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The dentate gyrus produces new granule neurons throughout adulthood in mammals from
rodents to humans. During granule cell maturation, defined markers are expressed in a
highly regulated sequential process, which is necessary for directed neuronal differentia-
tion. In the present study, we show that α-amino-3-hydroxy-5-methy-4-isoxazole propionate
(AMPA) receptor subunits GluR1 and GluR2 are expressed in differentiated granule cells,
but not in stem cells, in neonatal, and adult dentate gyrus. Using markers for neural progen-
itors, immature and mature granule cells, we found that GluR1 and GluR2 were expressed
mainly in mature cells and in some immature cells. A time-course analysis of 5-bromo-2′-
deoxyuridine staining revealed that granule cells express GluR1 around 3 weeks after being
generated. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent
protein kinase II, a putative animal model of schizophrenia and bipolar disorder in which
dentate gyrus granule cells fail to mature normally, GluR1 and GluR2 immunoreactivities
were substantially downregulated in the dentate gyrus granule cells. In the granule cells of
mutant mice, the expression of both presynaptic and postsynaptic markers was decreased,
suggesting that GluR1 and GluR2 are also associated with synaptic maturation. Moreover,
GluR1 and GluR2 were also expressed in mature granule cells of the neonatal dentate
gyrus.Taken together, these findings indicate that GluR1 and GluR2 expression closely cor-
relates with the neuronal maturation state, and that GluR1 and GluR2 are useful markers
for mature granule cells in the dentate gyrus.
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INTRODUCTION
New neurons are generated in the subgranular zone of the hip-
pocampal dentate gyrus and in the anterior subventricular zone
adjacent to the lateral ventricles throughout life (Abrous et al.,
2005; Duan et al., 2008; Zhao et al., 2008). In the adult hippocam-
pus, neural stem cells exist near the border between the hilus and
the dentate gyrus granule cell layer. Postmitotic granule cells in
the subgranular zone migrate radially into the granule cell layer
and are integrated into the deepest part of the granule cell layer,
where they differentiate into granule cells, extending dendrites
and axons and receiving synaptic inputs. During development,
new granule cells express several marker proteins depending on
the level of cell differentiation (Duan et al., 2008; Zhao et al.,
2008).

In the adult dentate granule cell, tryptophan 2,3-dioxygenase
is expressed with increasing cell age (Ohira et al., 2010), and
expression is substantially downregulated in the granule cells of
mice heterozygous for the alpha-isoform of calcium/calmodulin-
dependent protein kinase II (αCaMKII; Yamasaki et al., 2008;
Ohira et al., 2010). These mutant mice have an endophenotype
called “immature dentate gyrus” (Yamasaki et al., 2008), in which

almost all hippocampal granule cells remain in an immature state.
Immunohistochemical analysis revealed that these mutants have
increased expression of polysialic acid NCAM, a marker for late-
stage progenitor cells and immature neurons, and calretinin, a
marker for immature neurons, and decreased expression of cal-
bindin, a marker for mature neurons. The maturation failure of
granule cells in αCaMKII± mice and the higher GluR expression
in the hippocampus compared with several regions of the cen-
tral nervous system (Rogers et al., 1991; Hampson et al., 1992;
Medvedev et al., 2008) suggest that GluR are expressed only after
a certain stage of granule cell differentiation in the normal mouse.
Electrophysiological analysis revealed that dentate granule cells of
these mutants have high input resistance, high excitability, small
spike amplitude, and a decreased number of spikes during sus-
tained depolarization, findings that suggest that the dentate gyrus
of αCaMKII± mice is also electrophysiologically immature. These
mutant mice also exhibit some behavioral abnormalities, includ-
ing a severe working memory deficit and an exaggerated infradian
rhythm, similar to symptoms observed in patients with schizo-
phrenia, bipolar mood disorder, and other psychiatric disorders
(Yamasaki et al., 2008). These observations suggest the association
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between granule cell maturation failure and these behavioral
phenotypes.

The AMPA-type glutamate receptor, which is involved in fast
excitatory transmission in the mammalian central nervous system,
comprises four subunits, GluR1-4. Neither GluR1- nor GLuR2/3-
immunolabeling cells are observed in the rat cerebral cortex
and hippocampus at the embryonic stage, but they appear dur-
ing the postnatal stage (Arai et al., 1997). Thus, developmental
changes of the receptor may well correlate with synaptogenesis
and consolidation of synaptic connections.

Impaired signal transduction through GluR is significantly
related with neuronal disorders. Hippocampal GluR expression
are altered under pathologic conditions; GluR1 and GluR2 expres-
sion is decreased in ischemia (Dos-Anjos et al., 2009; Montori
et al., 2010), and either increased or decreased in epilepsy (de
Lanerolle et al., 1998; Ying et al., 1998; Tang et al., 2005; Solomo-
nia et al., 2010). Also, GluR1 seems to be involved in psychiatric
disorders, such as bipolar disorder (Du et al.,2004,2008) and schiz-
ophrenia (Schmitt et al., 2005; Wiedholz et al., 2008; Sanderson
et al., 2009; Erickson et al., 2010). Administration of the anti-
manic agents reduce synaptic GluR1 in hippocampal neurons,
and reduction in GluR1 phosphorylation at its cAMP-dependent
protein kinase A site by the mimics of antimanic agents induce
manic-like behaviors, indicating GluR1 trafficking play an impor-
tant role in the pathophysiology and treatment of manic-like
behaviors (Du et al., 2004, 2008). GluR1 knockout mice exhibit
schizophrenia-like behaviors (Schmitt et al., 2005; Wiedholz et al.,
2008; Sanderson et al., 2009; Erickson et al., 2010). AMPA receptors
are critically involved in spatial working memory (Schmitt et al.,
2005; Sanderson et al., 2009; Erickson et al., 2010). GluR1 dele-
tion profoundly impairs hippocampus-dependent spatial working
memory, one of the core disordered functions in patients with
schizophrenia (Silver et al., 2003) and in model animals (Yamasaki
et al., 2008; Matsuo et al., 2009), and genetically expressed GluR1
in GluR1-deficient mice restores the spatial working memory
(Schmitt et al., 2005). These findings reveal a critical association
of hippocampal GluR1-dependent synaptic plasticity and memory
processing.

