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Functional studies of cortical plasticity in humans suggest that the motor cortex
reorganizes when the descending motor output pathway is disrupted as a result of
limb amputation. The question thus arises if the underlying anatomical organization of
the motor cortex is also altered in limb amputation. Owing to challenges involved in
imaging the thin cerebral cortex in vivo, there is limited data available on the anatomical
or morphological plasticity of the motor cortex in amputation. In this paper, we study the
morphology of the primary motor cortex in four lower limb amputees with 37 or more
years of amputation and four age and gender-matched controls using 0.7 mm isotropic,
T1-weighted MRI optimized to produce enhanced intracortical contrast based on myelin
content. We segment the cortex into myelinated and unmyelinated gray matter. We
determine the myelinated thickness which is the thickness of the well-myelinated tissue
in the deeper layers of the cortex. We compare the bilateral differences in the myelinated
thickness between amputees and controls. We also compare bilateral differences in
cortical thickness between the two groups. Our measurements show no statistically
significant difference between the amputees and controls in the myelinated thickness
and in cortical thickness, in the region of the primary motor cortex representing the
lower leg.
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INTRODUCTION
Functional plasticity studies in the human cortex document reor-
ganization in primary regions as a consequence of major changes
in function (Rockstroh et al., 2000; Qi et al., 2010; Roiha et al.,
2011). In upper limb amputees, for example, the face and stump
muscle representations in the primary motor cortex (M1) have
been shown to be displaced toward the former hand representa-
tion (Lotze et al., 2001). Such evidence of functional reorganiza-
tion in the presence of disrupted motor output pathways suggests
that there may be accompanying changes in the structure of the
primary motor cortex. With recent advances in neuro-anatomical
magnetic resonance imaging (MRI) and image processing tech-
niques, it is now possible to investigate the morphological features
of cortical areas associated with primary functions, such as M1,
for plasticity studies.

In this paper, we use T1 -weighted anatomical MRI to inves-
tigate if the anatomical structure of the primary motor cortex
in the pre-central gyrus is grossly altered as a result of lower
limb amputation in humans. Specifically, we image intracorti-
cal myelin, whose distribution can delineate motor regions in the
human cortex on MRI (Bock et al., 2013; Stuber et al., 2014).

In a basic description of the motor system, upper motor neu-
rons in the motor cortex synapse with lower motor neurons in the
spinal cord which then project to muscles. Limb amputation sev-
ers the axons of the lower motor neurons that were innervating

the now lost limb, thereby disrupting that motor pathway. The
question then arises if this disruption in the motor pathway affects
cortical structure. For instance, the upper motor neurons and
their axons that were contributing to the movement of muscles
in the previously intact limb could degenerate when their pre-
scribed output pathway is disrupted. As the descending axons
of the upper motor neurons are well myelinated (Bishop and
Smith, 1964), their degeneration would result in loss of intra-
cortical myelin in the contralateral motor cortex and would thus
result in bilateral asymmetry in the intracortical myelin pat-
tern in amputees. Alternatively, these upper motor neurons may
remain viable with their myelinated axons intact, even if they have
rewired to innervate other body areas. In this case, no bilateral
asymmetry in the intracortical myelin pattern in the amputees
would be expected.

A degeneration of upper motor neurons and their associated
myelinated axons could affect several structural features in the
motor cortex including overall gray matter volume and the thick-
ness of the cortical tissue. The available data on structural changes
in the brain resulting from the loss of motor output is limited and
contradictory. For example, one volumetric study in amputees
reported a loss of gray matter in M1 (Preissler et al., 2013), while
another study did not find any such loss (Draganski et al., 2006).

In this study, we investigate the thickness of the deeper myeli-
nated layers in the cortex to assess changes in intracortical
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myelin in the lower leg representation in the motor homuncu-
lus of amputees. The thickness of the deeper myelinated layers
in the cortex has been used in studies of schizophrenia to esti-
mate changes in intracortical myelin (Bartzokis and Altshuler,
2005). We also investigate cortical thickness in the lower leg rep-
resentation in the motor homunculus of amputees to identify
changes in cortical morphology as a result of long withstanding
amputation.

