient the periodicity of
energy consumption.

Notably, the negative energy ratio is extremely small, and
the corresponding MCC is slightly large when the distribution
interval of the coupling strength is [0, 0.05], which is inconsistent
with the above conclusion. This might be attributed to
the small coupling strength so that some neurons in the
network exhibit subthreshold activities rather than firing spikes,
while other neurons are the opposite that leads to a strong
synchronization within their respective oscillation groups and a
weak synchronization of the overall network. Thus, MCC which
describes the synchronization within the oscillation groups is
slightly large, while the negative energy ratio which describes the
synchronization among the oscillation groups is extremely small.
It’s also clear in spike record from Figure 6 that the firing rate of
neurons increases with the increase of coupling strength, which
is manifested as the shortened oscillation period in the power
consumption curve. This also shows that the neural energy can
encode neural signals.

Correlation Between Energy Distribution and Signal

Transmitting Delay
Given the fully connected neural network consisting of 100
neurons, the coupling strength between the neurons is uniformly
distributed in [0, 1]. The 1st and 2nd neurons are continuously
stimulated with the intensity of 10µA/cm2 from t = 0–450ms.
The total energy consumed by the overall network and the spike
record under continuous stimulus is shown in Figures 7A–D

when the signal transmitting delay between neurons is uniformly
distributed in [0.1ms, 1.6ms], [0.3ms, 1.8ms], [0.5ms, 2.0ms],
[0.7ms, 2.2ms], respectively. The corresponding negative energy
ratio and MCC for Figure 7 is shown in Table 4.

According to the results of Figure 7 and Table 4, as the
signal transmitting delay between neurons approaches 0, the

periodicity of the total power consumption curve becomes
salient. In addition, MCC and negative energy ratio increase
simultaneously, and the spike record exhibits a streak-like
feature. This indicates the close relationship between signal
transmitting delay and synchronous oscillation with the energy
distribution of the network, that is, the synchronization of the
network under identical conditions (the number of neurons and
coupling strength remains unaltered) and the periodicity of its
power consumption curve are negatively correlated to the signal
transmitting delay. Since the signal transmitting delay represents
the lag from the release of excitatory neurotransmitters
by the presynaptic to the postsynaptic neurons receiving
neurotransmitters, in the case of prolonged lag, the correlation of
neuronal activities is weak, thereby affecting the synchronization
activity of the overall network and the periodicity of energy
consumption. The change in signal transmitting delay can also
affect firing rate of the network that the shorter the signal
transmitting delay, the higher the firing rate.

The Relationship Between Network
Parameters and Neural Energy
The Relationship Between the Number of Neurons

and Neural Energy
In order to study the specific relationship between the number
of neurons (30–500) and neural energy, we simulated the neural
network where the coupling strength and the signal transform
delay were distributed uniformly in [0, 0.5] and [0.3ms, 1.8ms],
respectively. The corresponding negative energy ratio and MCC
are shown in Figure 8A of which, each point is obtained as
follows: for the number of neuronsN, simulate any two neurons
in the network with the intensity of 10µA/cm2 from t = 0–
450ms and calculate the negative energy ratio α and MCCρmean.
This process is repeated 5 times for the average ᾱ and ρmean as
vertical coordinates corresponding to N neurons in Figure 8A.
Figure 8B is the result of the structural neural network based on
the Wang–Zhang biophysical model in the previous study.

According to Figure 8A, a monotonous relationship occurs
between the number of neurons and the negative energy ratio
with MCC that these two synchronization indexes are elevated
with the increasing number of neurons, thereby indicating
the increasingly synchronous oscillation of the network. This
phenomenon suggests that the energy coding is also capable
of representing the network activity synchronization and is
highly consistent with the traditional measure of the correlation
coefficient. Physiologically, the synchronous oscillation of the
network consisting of a large number of neurons requires a
high energy supply which means more energy storage, and
the negative energy ratio reflects the stored energy in the
network activity; hence, it can also reveal the state of network
synchronization similar to the conventional measure of the
correlation coefficient. However, the curve of MCC achieves
saturation early, which is caused by the saturated synchronization
of the network when the number of neurons is increased to
100, while the saturation for the curve of negative energy ratio
occurs after N > 400. Therefore, the analysis of energy coding is
superior to that of correlation coefficient. The slower tendency of
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FIGURE 7 | (A) The total power consumption and the spike record of the overall network under continuous stimulus. The distribution interval of the signal transmitting