In the present study, to clarify the GluR1 and GluR2 expression
patterns in the hippocampal dentate gyrus of neonatal and adult
mice during granule cell maturation, we conducted single- and
double-immunofluorescence analyses of GluR1 and GluR2 with
markers for proliferative cells, neural progenitor cells, immature
and mature granule cells, and showed that GluR1 and GluR2 were
expressed in mature granule cells. Furthermore, we confirmed the
usefulness of GluR1 and GluR2 as maturation markers of dentate
granule cells by investigating GluR expression and its correlation
with synaptic integration in the hippocampus of αCaMKII± mice
that have an “immature dentate gyrus.”

RESULTS
GLuR1 EXPRESSION IN MATURE GRANULE CELLS
GluR1 was abundantly expressed in the hippocampus of the
adult mouse brain, including the dentate gyrus and Ammon’s
horn regions (Figures 1A–E), consistent with previous studies
using different antibodies (Rogers et al., 1991; Hampson et al.,
1992). In the dentate gyrus,GluR1 immunoreactivity was observed

FIGURE 1 | GluR1 expression in mature granule cells. (A,B) GluR1
immunoreactivity was abundant in the granule cells and hilar interneurons
(arrowheads) in the adult dentate gyrus (A). Note that there was no GluR1
immunoreactive signal in the subgranular zone [brackets in (A)]. Some
interneurons labeled with GluR1 antibody in the hilus were GAD67-positive
[arrowheads in (B)]. To visualize the nucleus, cells were counterstained with
Hoechst. (C–E) Co-labeling of GluR1 with Ki-67, neural progenitor cells (C),
calretinin, immature granule cells (D) or calbindin, mature granule cells (E).
Higher magnifications of the boxed-in area in the merged images are
shown on the right-hand side. (F) The co-labeled cells were quantified.
Values are given as the mean ± SEM of the analysis based on the results of
three mice. g, Granule cell layer; h, hilus; m, molecular layer.

in the plasma membrane-like structures of granule cells in the
granule cell layer and their dendrites extending to the molec-
ular layer, and in some interneurons and neurites in the hilus
(Figure 1A). Some interneurons strongly labeled with GluR1 anti-
body in the hilus also contained GAD67 (Figure 1B). The subgran-
ular zone where neural stem cells/progenitor cells exist (brackets
in Figure 1A) lacked any GluR1 immunoreactivity, suggesting
that GluR1 expression is gradually increased during granule cell
development.

To evaluate the GluR1 expression pattern during the devel-
opment of granule cells in the adult hippocampus, immuno-
fluorescence analysis was performed by laser scanning confo-
cal microscopy. All progenitors are proliferative and therefore
contain the cell proliferation marker Ki-67, which is a nuclear
protein expressed in all phases of the cell cycle except the rest-
ing phase (Scholzen and Gerdes, 2000). Ki-67-positive cells were
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restricted to the subgranular zone, and there were few Ki-67/GluR1
double-positive cells (2.1 ± 0.93%, n = 3 mice; Figures 1C,F).
After exiting the proliferative phase, immature granule cells can
be distinguished from progenitors by the expression of calre-
tinin and their location in the deepest granule cell layer (Brandt
et al., 2003; Duan et al., 2008; Zhao et al., 2008). On the
other hand, granule cells express calbindin as they mature and
migrate into the granule cell layer (Kempermann et al., 1997;
Duan et al., 2008; Zhao et al., 2008). Therefore, immature and
mature granule cells can be distinguished by the expression of
the cell markers calretinin and calbindin, respectively. Calretinin-
positive cells were observed in the subgranular zone and in the
deep part of the granule cell layer and rarely expressed GluR1
(11.3 ± 1.70%, n = 3 mice; Figures 1D,F). Almost all calbindin-
positive cells were located in the granule cell layer and expressed
GluR1 (98.7 ± 0.16%, n = 3 mice; Figures 1E,F). These results
suggest that GluR1 is expressed in some immature granule cells
that might be at the late-stage of development and in mature
granule cells.

Using a double-labeling method, we determined whether
GluR1 was expressed in neurons or glial cells. NeuN, a sol-
uble nuclear protein, is observed in most neuronal cell types,
but not in non-neuronal cells (Wolf et al., 1996). Almost all
GluR1-positive cells in the granule cell layer were stained by anti-
NeuN antibody (Figure 2A). No GluR1-positive cells expressed
glial fibrillary acidic protein (GFAP), a mature astrocyte marker,
and F4/80, the plasma membrane glycoprotein expressed exclu-
sively on macrophages and microglia (Austyn and Gordon, 1981;
Figures 2B,C). These findings indicate that GluR1 is expressed
specifically in neurons in the adult mouse hippocampus.