We image the cortex using a T1-weighted MRI sequence at 3T,
optimized to obtain enhanced contrast across the cortex based
on intracortical myelin (Bock et al., 2013). The primary motor
cortex is the thickest part of the cortex at 4.5 mm (Zilles and
Amunts, 2012) and we image it using 0.7 mm isotropic resolu-
tion to improve visualization of intracortical myelin vs. a typical
anatomical MRI at 1 mm isotropic resolution. The Brodmann
area 4 (BA 4) is considered to be the anatomical analog of the
functionally defined primary motor cortex which covers the ante-
rior wall of the central sulcus, the dorso-medial part of the
free surface of the pre-central gyrus and approximately middle
one-third of the para-central lobule in the medial wall of the
hemisphere (Rizzolatti et al., 1998; Matelli et al., 2004). Studies of
myeloarchitecture indicate that M1 has a unique myelination pat-
tern with the strongly myelinated bands of Baillarger (Baillarger,
1840) merging together which results in continous heavy myeli-
nation through the deeper cortical layers to the white matter.
(Vogt and Vogt, 1919; Vogt, 1951; Braitenberg, 1962; Braak, 1980;
Nieuwenhuys, 2013). The radial bundles of myelinated fibers in
M1 further extend beyond the outer stripe of Baillarger to the
deeper parts of the upper pyramidal layer, which means that
heavy myelination in M1 persists continuously through most of
the cortical thickness in this area. We therefore propose to use
the thickness of the well-myelinated tissue in M1 as a metric to
investigate structural plasticity in lower limb amputees. We refer
to the thickness of the well-myelinated tissue as the myelinated
thickness (m). We segment the brain tissue into well-myelinated
cortical gray matter (mGM), relatively unmyelinated cortical gray
matter (GM), white matter (WM) and cerebrospinal fluid (CSF)
and define the myelinated thickness as the distance between the
outer boundaries of mGM and WM.

Functional studies of the homunculus in humans indicate
that the upper motor neurons which project to the lower motor
neurons innervating the lower limbs are located in the dorso-
medial part of M1, with those in the medial wall of the gyrus
contributing to the movement of the part of the leg below the
knee (Penfield and Rasmussen, 1950). Therefore, we expect that
if structural degeneration of these upper motor neurons happens
as a consequence of lower limb amputation, a decrease in the
myelinated thickness in this part of the contralateral M1 could
be observed. There could also be a corresponding reduction in
the total cortical thickness (t). We thus measure m and t in the
area representing the lower leg in M1 in both hemispheres in four
lower limb amputees and in their age and sex matched healthy
controls to investigate the bilateral differences in these parame-
ters. Through these comparisons, we hope to gain insight if upper
motor neurons degenerate when they are deprived from their
original output, resulting in bilateral changes in the morphology
of the primary motor cortex.

METHODS
SUBJECTS
The subjects for this study were four male, lower-limb amputees
and four male age-matched controls. None of the subjects
reported neurological conditions. The nature of the injuries in the
amputees is summarized in Table 1. The study was approved by
the Research Ethics Board at Saint Joseph’s Hospital and informed
consent was obtained from all subjects prior to imaging.

MRI
Subjects were scanned on a 3 Tesla General Electric (GE) scan-
ner (Software Version DV 22.0) with a whole body transmit coil
(GE) and a 32 channel receive coil (MR Instruments). The details
of the imaging protocols are summarized in Table 2. A 3D, T1-
weighted inversion recovery, gradient echo sequence (BRAVO)
was optimized to obtain enhanced intracortical contrast, suitable
for visualizing intracortical myelin at 0.7 mm isotropic resolu-
tion (Bock et al., 2013). To keep the imaging time as short
as possible in light of the high resolution, partial brain images
were acquired with an 8 cm wide, rectangular slab, approximately
centered at the pre-central gyrus along the anterior-posterior
axis. The slab fully encompassed the central sulcus laterally. The
field-of-view (FOV) covered the brain fully along the other two
anatomical axes. The T1-weighted BRAVO scan was followed by
a predominantly proton density-weighted, 3D FLASH (Fast, Low
Angle Shot) acquisition over the same FOV, to be used in post-
processing to compensate for RF field inhomogeneities (Van de
Moortele et al., 2009; Marques et al., 2010). The total acquisition
time for the protocol was about 40 min per subject.

POST PROCESSING
To minimize postural differences during image acquisition,
the T1-weighted and FLASH images in each subject were co-
registered using an 6-parameter affine transformation in Amira
(Visage Imaging) with Lanczos resampling. The two registered
FLASH images were summed then smoothed twice using a 3D
median filter of kernel size 3 voxels to reduce noise. The fil-
ter was applied twice since the kernel size in 3D could not be
increased beyond 3 voxels in Amira. The sum of the two co-
registered T1-weighted images was divided by the filtered, average
FLASH image. The T1-weighted images and the FLASH images
have similar receive field (B−) profiles; hence their division pro-
duces a ratio image with greatly reduced B− inhomogeneity. The

Table 1 | Subject information.