delay in (A–D) are [0.1ms, 1.6ms], [0.3ms, 1.8ms], [0.5ms, 2.0ms], [0.7ms, 2.2ms], respectively. The number of neurons is 100 and the coupling strength is

uniformly distributed in [0, 1]. The periodicity of the total power consumption curve and the synchronization of the network are negatively correlated to the signal

transmitting delay.
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TABLE 4 | The corresponding negative energy ratio and MCC for Figure 7.

Signal transmitting delay (ms) α (%) ρmean

[0.1, 1.6] 2.2244 1.3674

[0.3, 1.8] 1.9132 0.9648

[0.5, 2.0] 1.8743 0.8989

[0.7, 2.2] 1.3674 0.7498

Iext = 10µA/cm2, the number of neurons is 100; the coupling strength is uniformly

distributed in [0, 1].

saturation for negative energy ratio enables it to distinguish the
number of neurons in the network effectively. The comparison
with the result based on the Wang–Zhang biophysical model
(Wang et al., 2006; Wang and Wang, 2014) shows that the
network property displayed by both neuronal models is nearly
consistent despite the difference in the computational values due
to intrinsic differences between the two models. In addition, the
simulated network based on the H–H model consists maximally
500 neurons due to computational complexity.

The Relationship Between Coupling Strength and

Neural Energy
Given the fully connected neural network consisting of
100 neurons and the signal transmitting delay uniformly
distributed in [0.3ms, 1.8ms], we simulated the neural network
with different distribution intervals of coupling strength and
calculated the corresponding negative energy ratio as well as
MCC. Figure 9A demonstrates the specific relationship between
the coupling strength and neural energy. Each point in Figure 9A
is obtained as follows: for each distribution interval of the
coupling strength [0,x] (x take totally 60 values as 0.01, 0.02,. . . ,
0.20, 0.22, . . . 1 that represents the horizontal coordinate of
corresponding point), any two neurons in the network are
stimulated with the intensity of 10µA/cm2 from t = 0–450ms
and the negative energy ratio α and MCC ρmean were calculated.
The process is repeated 5 times and the average ᾱ and ρmean serve
as vertical coordinates in Figure 9A. Figure 9B is the result of
the structural neural network based onWang–Zhang biophysical
model in the previous study.

According to Figure 9A, when x > 0.05, both the
negative energy ratio and MCC monotonically increase with
the increasing distribution interval of coupling strength, which
indicates the increasing synchronization of the network. In
addition, both curves exhibit a gradual saturation as the coupling
strength increases; however, the curve of the negative energy
ratio reaches saturation slowly relative to the curve of MCC.
When x ≤ 0.05, the negative energy ratio is small, while
MCC is abnormally large, which is not in agreement with the
above analysis. This phenomenon might be attributed to the
small coupling strength between neurons, which results in the
subthreshold state of most of the neurons instead of firing
spikes. And other neurons are the opposite, which leads to a
strong synchronization within their respective oscillation groups
but a weak synchronization of the overall network. Thus, it
manifested as that the negative energy ratio which describes

the synchronization among oscillation groups is small, while
the MCC which describes the synchronization within oscillation
groups is large. This is also one of the advantages of energy
coding. Moreover, the comparison with the result based on
Wang–Zhang biophysical model (Figure 9B) shows a nearly
consistent dynamic behavior of the network. Since the coupling
strength between neurons affects their information interaction
and this process relies on energy consumption for completion,
it can be speculated that the stronger the coupling strength,
the more synchronous the network activity and higher the
demand for energy which means more energy storage that can be
described by the negative energy ratio. Thus, the negative energy
ratio can be regarded as a measure of network synchronization.