TIME-COURSE ANALYSIS WITH 5-BROMO-2′-DEOXYURIDINE (BrdU)
To investigate when GluR1 was expressed during the devel-
opment of granule cells in adult animals, granule cells were
labeled with BrdU. Almost all BrdU-positive cells were observed
in the subgranular zone at 1 week after BrdU administration,
whereas they were integrated into the granule cell layer at 4 weeks
(Figure 3A). The rate of cells that were GluR1- and BrdU-double

FIGURE 2 | GluR1 expression in neurons but not in glial cells. Neuronal
expression of GluR1 in the dentate gyrus. Immunofluorescence analysis
revealed GluR1 expression in neurons labeled with the NeuN antibody (A),

but not in GFAP-positive astrocytes (B), and F4/80-positive microglia (C).
Almost all NeuN-positive neurons were immunoreactive for GluR1. g, Granule
cell layer; h, hilus.
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FIGURE 3 |Time course of the double-labeling of GluR1 with

bromodeoxyuridine (BrdU) in the dentate gyrus granule cells. (A)

Representative images of BrdU and GluR1 double-labeling at 1 week (upper
panel) and 4 weeks (lower panel) after BrdU injection. Closed and open
arrowheads indicate BrdU-positive cells with or without co-expression of
GluR1, respectively. g, Granule cell layer; h, hilus. (B) Changes in co-labeling
rates of BrdU with GluR1 in the dentate gyrus over a period of 4 weeks
after BrdU injection. Values are given as the means ± SEM of the analysis
based on the results of three mice. Asterisks indicate statistically significant
differences: **p < 0.01 (one-way ANOVA and Tukey’s post hoc test).

positive was 9.64 ± 1.00% at 1 week, 32.7 ± 3.02% at 2 weeks,
74.2 ± 6.73% at 3 weeks, and 83.5 ± 1.61% at 4 weeks after BrdU
injection (Figure 3B, n = 3–4 mice for each time point; 1 ver-
sus 2 weeks, p = 0.016; 2 versus 3 weeks, p = 3.20 × 10−4; 2 versus
3 weeks, p = 0.18, Tukey’s post hoc test). GluR1 expression dra-
matically increased around 3 weeks of age. These results seem to
be consistent with the calretinin and calbindin staining results
(Figures 1D,E) and previous reports that calretinin expression
begins 2 weeks after granule generation and ceases by 4 weeks,
followed by the expression of calbindin at 4 weeks (Kempermann
et al., 1997; Brandt et al., 2003; Duan et al., 2008; Zhao et al., 2008).
These findings indicate that GluR1 expression appears around
3 weeks after the generation of granule cells, although a few granule
cells express GluR1 at approximately 2 weeks.

GLuR2 EXPRESSION IN MATURE GRANULE CELLS
We next performed double-immunolabeling of GluR2 with Ki-
67, calretinin, or calbindin to investigate whether GluR2 sub-
unit expression is regulated during granule cell maturation. Few
proliferative cells positive for Ki-67 were labeled with GluR2

(3.6 ± 0.79%, n = 3 mice; Figures 4B,E). Calretinin-positive
immature granule cells rarely expressed GluR2 (19.8 ± 2.31%,
n = 3 mice; Figures 4C,E), and almost all of the calbindin-positive
mature granule cells expressed GluR2 (98.9 ± 0.11%, n = 3 mice;
Figures 4D,E).

REDUCED GLuR1 AND GLuR2 EXPRESSION IN THE DENTATE GRANULE
CELLS OF αCaMKII± MICE
The observations described above indicate that GluR1 is expressed
mainly in mature granule cells. We next examined GluR1 expres-
sion in αCaMKII± mice, in which most of dentate gyrus gran-
ule cells do not express calbindin, and electrophysiologic and
morphologic features are strikingly similar to those of normal
immature dentate gyrus granule cells (Yamasaki et al., 2008).
GluR1 expression was significantly reduced in the dentate gyrus
of αCaMKII± mice compared to those of wild-type littermate
mice (Figures 5A–C). GluR1 expression in a subfield of the hip-
pocampus of αCaMKII± mice was quantified based on immuno-
histochemical staining (Figures 5A,B). GluR1 immunoreactiv-
ity in the granule cell layer and molecular layer of αCaMKII±
mice was drastically reduced to 30% that of wild-type mice
(Figure 5B, n = 4 mice for each genotype; ML: p = 2.64 × 10−7;
GCL: p = 1.61 × 10−6; hilus: p = 7.52 × 10−3, Student’s t -test).
Interestingly, in the CA1 region of the mutant mice, GluR1
immunoreactivity was significantly increased in the pyramidal
cell layer (Py: p = 6.40 × 10−3), but not in the radiatum layer or
the oriens layer (Rad: p = 0.081; Or: p = 0.257; Figure 5B). Very
low GluR1 expression levels were detected in the mutant gran-
ule cells (Figure 5C). GluR1-positive interneurons located in the
dentate gyrus were clearly visualized due to reduced GluR1 expres-
sion in the mutant granule cells (Figure 5C). In the mutants,
the expression of a neuronal-specific protein, NeuN, was also
decreased. NeuN is usually used as a marker of mature neu-
rons, thus the decline in NeuN expression also indicates disturbed
maturation of the mutant granule cells (Figure 5D). In addi-
tion, GluR1 expression in the cerebellum of adult αCaMKII±
mice was examined. The expression of AMPA receptor sub-
units in the cerebellum is developmentally regulated. GluR1
are primarily expressed in the molecular layer of adult cere-
bellum as a result of developmental changes in the expression
that shifted from Purkinje cells to Bergmann glia cells (Ripellino
et al., 1998; Douyard et al., 2007). In the cerebellum of adult
αCaMKII± mice, GluR1 immunoreactivity was observed in the
radial processes of Bergmann glial cells in the molecular layer,
and immunoreactivity was hardly affected in the mutant mice
(Figure 5E).