Age of

amputee

(years)

Lost limb Duration of

loss (years)

Age of

matched

control

(years)

1 46 Left leg; below knee 37 44

2 51 Right leg; below
knee

49 50

3 72 Left leg; below knee 65 64

4 49 Right leg; below
knee, above knee

39, 4 50
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transmit field inhomogeneity (B+) is also reduced in the ratio
image (Van de Moortele et al., 2009; Marques et al., 2010). Each
ratio image was then resampled to 1 mm isotropic resolution and
Free Surfer (http://surfer.nmr.mgh.harvard.edu/) (Fischl et al.,
2002) was used to extract labels for the cerebrum masked to the
pial/CSF boundary. The labels were resampled back to 0.7 mm
isotropic resolution to mask the cerebral hemispheres in the orig-
inal 0.7 mm isotropic resolution ratio image. The subcortical gray
matter structures including the basal ganglia and thalamus were
manually removed from the masked ratio image, leaving only the
cortex and underlying white matter tracts. The ratio image was
then segmented into four brain- tissue classes, GM, mGM, WM
and CSF (Figure 1). This tissue segmentation was performed with

Table 2 | A summary of the imaging parameters.

Parameter Optimized

BRAVO

FLASH

Excitation angle α 12◦ 4◦

FOVreadout × FOVpe1 ×
FOVpe2

240 × 192 ×
82.6 (mm)

240 × 192 ×
82.6 (mm)

Imaging matrix 344 × 275 ×
118

344 × 275 ×
118

Number of α pulses per
shot (Npe2)

118 118

Resolution 0.7 mm
isotropic

0.7 mm
isotropic

TR (between
successive α pulses)

9.9 ms 9.9 ms

TE (echo time) 4.1 ms 4.1 ms

TI (inversion time) 1000 ms –

TD (time delay between
consecutive inversions)

1100 ms –

Acquisition time 15 min 5.3 min

Repeats 2 2

N stands for the number of excitation pulses; pe1 represents the first phase

encoding direction while pe2 is the second phase encoding direction.

a fuzzy c-means clustering algorithm (Pham and Prince, 1999) in
the software package: MIPAV (version 7.0.1, http://mipav.cit.nih.

gov/). After segmentation, the two hemispheres were separated
for subsequent processing. The output of the fuzzy c-means seg-
mentation was used to produce tissue labels for GM, mGM, and
CSF using a fuzzy membership value of 0.5 for those tissue classes.
The WM labels were produced using a fuzzy membership level
of 0.1. This membership level was used to account for the very
thin WM blades in the crowns of the gyrii where WM intensity
is reduced due to partial voluming. Finally, in each tissue class,
islands unconnected in 3D from the main cluster were removed.
The post processing was performed in Amira, unless otherwise
stated.

MORPHOLOGICAL MEASUREMENTS
The morphological measurements were performed using the Java
Image Science Toolkit (JIST) (www.nitrc.org/projects/jist/) plu-
gins (Bazin et al., 2007; Lucas et al., 2010) v3.0, in MIPAV.
The following morphological quantities were measured in each
hemisphere (Figure 1).

Cortical thickness = t

Thickness of GM in the outer layers of the cortex = d

Thickness of mGM in the deeper layers in the cortex = m (1)

For these measurements, level set functions were created for the
three boundaries, namely the outer cortical boundary separating
CSF and GM or the pial surface, the outer myelinated cortical
boundary separating GM and mGM and the outer white matter
boundary separating mGM and WM, using JIST implementation
of the Distance Field (1.3 R) module in MIPAV.

Levelset function for the outer cortical boudary = ∅p,

Levelset function for the outer myelinated

cortical boundary = ∅m,

Levelset function for the outer white matter boundary = ∅w (2)

