
REVIEW ARTICLE
published: 18 April 2012

doi: 10.3389/fnins.2012.00057

Regulation of thalamic development by Sonic hedgehog
Douglas J. Epstein*

Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA

Edited by:

Steffen Scholpp, Karlsruhe Institute of
Technology, Germany

Reviewed by:

James Y.H Li, University of
Connecticut Health Center, USA
Clemens Martin Kiecker, King’s
College London, UK

*Correspondence:

Douglas J. Epstein, Department of
Genetics, Perelman School of
Medicine, University of Pennsylvania,
Clinical Research Building, Room 470,
415 Curie Blvd, Philadelphia, PA
19104, USA.
e-mail: epsteind@mail.med.
upenn.edu

The thalamus is strategically positioned within the caudal diencephalic area of the fore-
brain, between the mesencephalon and telencephalon.This location is important for unique
aspects of thalamic function, to process and relay sensory and motor information to and
from the cerebral cortex. How the thalamus comes to reside within this region of the central
nervous system has been the subject of much investigation. Extracellular signals secreted
from key locations both extrinsic and intrinsic to the thalamic primordium have recently
been identified and shown to play important roles in the growth, regionalization, and spec-
ification of thalamic progenitors. One factor in particular, the secreted morphogen Sonic
hedgehog (Shh), has been implicated in spatiotemporal and threshold models of thalamic
development that differ from other areas of the CNS due, in large part, to its expression
within two signaling centers, the basal plate and the zona limitans intrathalamica, a dorsally
projecting spike that separates the thalamus from the subthalamic region. Shh signaling
from these dual sources exhibit unique and overlapping functions in the control of thalamic
progenitor identity and nuclei specification. This review will highlight recent advances in
our understanding of Shh function during thalamic development, revealing similarities, and
differences that exist between species.
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THE PROSOMERE MODEL OF FOREBRAIN DEVELOPMENT
Almost 20 years ago, Puelles and Rubenstein (1993) described
a model to help explain how the complex architecture of the
mouse forebrain is generated from discrete developmental territo-
ries termed prosomeres. The purpose of the prosomere model was
to relate the bent longitudinal axis of the forebrain to that of more
posterior regions of the neural tube and to define its primary sub-
divisions along the anteroposterior (a/p) and dorsoventral axes.
Initially, the spatial patterns of 45 genes were mapped onto the
prosomeric model with many respecting the hypothesized trans-
verse and longitudinal boundaries of the forebrain (Puelles and
Rubenstein, 1993). Over the years, hundreds of new genes have
been added to the list and further testing of the model has led to
its reinterpretation (Puelles and Rubenstein,2003). As it stands, the
prosomere model stipulates that the caudal forebrain is organized
into three prosomeres (p1–p3) corresponding to the pretectum,
thalamus, and prethalamus, respectively, whereas the rostral fore-
brain (telencephalon and hypothalamus) represents a complex
protosegment not divided into prosomeres (Figure 1).

Functional genetic experiments performed over the past decade
in several model organisms have further validated the prosomere
model and have greatly enhanced our understanding of the mole-
cular mechanisms underlying forebrain formation and evolution
(Hébert and Fishell, 2008; Scholpp and Lumsden, 2010). A com-
mon theme that has emerged from these and other studies of
nervous system development is that compartmentalization of the
neuroepithelium into functional units is facilitated by its exposure
to extrinsic factors secreted from localized signaling centers (Jes-
sell, 2000; Hébert and Fishell, 2008; Scholpp and Lumsden, 2010).
In the case of the caudal forebrain, the secreted morphogen Sonic
hedgehog (Shh), has been shown to play a multifaceted role in

regulating the growth and identity of distinct neuronal progenitor
subtypes within the thalamic complex, as well as the formation
of the zona limitans intrathalamica (zli), a dorsally projecting
boundary between p2 and p3 that also serves as a critical signal-
ing center for thalamic and prethalamic development (Figure 1).
This review will highlight the diverse functions of Shh at differ-
ent stages of thalamic development, including a feature unique
to the caudal forebrain whereby Shh secreted from two orthog-
onal sources (basal plate and zli) contributes to a morphogenic
signaling gradient that patterns an alar structure, the thalamic
primordium.

Shh SIGNALING IN THE SPINAL CORD: LESSONS LEARNED
FROM 20 YEARS OF STUDY
Much of what we know about Shh signaling has come from studies
of its role in spinal cord development. A summary of the principal
concepts learned from this work is described below and will serve
as a framework for comparison with the roles of Shh signaling
during thalamic development. For more comprehensive reviews
on this subject the reader is encouraged to consult the following
references (Dessaud et al., 2008; Matise and Wang, 2011).