GluR2 expression in hippocampal subfields of the αCaMKII±
mice was quantified based on immunohistochemical staining
(Figures 6A,B). GluR2 immunoreactivity in the granule cell and
molecular layers in αCaMKII± mice was significantly reduced to
50% that of wild-type mice (Figure 4D, n = 4 mice for each geno-
type; ML: p = 1.03 × 10−3; GCL: p = 1.50 × 10−3; hilus: p = 0.22,
Student’s t -test). In the CA1 region of the mutant mice, GluR2
immunoreactivity was not significantly changed in the pyramidal
cell layer (Py: p = 0.47), in the radiatum layer (Rad: p = 0.66), or in
the oriens layer (Or: p = 0.47; Figure 6B). Some hilar interneurons
also expressed GluR2 (arrowheads in Figure 6C).
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FIGURE 4 | GluR2 expression in mature granule cells. GluR2 is
expressed throughout the adult hippocampus (A). Some hilar interneurons
also express GluR2 [arrows in (B)]. Ki-67 (B), calretinin (C), and calbindin
(D) were co-labeled with GluR2. Open arrowheads indicate

GluR2-negative cells. Filled arrowheads indicate GluR2-positive cells. (E)

The co-labeled cells were quantified. Values are given as the mean ± SEM
of the analysis based on the results of three mice. g, Granule cell layer; h,
hilus; m, molecular layer.

CONCOMITANT DECREASE IN GLuR EXPRESSION AND SYNAPTIC
MARKERS IN THE GRANULE CELLS OF αCaMKII± MICE
In the αCaMKII± mouse dentate gyrus, in which the expres-
sion of GluR1 and GluR2 is downregulated, synaptic marker
expression was examined to gain insight into the relation
between GluR expression and synaptic maturation. Immunoblot
analysis revealed decreased GluR1 expression in the mutant
dentate gyrus (Figures 7A,B, n = 3 mice for each genotype;
p = 0.029) with a concomitant decrease in the expression of
the postsynaptic marker PSD95 (Figures 7A,C, n = 3 mice
for each genotype; p = 0.026, Student’s t -test). The decrease
was observed in both the molecular and granule cell layers
of the mutants (Figure 7D). The presynaptic protein synap-
tophysin was also decreased in the presynaptic terminals of
mossy fibers within the stratum lucidum of CA3 (Figures 7E,F,
n = 3 mice for each genotype; p = 0.0023). These findings sug-
gest that synaptic maturation of the mutant granule cells is
incomplete and that GluR expression correlates with synaptic
maturation.

GLuR1 AND GLuR2 EXPRESSION PATTERNS IN THE NEONATAL
DENTATE GYRUS
We investigated GluR1 expression in the dentate gyrus of 5-day-
old mice. GluR1 was expressed throughout the hippocampus in
the neonatal mice, and the highest GluR1 immunoreactivity was
detected in lacunosum moleculare (Figure 8A). In the CA regions,
GluR1 was expressed abundantly in the pyramidal cell layer, the
oriens layer, and the radiatum layer. In the dentate gyrus, GluR1
was expressed only in the small population of granule cells that
are located in the outer part of the granule cell layer, which
reduced the GluR1 immunoreactivity in the dentate molecular
layer. In the neonatal hippocampus, Ki-67 immunoreactivity was
observed in sparsely distributed cells, unlike in adult hippocampus
in which it is concentrated in the subgranular zone (Schwab et al.,
2000; Kronenberg et al., 2003). These Ki-67-positive cells rarely
expressed GluR1 (Figure 8C). The granule cell layer in the neona-
tal dentate gyrus contained a large number of calretinin-positive
immature granule cells that occupied the inner two-thirds of the
layer (Figure 8D). These calretinin-positive cells did not express
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FIGURE 5 | Reduced expression of GluR1 in the dentate gyrus of

αCaMKII± mice. (A,B) Immunohistochemical analysis revealed alterations in
GluR1 expression in the hippocampus of the mutant mice. GluR1
immunoreactivity was quantified based on histochemical staining in a
hippocampal subfield of αCaMKII± mice (B). Values represent fluorescence
intensity normalized to that in the granule cell layer of wild-type mice and are
given as the mean ± SEM of the analysis based on the results of four mice.
Asterisks indicate statistically significant differences: *p < 0.05; **p < 0.01
(Student’s t -test). (C) GluR1 was expressed in some hilar interneurons of the

mutants. As a result of reduced GluR1 expression in the granule cells in the
mutants, GluR1-positive interneurons located in the dentate gyrus were
clearly visualized (arrows). (D) Expression level of neuron-specific protein
NeuN was diminished in the granule cells of the mutants. (E) Parasagittal
sections of adult αCaMKII± mice cerebellum were stained with GluR1
antibody. Immunoreactivity for GluR1 in Bergmann glial cells was hardly
affected in the mutant mice. DG, dentate gyrus; GCL, granule cell layer; IGL,
internal granule cell layer; ML, molecular layer; Or, oriens layer; PCL, Purkinje
cell layer; Py, pyramidal cell layer; Rad, radiatum layer.