FIGURE 1 | A representative MRI slice is shown in (A). The tissue
classification for the right hemisphere of this MRI is shown in (B). On the
right, various thickness measurements are shown schematically in an

enlarged corner of (B). Here, cortical thickness is represented as t, the
thickness of the myelinated cortex as m and depth of the myelinated cortex
below the outer cortical boundary as d.
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The cortical thickness t was obtained by subtracting the WM
level set function, ∅w, from the pial surface level set function
∅p. Similarly, thickness d was calculated by subtracting the mGM
level set function ∅m from the pial level set function ∅p. These
thickness calculations were performed using the JIST implemen-
tation of the Thickness (1.5 R) module in MIPAV. Next, the
difference of these two thickness measurements, t and d was
calculated. For nested surfaces and in regions where strong myeli-
nation persists continuously in all the deeper layers of the cortex,
measuring the difference t − d is equivalent to determining the
thickness m of the strongly myelinated deeper cortex directly as
the distance between the outermost edge of the well myelinated
tissue and the WM boundary (Equation 3).

m = t − d (3)

Performing all the thickness measurements with reference to the
outer GM boundary or pial surface ensured that the thickness
data could be displayed on the pial surface.

The outer cortical boundary was transformed into a trian-
gular mesh to represent the pial surface for visualization and
further measurements. The most dorso-medial part of the crown
of the pre-central gyrus in the dorsal view was used as a struc-
tural marker of the knee representation and the region of interest
(ROI) in the lower leg representation was drawn in the medial
wall of the hemisphere just below the knee representation. The
ROIs were thus hand drawn as approximate circles (area: mean ±
STD = 54 ± 4 mm2) within the middle one third part of the para-
central lobule close to the superior boundary in each hemisphere
using the Surface Editor tools in Amira. The myelinated thick-
ness and cortical thickness data was projected on the pial surface
and the thickness measurements were made as the mean value in
each ROI. For visualization, the pial surface was slightly smoothed
and the thickness data was again projected on the smoothed pial
surface. The ROIs were replicated on the smoothed surface for
display (Figures 2, 3).

INTER AND INTRA-GROUP COMPARISONS AND STATISTICS
The amputees and the controls were compared on the basis of
bilateral differences in the two morphological quantities mea-
sured in the study: the myelinated thickness and cortical thickness
in the area representing the lower leg in M1. The bilateral differ-
ence or bilateral asymmetry in a measured quantity was defined
as the absolute inter-hemispheric difference in that quantity
divided by its mean inter-hemispheric value. Pair-wise compar-
isons within each group (left vs. right or affected vs. unaffected)
and between the groups (left vs. left and right vs. right) were
also performed for both thickness measures. All the comparisons
were made using a Kruskal-Wallis test at a significance level of
0.05. Keeping in mind the small sample size, power analysis was
also performed, with power = 0.8, to estimate the magnitude of
change that would result in statistically significant bilateral differ-
ences in the measured quantities with the current sample size of 4
or vice versa.

RESULTS
In Figures 2, 3, we show the variation of myelinated thickness and
cortical thickness respectively, along the slightly smoothed pial
surface in all 8 subjects in dorsal and medial views. The ROIs used
for the thickness measurements in the lower leg representation in
M1 are also shown in the medial views in Figures 2, 3.

Tables 3, 4 summarize the thickness data in controls and
amputees respectively. We found a bilateral asymmetry in the
myelinated thickness of 17 ± 10%, and 17 ± 5% (mean ± STD
over n = 4) in controls and amputees, respectively. For corti-
cal thickness, we found a bilateral asymmetry of 8 ± 6%, and
14 ± 6% (mean ± STD over n = 4) in controls and amputees,
respectively. We did not find any statistically significant difference
(p < 0.05, uncorrected) between the two groups. Using power
analysis, we determined that a 125% change in the mean bilat-
eral asymmetry in the myelinated thickness and a 160% change
in the mean bilateral asymmetry in cortical thickness in amputees
would be statistically significant with the current sample
size.

FIGURE 2 | Myelinated thickness data is projected on the slightly

smoothed pial surface in controls (top two rows) and in amputees

(bottom two rows). For each subject, the medial view of each hemisphere
(rows 2 and 4) is displayed under the dorsal view (rows 1 and 3) of the same

hemisphere. The left hemisphere is shown on the left in each brain. The ROIs
are shown as black circles in the medial views. The white lines in the dorsal
views mark the most dorso-medial aspect of the pre-central gyrus. A,
anterior; C, caudal; P, posterior; R, rostral.
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FIGURE 3 | Cortical thickness data is projected on the slightly smoothed

pial surface in controls (top two rows) and in amputees (bottom two

rows). For each subject, the medial view of each hemisphere (rows 2 and 4)
is displayed under the dorsal view (rows 1 and 3) of the same hemisphere.

The left hemisphere is shown on the left in each brain. The ROIs are shown
as black circles in the medial views. The white lines in the dorsal views mark
the most dorso-medial aspect of the precentral gyrus. A, anterior; C, caudal;
P, posterior; R, rostral.