Sonic hedgehog is a secreted protein that provides positional
information to a wide variety of developing tissues, including the
CNS (Dessaud et al., 2008; Ingham et al., 2011; Matise and Wang,
2011). Shh is expressed in the axial mesoderm (prechordal plate
and notochord) and ventral midline (floor plate) of the overlying
neural tube throughout most of the a/p neuraxis (Echelard et al.,
1993; Roelink et al., 1994). It is from these sources that a ventral to
dorsal concentration gradient of Shh is established in the ventral
neural tube. Over the past several years a compelling body of evi-
dence has been generated to explain how the Shh signaling gradient
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FIGURE 1 | Regionalization of the central nervous system along the

anteroposterior axis of the mouse at embryonic day 10.5. The caudal
diencephalon is divided into three prosomeres (p1, p2, p3) corresponding to
the pretectum, thalamaus, and prethalamus, respectively. The zona limitans
intrathalamica (zli) is located at the p2–p3 boundary. The expression of Shh
in the ventral midline and zli is depicted in red. Abbreviations: cDi, caudal
diencephalon; Hyp, hypothalamus; Mes, mesencephalon; Met,
metencephalon; Tel, telencephalon.

is interpreted by neuronal and glial progenitors to account for the
diverse array of cell types present in the ventral spinal cord. The
prevailing model stipulates that the fate of a given progenitor is
determined by the level and duration of Shh signaling to which it is
exposed (Ericson et al., 1996, 1997; Dessaud et al., 2007, 2010). For
instance, the identity of the ventral-most neuronal progenitors in
the spinal cord (p3 domain) is determined by the highest concen-
tration of Shh for the longest period of time, whereas, the identities
of progenitors occupying progressively more dorsal positions in
the spinal cord (pMN, p2–p0) are dependent on correspondingly
lower levels of Shh signaling for shorter periods of time (Dessaud
et al., 2007, 2010).

To fully appreciate the intricacies of the molecular mecha-
nism by which ventral neuronal progenitors interpret the level
and duration of Shh signaling, a brief overview of the Shh signal
transduction cascade is necessary. In the absence of Shh ligand,
the pathway is kept in an off state by Patched (Ptch1), a 12-pass
transmembrane protein that also functions as an integral com-
ponent of the Shh receptor complex (Marigo et al., 1996; Stone
et al., 1996; Allen et al., 2011). Ptch1 suppresses Shh signaling
by antagonizing the function of Smoothened (Smo), a 7-pass
transmembrane protein with an essential role in Hedgehog signal
transduction (Chen and Struhl, 1996; Zhang et al., 2001; Taipale
et al., 2002). Blockage of Smo activity results in the phospho-
rylation and proteolytic processing of the zinc finger containing
transcriptional regulators, Gli3, and to a lesser extent Gli2, into
transcriptional repressors (Wilson and Chuang, 2010). When Shh
binds to the Ptch1 receptor complex, the repression on Smo is
relieved, thus permitting the production and nuclear entry of full-

length Gli proteins and their transcriptional activation of target
genes, including Gli1 and Ptch1.

In response to its position along the Shh morphogen gradient, a
progenitor cell elicits distinct temporal profiles of Gli activity (Sta-
mataki et al., 2005; Dessaud et al., 2007, 2010). This is a dynamic
process given that progenitors become desensitized to Shh over
time, as a result of the negative feedback loop with Ptch1. There-
fore, to keep its position along the dorsoventral axis, the progenitor
cell must maintain a certain threshold of Shh signaling over time
(Dessaud et al., 2010).

Each progenitor domain can be identified by the expression
of a distinct set of homeodomain and bHLH transcription factors
(Briscoe and Ericson, 2001; Lupo et al., 2006). Boundaries between
progenitor domains are generated over time by the mutual repres-
sion of complementary pairs of transcription factors (Muhr et al.,
2001). Once the boundaries are fixed, the unique combination of
transcription factors assigned to a given progenitor domain further
directs the fate of differentiating neurons.

THE MULTIPLE ROLES OF Shh DURING THALAMIC
DEVELOPMENT
While significant advances have been made in elucidating the
requirements of Shh signaling in posterior regions of the CNS,
it is only recently that similar progress has been described for the
diencephalon (Scholpp and Lumsden, 2010). The thalamic pri-
mordium develops from the alar plate of p2. Shh expression is
localized to the basal plate of p1–p3 by the 12-somite stage of
development and over a day later (25-somites) is initiated in the
zli, where it becomes fully activated by E10.5 (Figure 1).