GluR1. On the other hand, calbindin-positive mature granule cells
that existed in the outer part of granule cell layer expressed GluR1
(Figure 8E).

It is likely that the GluR2 expression pattern in mature gran-
ule cells in the neonatal dentate gyrus, but not immature cells,
is similar to that of GluR1 (Figures 8B,F–H). Neither Ki-67-
positive (Figure 8F) nor calretinin-positive cells (Figure 8G)
expressed GluR2,whereas calbindin-positive cells expressed GluR2
(Figure 8H). These findings indicate that GluR2 is expressed in

mature granule cells in the dentate gyrus of neonatal and adult
mice.

DISCUSSION
The findings of the present study indicate that GluR1 and GluR2
are expressed in the mature granule cells of the mouse dentate
gyrus. Immunofluorescence staining for GluR1 combined with
BrdU labeling revealed that expression of GluR1 began at the
late-phase of granule cell development, around 3 weeks after
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FIGURE 6 | Reduced GluR2 expression in the dentate gyrus of

αCaMKII± mice. (A,B) Immunohistochemical analysis revealed reduced
GluR2 expression in the dentate gyrus of the mutant mice. GluR2
immunoreactivity was quantified based on histochemical staining in the
hippocampal subfields of αCaMKII± mice (B) Values represent
fluorescence intensity normalized to that in the granule cell layer of
wild-type mice and are given as the mean ± SEM of the analysis based on
the results of four mice. Asterisks indicate statistically significant
differences: **p < 0.01 (Student’s t -test). (C) GluR2 is expressed in some
hilar interneurons of the mutants. Arrowheads indicate examples of
GluR2-labeled hilar interneurons. DG, dentate gyrus; GCL, granule cell layer;
IGL, internal granule cell layer; ML, molecular layer; Or, oriens layer; PCL,
Purkinje cell layer; Py, pyramidal cell layer; Rad, radiatum layer.

their generation. Most of the GluR1- or GluR2-positive cells co-
expressed the mature granule cell marker calbindin. Furthermore,
GluR1 and GluR2 immunoreactivities were drastically decreased
in the dentate gyrus of αCaMKII± mice, in which almost all the
granule cells remain in the immature state (Yamasaki et al., 2008).
Together these results indicate that GluR1 and GluR2 are expressed
mainly in mature granule cells during their development and sug-
gest that GluR1 and GluR2 are useful markers for mature granule
cells.

USEFULNESS OF GLuR1 AND GLuR2 AS MATURATION MARKERS OF
DENTATE GRANULE CELLS
Calbindin is generally used as a mature granule cell marker, and
is widely and strongly expressed in the hippocampal formation,
including the dentate gyrus, CA regions, and interneurons (Kem-
permann et al., 1997; Duan et al., 2008; Zhao et al., 2008). In the
present study, GluR1 and GluR2 expression was observed in more
than 98% of calbindin-positive mature granule cells. In addition,
GluR1 and GluR2 were rarely expressed in Ki-67-positive prog-
enitor cells and calretinin-positive immature granule cells. These
findings indicate that GluR1 and GluR2 can be used as mark-
ers for mature granule cells. To confirm the usefulness of GluR1
and GluR2 as dentate granule cell maturation markers, we investi-
gated their expression patterns in αCaMKII± mice. We previously
reported that almost all of the neurons in the dentate gyrus of
αCaMKII± mice fail to mature at molecular, morphological, and

electrophysiological levels (Yamasaki et al., 2008). At the molec-
ular level, both DNA array and immunohistochemical analyses
revealed that the expression of calbindin and tryptophan 2,3-
dioxygenase was drastically reduced in the dentate gyrus of these
mutant mice (Yamasaki et al., 2008; Hagihara et al., 2009; Ohira
et al., 2010). Electrophysiological studies indicated that dentate
granule cell maturity in the mutant mice is characterized by an
increased input resistance, high excitability, and a reduced spike
latency. In particular, increased input resistance was inversely cor-
related with granule cell maturation, and is a proposed index of
maturity (Ye et al., 2005). In the present study, GluR1 and GluR2
expression was strikingly attenuated in the granule cells of these
mutant mice, and their expression patterns in the hippocampus
of adult αCaMKII± mice were similar to those in naive neonatal
mice, in which GluR1 and GluR2 expression was low in the dentate
gyrus (Figures 4C and 5A). These findings suggest that GluR1 and
GluR2 expression is closely correlated to the neuronal maturation
state and that GluR1 and GluR2 are useful markers for mature
granule cells.