Table 3 | Myelinated thickness and cortical thickness measurements

in the ROIs in the leg representation in M1 in controls.

Myelinated Cortical

thickness (mm) thickness (mm)

Left Right Asym (%) Left Right Asym (%)

1 4.0 3.1 25 4.6 4.2 10
2 3.1 3.2 2 3.9 4.2 8
3 2.6 3.1 19 3.4 3.9 15
4 4.1 3.3 22 4.5 4.5 0

Mean ±
STD

3.4 ± 0.7 3.2 ± 0.1 17 ± 10 4.1 ± 0.6 4.2 ± 0.2 8 ± 6

Asym represents bilateral asymmetry. STD represents the standard deviation of

the sample. See Supplementary Material (Supplementary Table 1) for STD over

each ROI. The subjects are in the same order as in Table 1.

In summary, we observed that bilateral asymmetry in the
thickness of the myelinated tissue in the region of M1 repre-
senting the lower leg is not significantly altered as a result of
long-withstanding lower limb amputation. We also observed no
change in bilateral asymmetry in cortical thickness in the region
of M1 representing the lower leg in amputees.

DISCUSSIONS AND CONCLUSION
In this study, we measured myelinated thickness in the bilateral
lower leg representations in M1 in four lower limb amputees and
four controls. Qualitatively, we observed a similar pattern of vari-
ation in the myelinated thickness in the precentral motor cortex
in all 16 hemispheres studied.

The results of our morphological measurements of myelinated
thickness in the lower leg representation in M1 indicated that
bilateral asymmetry was not significantly altered as a result of
long withstanding amputation. Also, our results indicate that
myelinated thickness was not statistically different between the
affected and unaffected hemispheres in the amputees or between
the left and right hemispheres in either group. Furthermore, all

Table 4 | Myelinated thickness and cortical thickness measurements

in the ROIs in the leg representation in M1 in amputees.

Myelinated Cortical

thickness (mm) thickness (mm)

Left Right Asym (%) Left Right Asym (%)

1 3.5 2.8 22 4.4 4.0 7
2 3.6 3.2 12 4.9 4.1 18
3 3.5 3.0 15 4.4 3.9 12
4 2.9 2.4 21 4.1 3.3 22

Mean ±
STD

3.4 ± 0.3 2.8 ± 0.4 17 ± 5 4.4 ± 0.3 3.8 ± 0.4 15 ± 6

The numbers in bold represent the affected hemisphere contralateral to the

amputated limb. Asym represents bilateral asymmetry. STD represents the

standard deviation of the sample. See Supplementary Material (Supplementary

Table 2) for STD over each ROI. The subjects are in the same order as in Table 1.

amputees had a long standing loss of limb which occurred at an
early age of 10 years or younger when the brain was still devel-
oping (Raznahan et al., 2011). It is therefore very likely that any
structural changes that could happen as a result of amputation
would have completed their course by the time the amputees were
imaged. One short coming of our study was the small sample
size. In fact, power analysis of our data indicates that a 2.25-fold
bilateral change in the myelinated thickness in the lower leg repre-
sentation in M1 in amputees would have been required to ensure
a statistically significant difference and a larger sample should be
included in future studies to investigate if there are more subtle
changes in cortical anatomy in amputees. For instance, a modest
change of 10% in bilateral asymmetry in the myelinated thickness
as measured using our techniques would require 366 subjects.
Cortical studies in other cases of sensory deprivation however do
not suggest any gross changes in the intracortical myelin patterns
in the primary functional areas (Trampel et al., 2011; Voss et al.,
2014), and our data corroborates this.
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The absence of any statistically observable difference in the
morphology of well-myelinated tissue in the lower leg represen-
tation in M1 in amputees suggests that the myelination pattern
in M1 is not grossly disrupted as a consequence of amputation.
The only motor pathway that is affected by amputation is the
cortico-spinal pathway descending from the dorso-medial region
of the precentral cortex and the upper motor neurons contribut-
ing to this tract are the giant Betz cells in layer V of the cortex.
These pyramidal cells are known to contribute to the intracortical
myelin by means of their well-myelinated axons and axons collat-
erals (Braitenberg, 1974). Furthermore, it is known that Betz cells
in the lower leg area are the largest in size and have the thick-
est, myelinated axons (Lassek, 1940; Bishop and Smith, 1964).
The Betz cells therefore contribute significantly to the myelination
in the primary motor cortex and an intact myelination pattern
suggests that these Betz cells contributing to the movement of
muscles in the previously intact limb remain viable with their
myelinated axons intact, when their prescribed output pathway
is disrupted.