The exposure of the thalamus to two Shh signaling centers has
made it somewhat of a challenge to reconcile the specific roles
of either one in regulating the growth, patterning and neuronal
identity of thalamic progenitors. However, recent studies using
a combination of genetic and tissue perturbation approaches in
mouse, chicken, and zebrafish embryos have developed a clearer
picture of the multifaceted roles of Shh signaling during thalamic
development (Hashimoto-Torii et al., 2003; Kiecker and Lumsden,
2004; Vieira et al., 2005; Scholpp et al., 2006; Szabó et al., 2009; Vue
et al., 2009; Jeong et al., 2011).

EARLY ROLES FOR Shh AS A MITOGEN
The dependency of thalamic development on Shh is temporally
regulated. As early as the 15-somite stage of mouse development,
Shh−/− embryos show reduced proliferation and survival of dien-
cephalic precursors (Ishibashi and McMahon, 2002). This mito-
genic role for Shh occurs well before zli formation and is therefore
attributed to Shh signaling from the prechordal plate and/or ven-
tral midline of the diencephalon. Since the cell proliferation defects
in Shh−/− embryos were also observed in alar regions of the dien-
cephalon, well out of range of Shh secreted from ventral sources, a
Shh-dependent relay signal was proposed to regulate the growth of
thalamic progenitors. Fgf15 appeared to be an ideal candidate to
fulfill this function as its dorsal growth promoting properties were
dependent on Shh, at least when overexpressed in cultured mouse
brain explants (Ishibashi and McMahon, 2002). However, recent
loss of function studies do not support this conclusion, as Fgf15−/−
mutants show increased proliferation of dorsal neural progenitors
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and decreased neurogenesis in the developing midbrain and neo-
cortex, consistent with Fgf15 functioning as a growth suppressor
(Borello et al., 2008; Fischer et al., 2011). The identity of the Shh-
dependent regulator of thalamic growth and survival remains to
be identified. Wnt ligands are good candidates based on the find-
ing that several are expressed in the thalamic primordium, as well
as the fact that the expression of Tcf4, a transcriptional mediator
of Wnt signaling, is downregulated in the diencephalon of Shh−/−
embryos (Ishibashi and McMahon, 2002). While Wnt signaling
may, in some instances, act antagonistically to Shh in the speci-
fication of some neural cell fates (Robertson et al., 2004), this is
likely to be context dependent, as Wnt signaling is also dependent
on Shh for the proliferation of neural progenitors in the spinal
cord (Alvarez-Medina et al., 2009).

Zli FORMATION
The epichordal/prechordal interface marks the territory from
where the zli will emerge (Vieira et al., 2005). The expression of
the homeodomain transcription factor Otx2 on the posterior (epi-
chordal) side of the zli and the zinc finger proteins Fezf1 and Fezf2
on the anterior (prechordal) side of the p2/p3 border are required
for zli formation (Hirata et al., 2006; Jeong et al., 2007; Scholpp
et al., 2007). Whether these transcription factors play a direct role
in regulating Shh expression in the zli, or provide a permissive
environment for Shh to be transcribed, remains unresolved. Inter-
estingly, mouse mutants lacking the bHLH trancription factors
Hes1 and Hes5 also show a loss of Shh expression in the zli (Baek
et al., 2006). It is intriguing to speculate that Hes1/5 might be
functioning downstream of a cross repressive interaction between
Otx2 and Fezf2 to regulate Shh expression in the zli. Of course,
other regulatory relationships are equally possible.

The zli is a key partition between the thalamic and prethala-
mic territories and also serves as an important signaling center
for the regionalization of the a/p axis of the caudal diencephalon
(Scholpp and Lumsden, 2010). The zli extends dorsally from the
ventral midline at the p2/p3 boundary, coinciding with the ante-
rior limit of the notochord (Figure 1; Vieira et al., 2005). Shh
expression is first detected in the zli at the 25 somite stage of chick
and mouse embryos and expands dorsally at a rate of ∼20 μm/h
until it reaches a length of 600 μm (Zeltser, 2005). The dorsal pro-
gression of Shh transcription was inhibited in chick embryos upon
insertion of a microbarrier between the basal plate and the zli, or
when Shh signaling was blocked with a constitutively active form
of Ptch1 (Kiecker and Lumsden, 2004; Zeltser, 2005; Vieira and
Martinez, 2006). These results suggested that Shh expression in
the zli is regulated by a ligand-dependent feed-forward signaling
mechanism.