We further investigated whether GluR1 was expressed in non-
neuronal cells. Increasing evidence suggests that glutamate recep-
tors are expressed not only in neurons, but also in glial cells.
Although GluR2/3 is expressed in astrocytes in the juvenile mouse
hippocampus (Seifert et al., 1997) and in the mouse spinal cord
(Brand-Schieber et al., 2004), weak GluR1 labeling in hypertrophic
astrocytes appears after transient ischemia (Gottlieb and Matute,
1997). In the present study, no GFAP-positive astrocytes showed
obvious GluR1 expression in the intact adult hippocampus. The
lack of GluR1-positive microglial cells observed in this study is
consistent with a previous report that microglial cells express vari-
ous types of glutamate receptors,but not GluR1 (Noda et al., 2000).
Taken together, these findings suggest that the selective expression
of GluR1 in the dentate granule cells reflects the maturity of the
cells.

GluR expression might be correlated with synaptic integration.
Granule cells begin to profoundly express GluR1 at around 3 weeks
after cell division. Many lines of evidence indicate that synaptic
integration of adult-born neurons occurs at the same period of
time. Electrophysiological and morphological studies reveal that
new neurons receive their first glutamatergic input on dendritic
spines at the end of the second week after birth (Espósito et al.,
2005; Ge et al., 2006; Zhao et al., 2006). The new neurons project
their first glutamatergic output onto area CA3 during the same
period of time (Faulkner et al., 2008; Toni et al., 2008). Between
3 and 6 weeks of age, adult-born neurons show increased synaptic
plasticity (Schmidt-Hieber et al., 2004; Ge et al., 2007). Therefore,
GluR1 expression might also correlate with synaptic integration
during granule cell maturation.

POSSIBLE FUNCTIONAL ROLE OF GLuR EXPRESSED IN MATURE
DENTATE GRANULE CELLS
The subunit composition of AMPA receptor channels deter-
mines their permeability properties. GluR1 and GluR3 form
Ca2+-permeable channels, whereas GluR2, expressed alone or
in combination with GluR1 or GluR3, forms channels that are
Ca2+-impermeable (Hollmann et al., 1991; Hume et al., 1991;
Burnashev et al., 1992). Electrophysiological studies using ligand
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FIGURE 7 | Reduced expression of pre- and post-synaptic markers in

the granule cells of αCaMKII± mice. (A–C) Immunoblotting analysis
revealed that GluR1 expression was greatly reduced in the dentate gyrus
of αCaMKII± mice compared to that of their wild-type littermates.
Dissected dentate gyri of the mice were processed for immunoblotting
analysis, and representative images are shown (A). GluR1 (B) and PSD95
(C) expression levels were quantified. Values represent band intensity as a
ratio of αCaMKII± mice to wild-type mice and are given as the
mean ± SEM of the analysis based on the results of three mice. To correct
for differences in loading, individual values were normalized to β-actin
measured in the same blot. Asterisks indicate statistically significant

differences: *p < 0.05 (Student’s t -test). (D) Immunostaining revealed that
the expression of a postsynaptic marker, PSD95, was downregulated in
both the granule cell and molecular layers of the mutants. (E,F) In the
mutants, expression of a presynaptic marker, synaptophysin, was also
decreased in mossy fiber terminals within the stratum lucidum of CA3
[arrows in (E)]. Synaptophysin immunoreactivity in CA3 was quantified (F).
Values represent fluorescent intensity as a ratio of αCaMKII± mice to
wild-type mice and are given as the mean ± SEM of the analysis based on
the results of three mice. Asterisks indicate statistically significant
differences: **p < 0.01 (Student’s t -test). g, Granule cell layer; h, hilus; m,
molecular layer; p, pyramidal cell layer.

application or perforant path stimulation of hippocampal slices
demonstrate an association between AMPA receptor properties
and dentate granule cell maturation. In addition, peak AMPA
current amplitudes in granule cells change with cell age (Liu
et al., 1996; Ye et al., 2000, 2005). Granule cells at the earliest

stage of their generation have exclusively N -methyl-d-aspartate
(NMDA) currents evoked by medial perforant path stimulation
and progressively acquire AMPA currents with maturation. Peak
NMDA and AMPA currents both increase as the cells mature,
whereas the ratio of NMDA to AMPA currents decreases (Liu
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FIGURE 8 | GluR1 and GluR2 expression in the neonatal dentate gyrus.

(A,B) GluR1 (A) and GluR2 (B) immunostaining in the neonatal hippocampus.
(C–E) Co-labeling of GluR1 with Ki-67, neural progenitor cells (C), calretinin,

immature granule cells (D), or calbindin, mature granule cells (E) in the
dentate gyrus. (F–H) Co-labeling of GluR2 with Ki-67 (F), calretinin (G), and
calbindin (H). g, Granule cell layer; h, hilus; m, molecular layer.

et al., 1996; Ye et al., 2000, 2005). Thus, dentate granule cells show a
maturational shift from NMDA-dominated to AMPA-dominated
glutamatergic transmission. Taken together, these findings indi-
cate that AMPA receptors mediating Ca2+ permeability and peak
currents are tightly correlated with granule cell maturation. Based
on these facts, the attenuated expression of GluR1 in the dentate
granule cells of αCaMKII± mice (Figures 4A–D) raises the possi-
bility that the impaired Ca2+-permeability in dentate granule cells
underlies the deficit in hippocampus-dependent spatial working
memory.

GLuR IN NEUROPATHOLOGIC CONDITIONS
Accumulating evidence indicates that dysfunctional glutamatergic
neurotransmission is associated with the pathophysiology of var-
ious neuropathologic conditions, such as ischemia, epilepsy, and
psychiatric disorders.