The viability of these upper motor neurons after amputation
can be explained in more than one way. There could be new con-
nections at the cortical level, at the level of spinal cord or at the
level of peripheral nerves (Kaas and Qi, 2004). These upper motor
neurons could make new connections at the cortical level and join
the group of upper motor neurons that synapse with those lower
motor neurons in the spinal cord that are innervating the stump
or other muscle groups. Or these upper motor neurons could still
synapse with the same pool of lower motor neurons that was pre-
viously innervating the intact limb but now those lower motor
neurons have grown new connections at the spinal cord level or
at the peripheral nerve level and are therefore innervating the
stump or other muscle groups. A purely morphological study like
ours cannot differentiate between these scenarios. In either case
however, the viability of these upper motor neurons suggests that
they now contribute to the movement of a new group of muscles
after amputation. No human anatomical study investigating these
scenarios is reported in the literature as yet. There is, however,
one non-human primate study that reported no gross changes
in the morphology and position of the region of M1 previously
dedicated to the now lost limb (Wu and Kaas, 1999).

The potential re-wiring of the still viable upper motor neurons
would result in functional reorganization of M1. On a functional
level, degeneration of these upper motor neurons would mean
absence of motor-task related activation in the deprived cortex
and also, failure to excite any muscles (in the stump or elsewhere)
by stimulating the deprived cortex. Available data from functional
plasticity studies suggest that upper motor neurons stay func-
tionally intact even after deprivation. A recent study in lower
limb amputees observed an expansion of activation maps of the
stump in M1 of the deafferented hemisphere, spreading laterally
to neighboring regions that represent the trunk and upper limbs
(Simoes et al., 2012). Another study in upper limb amputees,
however, found M1 to be intact with no expansion or lateral shift
of the stump muscle representation in M1 (Gagne et al., 2011).
Furthermore, an upper limb plasticity study reported sensation
of movement in the phantom limb when trans-cranial magnetic
stimulation was applied to the deprived motor cortex (Mercier

et al., 2006). Non-human primate studies also indicate that move-
ments in other limbs are evoked by intracortical microstimulation
throughout the presumed deprived limb region of the contralat-
eral M1 (Kaas and Qi, 2004). Thus, these studies indicate that a
rewiring of the contralateral motor cortex happens as a result of
limb loss.

This is the first in vivo morphological study of the primary
motor cortex in amputees. Morphological studies investigating
the deprived cortex in other primary functional regions have con-
tradictory results. A small but statistically significant decrease in
the total area associated with primary and secondary visual cor-
tices was reported by a human study of the effect of congenital
as well as late onset blindness on the visual areas, but the mea-
surement was based on macro-anatomical landmarks rather than
on the micro-structure (Park et al., 2009). However, an intact
pattern of intracortical myelin was reported by another human
study where investigators could detect the stripe of Gennari, a
myeloarchitectural hallmark of the primary visual cortex, in con-
genitally blind people (Trampel et al., 2011). An increase in the
intracortical myelin concentration as studied by magnetization
transfer ratio MRI is reported by a recent human study in the
deprived visual cortex in early or congenitally blind (Voss et al.,
2014). Thus, because of insufficient and contradicting data on
the features of intracortical myelin in the deprived sensory and
motor cortex and due to methodological differences between var-
ious studies, our results cannot be compared with the results of
previously published studies.

Our results of no statistically significant bilateral difference
in the cortical thickness between the two groups also suggest an
overall intact morphology in the lower leg representation in M1
after long withstanding amputation. In future studies, it might
also be useful to quantify an MRI parameter, such as T1, that is
correlated to the amount of myelin present in cortical tissue. This
would require the use of optimized mapping protocols, such as
DESPOT1 HIFI (Deoni, 2007), to account for the high resolution
needed to map the parameter over the cortical layers accurately.

We conclude that myeloarchitecture of the primary motor cor-
tex appears grossly intact in lower limb amputees, as investigated
with high resolution MRI of the intracortical myelin. Owing to
the small sample size, our findings are anecdotal; however, the
consistency of the myelinated thickness maps across the subjects
suggests that our technique can be used in future plasticity studies
in larger groups.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at: http://www.frontiersin.org/journal/10.3389/fnins.
2015.00015/abstract
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