The Relationship Between Signal Transmitting Delay

and Neural Energy
Given the fully connected neural network consisting of 100
neurons and the coupling strength uniformly distributed in [0,
1], we simulated the neural network with various distribution
intervals of signal transmitting delay and calculated the
corresponding negative energy ratio as well as MCC shown
in Figure 10A to study the specific relationship between signal
transmitting delay and neural energy. Each point in Figure 10A

is obtained as follows: for each distribution interval of signal
transmitting delay [x,x +1.5] ms (x takes 70 different values as
0, 0.01, 0.02,. . . 0.69 that represents the horizontal coordinate of
the corresponding point), any two neurons in the network are
simulated with the intensity of 10µA/cm2 from t = 0–450ms
and the negative energy ratio α and MCC ρmean are calculated.
This process is repeated 5 times to obtain the average ᾱ and ρmean

as vertical coordinates in Figure 10A. Figure 10B is the result of
the structural neural network based onWang–Zhang biophysical
model in the previous study.

According to Figure 10A, both the negative energy ratio and
MCC decrease as the distribution interval of signal transmitting
delay increases which means the weakening synchronization of
the network. This simulation result can be attributed to the
prolonged lag from the release of excitatory neurotransmitters
by the presynaptic neuron to the postsynaptic neuron receiving
neurotransmitters which decreases the activity correlation
between the presynaptic neuron and the postsynaptic neuron.
This phenomenon results in less salient synchronization activity
of the overall network that requires less energy supply; thus,
the stored energy in the network activity is less, and the
corresponding negative energy ratio is low. More specifically,
both the curves of the negative energy ratio and MCC can be
roughly divided into three stages. In the first stage corresponding
to the horizontal coordinate at [0, 0.3], the curve of negative
energy ratio declines continually as the distribution interval
of signal transmitting delay moves away from zero; however,
the curve of MCC is maintained at a stable horizontal state.
This could be ascribed to the synchronization among oscillation
groups in the network that weakens gradually with the increase in
signal transmitting delay, while the synchronization within each
oscillation group maintains a high level within this interval. In
the second stage corresponding to the horizontal coordinate at
[0.3, 0.5], the curve of negative energy ratio shows no apparent
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FIGURE 8 | (A) The curve of α and ρmean varies as a function of the number of neurons in the network based on the Hodgkin–Huxley model; (B) The curves of α and

ρmean vary as a function of the number of neurons in the network based on Wang–Zhang biophysics model (Wang et al., 2006; Wang and Wang, 2014).

tendency to decline, whereas the curve of MCC declines rapidly
as the signal transmitting delay increases. This phenomenon
indicates that the increase in signal transmitting delay greatly
reduces the synchronization within each oscillation group but

has almost no influence on the synchronization of the overall
network. And the situation in the third stage corresponding
to the horizontal coordinate at [0.5, 0.7] is similar to that of
the first stage. These features are consistent with the results
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FIGURE 9 | (A) The curve of α and ρmean varies with different distribution intervals of coupling strength in the network based on the Hodgkin–Huxley model; (B) The

curves of α and ρmean varies with different distribution intervals of coupling strength in the network based on Wang–Zhang biophysical model (Wang et al., 2006;

Wang and Wang, 2014).
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FIGURE 10 | (A) The curve of α and ρmean varies with different distribution intervals of signal transmitting delay in the network based on the Hodgkin–Huxley model;

(B) The curve of α and ρmean varies with different distribution intervals of signal transmitting delay in the network based on Wang–Zhang biophysical model (Wang

et al., 2006; Wang and Wang, 2014).

based on Wang–Zhang biophysical model (Figure 10B) that
the negative ratio and MCC of the network alter in stages
with the variation of the signal transmitting delay. Therefore,
there exists a close relation between the signal transmitting

delay and the oscillation groups in the network, and combining
the analysis of energy coding and correlation coefficient
can improve the understanding of the operations of the
network.
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CONCLUSIONS

The cognitive neural structure of the brain is complex and multi-
hierarchical; thus, it is essential to combine various scales and
hierarchies for investigating the neural coding of the cerebral
cortex (Abbott, 2008). Especially, the effective theory of neural
coding should be proposed from the global view of the brain
activity. The neural energy coding provides an excellent solution
for combining different hierarchies and establishing a global
model of brain function (Wang R. et al., 2014; Wang and Zhu,
2016).