A Shh-dependent vertical signaling model to explain the spread
of Shh transcription along the zli is not entirely consistent with
the finding that Shh continues to be expressed in the zli of mutant
mouse embryos lacking principle components of the Shh trans-
duction cascade, including Gli2, Gli3, and Smo (Hashimoto-Torii
et al., 2003; Vue et al., 2009). Since it is likely that the inactiva-
tion of Smo function in Nestin-cre; Smoloxp/loxp embryos occurred
after Shh expression was already initiated in the zli, these results
might suggest that the maintenance, but not the initiation, of
Shh expression in the zli is independent of Shh signaling. A

more substantial challenge to the vertical signaling model comes
from the observation that Shh expression was initiated in the
zli of Gli2−/−; Gli3−/− mouse mutants, as well as zebrafish oep
mutants (which lack the nodal co-receptor tdgf1/cripto), despite
the lack of Shh expression in the basal plate of the caudal dien-
cephalon, which was thought to be the initiating source of the
vertical signal (Hashimoto-Torii et al., 2003; Scholpp et al., 2006).
Clearly, more work will be needed to sort out the molecular
details of zli formation. A more thorough analysis of the criti-
cal cis and trans determinants of Shh expression in the zli may
help explain the direct regulatory mechanisms underlying the
formation of this structure (Epstein et al., 1999; Jeong et al.,
2006).

The thalamus and prethalamus express different sets of genes
in response to Shh signaling from the zli (Kiecker and Lumsden,
2004; Scholpp et al., 2006; Vieira and Martinez, 2006). To explain
how this differential response to Shh is orchestrated, Kiecker and
Lumsden (2004) proposed that the thalamus and prethalamus are
prepatterned. In support of their hypothesis, they showed that
the homeobox gene Irx3 acts as a thalamic competence factor.
When misexpressed in the prethalamus of chick embryos, Irx3
ectopically activated genes typically expressed posterior to the
zli in a Shh-dependent manner. While loss of function studies
with Irx3 are likely confounded by functional redundancy with
other family members, it is nonetheless intriguing that in zebrafish
Irx1b morphants, the zli is posteriorly expanded at the expense
of the thalamus, suggesting that Irx1b is necessary to restrict
zli formation on the epichordal side of the zli (Scholpp et al.,
2007).

Shh PATTERNS THE THALAMUS ALONG A MORPHOGENIC
GRADIENT
The spatial arrangement of thalamic nuclei is important for gen-
erating the precise topographical relationship needed to fulfill
its role as a relay center. Despite the many advances in our
knowledge of the early events regulating thalamic growth, and
regionalization, we still know relatively little concerning the mech-
anisms by which heterogeneous clusters of thalamic neurons
become specified and aggregate into discrete thalamic nuclei.
One particular challenge has been to correlate the patterns of
gene expression initiated by Shh and other signaling pathways at
early stages of thalamic development with discrete nuclei and/or
neuronal subtypes that form at later postnatal stages (Nakagawa
and O’Leary, 2001; Jones and Rubenstein, 2004; Vue et al., 2007,
2009; Szabó et al., 2009; Suzuki-Hirano et al., 2011; Yuge et al.,
2011).

The neurons contributing to thalamic nuclei are derived from
at least two distinct progenitor domains. The caudal population
of thalamic progenitors, pTH-C, is the larger of the two groups,
and gives rise to all thalamic nuclei that relay sensory information
from the periphery to primary sensory regions of the neocor-
tex via thalamocortical axons (Figure 2; Vue et al., 2007). The
rostral population of thalamic progenitors, pTH-R, comprises a
narrow band of cells sandwiched between pTH-C and the zli
(Figure 2). Thalamic neurons derived from pTH-R progenitors
are thought to contribute to two dorsolaterally positioned thal-
amic nuclei, the ventrolateral geniculate nucleus (vLG), and the
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FIGURE 2 | A morphogenetic gradient of Shh signaling establishes

distinct thalamic progenitor domains. (A) Schematic representation of a
lateral view of the caudal diencephalon color-coded as follows: Shh
expressing cells (red); pTH-C2 domain (yellow); pTH-C1 domain (green);
pTH-R domain (orange). (B) Comparison of a representative set of genes
expressed in thalamic and ventral spinal cord progenitor domains.

intergeniculate leaflet (IGL), neither of which project axons to the
cortex (Horowitz et al., 2004; Morin and Blanchard, 2005; Jones,
2007; Vue et al., 2007, 2009).