Transient global brain ischemia results in a remarkable decrease
in GluR1, concomitant with a remarkable decrease in GluR2 in the
hippocampus and each hippocampal subregion (Dos-Anjos et al.,
2009; Montori et al., 2010). Electrophysiological studies of the
postischemic brain indicate that GluR1/GluR2 ratios affect AMPA
excitatory postsynaptic currents and suggest that the control of
long-term changes in Ca2+-permeability might be a potential
therapeutic target (Noh et al., 2005).

Alterations in GluR expression in the hippocampus have been
reported in the human epileptic brain (de Lanerolle et al., 1998;
Ying et al., 1998) and in animal epilepsy models (Tang et al.,
2005; Solomonia et al., 2010). In many cases, increased GluR1
expression is observed in the hippocampus of patients. Extensive
evidence suggests that the hippocampus is a key structure involved
in the initiation and propagation of temporal lobe seizures (Sper-
ling et al., 1992). In particular, the dentate gyrus is believed to act
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as a tightly regulated filter limiting inputs into the hippocampus,
because dentate granule cells are strongly inhibited by multiple
inputs from various interneurons (Heinemann et al., 1992; Loth-
man et al., 1992). Breakdown of the inhibition is hypothesized to
induce the initiation and/or propagation of seizures (Heinemann
et al., 1992; Lothman et al., 1992). In this process, alterations in
GluR1 expression may contribute to enhance the glutamatergic
response of these neurons, which is suggested to contribute to the
process of epileptogenesis.

Knockout mice lacking the GluR1 subunit exhibit behavioral
abnormalities, such as impaired working memory, locomotor
hyperactivity in the open field, and deficits in prepulse inhibi-
tion, suggesting an association between GluR1 and certain symp-
toms of schizophrenia (Schmitt et al., 2005; Wiedholz et al.,
2008; Sanderson et al., 2009; Erickson et al., 2010). We previously
reported that αCaMKII± mice exhibit behavioral abnormali-
ties such as severe working memory deficits and an exaggerated
infradian rhythm, similar to symptoms observed in patients with
schizophrenia, bipolar mood disorder, and other psychiatric dis-
orders (Yamasaki et al., 2008; Matsuo et al., 2009). GluR1 and
GluR2 expression was drastically downregulated in the dentate
granule cell in mutant mice. Thus, impaired GluR function in
these cells may be associated with psychiatric disorder-associated
behaviors. Despite a working memory deficit in GluR1−/− mice
and αCaMKII± mice, acquisition of reference memory tasks
appears to be normal (Yamasaki et al., 2008; Sanderson et al.,
2009). These similarities in behavioral phenotypes suggest that
GluR1 expression in the hippocampus, especially in the den-
tate gyrus, is critical for the acquisition of short-term spatial
memory.

GluR1 is also related to stress-related psychiatric disorders such
as major depression. Schmidt et al. (2010) reported that genetic
variations in the GluR1 subunit are linked to stress vulnerabil-
ity and that vulnerability could be predicted by both short-term
spatial memory, an AMPA receptor-dependent behavior, and the
AMPA receptor subunit ratio in the hippocampus. These findings
suggest that the expression and function of GluR1 expressed in
hippocampus and/or dentate gyrus are linked with psychiatric dis-
orders. Thus, GluR1 in the dentate gyrus may serve as a promising
molecular biomarker for these disorders.

MATERIALS AND METHODS
ANIMALS
All animal treatments, procedures, and care were approved by the
Institutional Animal Care and Use Committee of Fujita Health
University (#I0723), based on the Law for the Humane Treatment
and Management of Animals (2005) and Standards Relating to the
Care and Management of Laboratory Animals and Relief of Pain
(2006). Every effort was made to minimize the number of animals
used. Neonatal (5-day-old) and adult (8- to 14-week-old) male
C57BL/6J mice (Charles River Laboratories International Japan
Inc., Shiga, Japan) were used in this study. We used αCaMKII±
mice obtained from Jackson Laboratories (Bar Harbor, ME, USA),
which were also used in our previous study (Yamasaki et al.,
2008). Heterozygous mice were crossed with C57BL/6 mice for
at least 16 generations. We used heterozygous αCaMKII-knockout
mice, because it is difficult to obtain homozygotes due to mating

problems between heterozygous male and heterozygous female
mice. The animals were maintained under a normal light–dark
cycle (12 h light/12 h dark) and had free access to water and food.

WESTERN BLOT ANALYSIS
Adult (12- to 14-week-old) αCaMKII± mice and their wild-type
littermates were deeply anesthetized and their brains were removed
and immersed in ice-cold phosphate buffered saline (PBS). The
dentate gyrus was dissected out (Hagihara et al., 2009) and stored
at −80˚C until use. The isolated tissue was homogenized in lysis
buffer (Sigma-Aldrich, St. Louis, MO, USA) containing a pro-
teinase inhibitor cocktail (Roche Applied Science, Indianapolis,
IN, USA). Protein homogenates were separated by sodium dode-
cyl sulfate-polyacrylamide gel electrophoresis and transferred to
polyvinylidene difluoride membranes. Membranes were preincu-
bated in 5% skim milk in PBS containing 0.05% Tween-20 (PBST)
for 1 h at room temperature, and incubated overnight at 4˚C in pri-
mary antibodies, rabbit anti-GluR1 antibody (AB1504; Millipore,
Temecula, CA, USA), mouse monoclonal anti-PSD95 antibody
(MA1-046; Affinity BioReagents, Golden, CO, USA), and mouse
anti-β-actin antibody (A5316; Sigma-Aldrich), diluted in PBST.
They were then incubated with a secondary antibodies conjugated
with Alexa488 or Alexa647 (Molecular Probes, Eugene, OR, USA)
diluted with PBST at room temperature for 1 h. Immunoreactivity
was visualized by scanning the membranes with a Typhoon 9400
fluorescence scanner (GE Healthcare, Buckinghamshire, UK).