The current study investigated the action potential of a
single neuron and the synchronous oscillation of a structural
neural network by neural energy applying the H–H neuronal
model. We obtained the preliminary conclusions about
the energy consumption of an action potential and the
quantitative relationship among synchronous oscillation, energy
consumption, and network parameters (number of neurons,
coupling strength, and signal transmitting delay) as follows:

(1) In the course of firing an action potential, the neuron firstly
stores energy before the peak of the action potential and then
consumes energy. And in the power consumption curve,
the negative energy, which means the energy stored by
the neuron from ATP hydrolysis, makes up only a small
proportion of the total energy consumed by the neuron. This
neuronal work mechanism can explain the physiological
phenomenon that the blood flow rises by about 31% while
the accompanying oxygen consumption increases by only
6% in the stimulation-induced neural activity, which is
consistent with the previous research findings (Wang R.
et al., 2014).

(2) The synchronization of the network and the periodicity
of the network energy distribution is positively correlated
to the number of neurons and coupling strength, but
negatively correlated to signal transmitting delay. In fact,
well-synchronized network activities resulting from the
change of these network parameters will lead to similar
power consumption curves of each neuron in course of
time which constitute periodic energy consumption of the
network.

(3) The proportion of negative energy in power consumption
curve was positively correlated to the synchronous
oscillation of the neural network. From the biological point
of view, the stronger synchronous oscillation of the neural
network demands for excessive energy supplies which means
more energy storage, and the negative energy ratio reflects
the stored energy in the network activity. Therefore, the
energy index of negative energy ratio can be used to describe
the dynamic properties of the network, and the energy

coding has great superiorities for exploring the operation of
the network further.

(4) In addition, we compared the simulation result of the
structural neural network based on H–H model with
the counterpart based on Wang–Zhang biophysical model
(Wang et al., 2006; Wang and Wang, 2014) and found
almost identical dynamic properties and energy coding
characteristics of the network in both models. This suggests
that the H–H model is essentially similar to the Wang–
Zhang biophysical model despite different levels at which
both are constructed. The former is constructed at the level
of the molecule, while the latter is directly established at the
level of neurons. Considering the computational complexity,
the result based on the H–H model requires more time as
compared to the Wang–Zhang biophysical model, which
is the limitation of the H–H model. On the other hand,
the advantage of the H–H model is that it can obtain
precise calculation results, whereas that of the Wang–Zhang
biophysicsmodel is that it can obtain themembrane potential
function as well as energy function of neurons (Wang et al.,
2006; Wang R. et al., 2014; Wang and Zhu, 2016); the H–H
model can obtain only the numerical solution.

In the field of experimental neuroscience, a technical record of
the membrane potential of each neuron anatomically in order to
study the cortical network comprising of a plethora of neurons
is challenging and cost-ineffective (Hipp et al., 2011). However,
it’s possible to calculate the power consumption of hundreds of
neurons in some functional region by the electrophysiological
records of the membrane potential of a small number of neurons.
Due to the scalar property of energy, the energy consumption of
local cortical network can be estimated to study the formation
mechanism of the cognitive functional network cost-effectively
according to the density of neurons (Wang et al., 2006, 2008,
2016, 2017; Wang and Wang, 2014; Wang R. et al., 2014; Wang
Z. et al., 2014; Yan et al., 2016; Zheng et al., 2016). Taken together
the neural theory of energy coding has great potential and can
significantly influence the study of encoding and decoding in
cognitive neuroscience.
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