In addition to its role in early patterning events, Shh signaling
is also required to specify neuronal subtypes that contribute to
a broad array of thalamic nuclei. The current model proposes
that graded Shh signaling is necessary and sufficient to pro-
mote distinct classes of thalamic progenitors (Hashimoto-Torii
et al., 2003; Scholpp et al., 2009; Szabó et al., 2009; Vue et al.,
2009). The pTH-R domain, which develops closest to the zli, is
dependent on the highest concentration of Shh, whereas, the ros-
troventral (pTH-C2) and caudodorsal (pTH-C1) populations of
pTH-C progenitors, developing several cell diameters away from
the zli, are dependent on progressively lower concentrations of
Shh (Figure 2; Hashimoto-Torii et al., 2003; Szabó et al., 2009; Vue
et al., 2009).

The conditional inactivation of either Shh or Smo in the
diencephalon results in the loss of pTH-R progenitors and their
post-mitotic derivatives in the vLG and IGL, as well as a sizeable
reduction in the population of pTH-C progenitors and the Gbx2
expressing, cortex-projecting, thalamic neurons that differentiate
from these cells (Szabó et al., 2009; Vue et al., 2009; Jeong et al.,
2011). Although Szabó et al. (2009) and Vue et al. (2009) both
described varying degrees of thalamic deficits in the absence of
Shh, the phenotypes described by Szabó et al. (2009) were more
severe and correlated with a greater loss of Gbx2 expression, which
was likely attributed to the use of an earlier acting and more robust
Cre line (Foxb1-Cre versus Netrin-Cre) to delete Shh from the
thalamic primordium.

How does Shh signaling determine the different classes of thal-
amic progenitors? At first glance, a model similar to that described
for neuronal subtype identity in the ventral spinal cord could
be envisioned, whereby distinct thalamic progenitors are spec-
ified by their exposure to different thresholds of Shh signaling
activity. However, another possibility is that the two classes of Shh-
dependent thalamic progenitors, pTH-R and pTH-C, are specified
by two spatially distinct sources of Shh, the basal plate, and zli,
respectively. For the latter model to be valid, different phenotypes

should arise from the inactivation of Shh from discrete signaling
territories.

To help resolve this question, Jeong et al. (2011) examined
mutant mice containing a targeted deletion of a Shh regulatory
element required for Shh expression in the basal plate of the
caudal diencephalon, but not the zli. This analysis showed that
the expression of high threshold target genes in pTH-R (Nkx2.2,
Ascl1, Tal1) was reduced, concomitant with an expanded expres-
sion domain of lower threshold, pTH-C target genes (Ngn2).
While this result may, in part, reflect temporal differences in the
dependency of pTH-R on Shh, it might also be the case that pro-
longed Shh signaling activity from both diencephalic sources is
required to promote pTH-R identity. Given that the blockade of
Shh signaling from the zli in chick embryos also results in a loss of
Nkx2.2 expression in the pTH-R domain, the most parsimonious
explanation of the data is that both sources of Shh surround-
ing the thalamus are necessary for pTH-R identity (Kiecker and
Lumsden, 2004; Jeong et al., 2011). Therefore, Shh secreted from
two signaling sources, the basal plate and zli, supplies the Shh
signaling gradient that shapes thalamic progenitor identity over
time.

The similarity in signaling mechanisms by which Shh regulates
neuronal progenitor subtype identity in the thalamus and ventral
spinal cord also extends to the use of some of the same transcrip-
tional regulators mediating these cell fate decisions (Figure 2).
For instance, pTH-R and p3 neuronal progenitors form closest to
their respective sources of Shh in the thalamus and spinal cord,
respectively, and both populations express Nkx2.2. The rostro-
ventral pTH-C (classified as pTH-C2) and pMN domains reside
at slightly greater distances from their respective sources of Shh
and both express the bHLH transcription factors Olig2, Ngn1,
and Ngn2. Finally, the caudodorsal region of pTH-C in the thal-
amus (classified as pTH-C1) and p0 domain of the spinal cord
both express Dbx1 and are at the tail end of the Shh responsive
territories.

FUTURE DIRECTIONS
The specificity of thalamic progenitors are not solely determined
by Shh. Clearly, additional signaling pathways (Fgf, Wnt, and
others) must play significant roles in generating the diversity of
progenitor subtypes that have been, and remain to be, discovered
in the thalamus (Braun et al., 2003; Zhou et al., 2004; Miyake
et al., 2005; Vieira and Martinez, 2005; Kataoka and Shimogori,
2008; Bluske et al., 2009; Martinez-Ferre and Martinez, 2009;
Peukert et al., 2011). Future research will undoubtedly uncover
how these signaling pathways integrate to generate the transcrip-
tional network that programs each of the thalamic progenitor
domains and gives rise to the full complement of thalamic nuclei.
Hopefully, in the not too distant future, our understanding of
thalamic development will match that of the intricately detailed
patterning events that occur in the spinal cord (Alaynick et al.,
2011).
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