BrdU LABELING
Eight-week-old C57BL/6J mice were injected intraperitoneally
with BrdU (Sigma-Aldrich; 50 mg/kg body weight) every 24 h
over 5 days to label newborn neurons. At 1, 2, 3, and 4 weeks
after the last BrdU injection, animals were deeply anesthetized
and transcardially perfused with 4% paraformaldehyde in PBS.

IMMUNOHISTOCHEMISTRY
Adult (10- to 14-week-old) animals were deeply anesthetized and
transcardially perfused with 4% paraformaldehyde in PBS. The
brains were dissected, immersed overnight in the same fixative,
and transferred to 30% sucrose in PBS for at least 3 days for cry-
oprotection. Neonatal (5-day-old) mice were deeply anesthetized
and the brains were dissected followed by immersion in the fix-
ative and cryoprotection. Brains were mounted in Tissue-Tek
(Miles, Elkhart, IN, USA), frozen, and cut into 8-μm thick coro-
nal sections using a microtome (CM1850; Leica Microsystems,
Wetzlar, Germany).

In this study, we used the following antibodies as primary
antibodies: mouse monoclonal antibody for calbindin (300;
Swant, Bellinzona, Switzerland), calretinin (6B3; Swant), GAD67
(MAB5406; Millipore), GFAP (G3893; Sigma-Aldrich), NeuN
(MAB377; Millipore), PSD95 (MA1-046; Affinity BioReagents),
and synaptophysin (S5768; Sigma-Aldrich); rabbit polyclonal anti-
body for GluR1 (AB1504; Millipore) and GluR2 (AB1768; Milli-
pore); rat monoclonal antibody for BrdU (OBT0030; AbD Serotec,
Oxford, UK) and F4/80 (T2008; BMA Biomedicals, Augst, Switzer-
land), Ki-67 (M7249; DAKO, Carpinteria, CA, USA). The rabbit
polyclonal anti-GluR1 antibody used in this study was raised
against a 13-amino acid peptide (SHSSGMPLGATGL), corre-
sponding to amino acids 894-906 of rat GluR1 protein. This
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anti-GluR1 antibody recognized a single band corresponding to
the molecular weight ∼110 kDa in Western blot analysis of mouse
dentate gyrus (Figure 7A and manufacturer’s technical informa-
tion). Moreover, this antibody has been characterized by light and
electron microscopic techniques (Das et al., 2008; Nedelescu et al.,
2010), and staining with this antibody is completely absent in
GluR1 knockout mice (Zamanillo et al., 1999). The anti-GluR2
antibody used in this study was raised against a 16-amino acid
peptide (VAKNPQNINPSSSQNS), corresponding to amino acids
827–842 of rat GluR2 protein. Based on both Western blot and
immunocytochemical analysis (Petralia et al., 1997; Kienzler et al.,
2009), this anti-GluR2 antibody did not recognize any other GluR
subunits.

For immunostaining of GluR2, sections were incubated at 80˚C
for 30 min in 10 mM citrate buffer, pH 9.0, to retrieve and enhance
their antigenicities and staining intensities. When double-staining
with BrdU was performed, the sections were further incubated at
4˚C for 10 min in 0.1 N HCl and then at 37˚C for 30 min in 2 N HCl.
After washing in PBS, the sections were preincubated for 30 min
at room temperature in 5% skim milk in PBST, and then incu-
bated overnight at 4˚C in PBS containing the primary antibodies.
Immunoreactivity to the antigen was visualized using Alexa594-
or Alexa488-conjugated secondary antibodies (Molecular Probes).
Nuclear staining was performed with Hoechst 33258 (Polyscience,
Warrington, PA, USA). We used a confocal microscope (LSM 510

META; Zeiss, Göttingen, Germany) to obtain images of the stained
sections.

QUANTIFICATION
Analysis of immunostaining images was performed using
ZEN software (Zeiss). A minimum of 200 BrdU-, calbindin-,
calretinin-, or Ki-67-positive cells was examined for co-labeling
with GluR in each animal and at each time point. In the GluR co-
labeling assay, we identified cells containing an apparent nucleus-
surrounding structure as GluR-positive cells after subtracting the
background fluorescence. Background fluorescence was defined
as the signal intensity of sections incubated without primary
antibodies. Data are presented as the mean percentage of BrdU-
positive cells co-labeled with GluR (mean ± SEM). The quantifica-
tion of double-positive cells was analyzed with a one-way ANOVA.
If a significant main effect was detected by ANOVA, a Tukey’s
post hoc test was used to determine the source of the detected
significance in the ANOVA. The mean fluorescence intensity of
the GluR immunostaining in the region of interest was measured
using ZEN software (Zeiss). At least six sections from each animal
were processed for quantification. GluR1 expression level assessed
by Western blotting was quantified by measuring the fluorescence
intensity taken from each band using ImageQuant TL software
(GE Healthcare). Statistical analysis was performed by Student’s
t -test.
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