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Background: The Rotation Invariant Vision Transformer (RViT) is a novel deep

learning model tailored for brain tumor classification using MRI scans.

Methods: RViT incorporates rotated patch embeddings to enhance the accuracy

of brain tumor identification.

Results: Evaluation on the Brain Tumor MRI Dataset from Kaggle demonstrates

RViT’s superior performance with sensitivity (1.0), specificity (0.975), F1-score

(0.984), Matthew’s Correlation Coe�cient (MCC) (0.972), and an overall accuracy

of 0.986.

Conclusion: RViT outperforms the standard Vision Transformer model and

several existing techniques, highlighting its e�cacy inmedical imaging. The study

confirms that integrating rotational patch embeddings improves the model’s

capability to handle diverse orientations, a common challenge in tumor imaging.

The specialized architecture and rotational invariance approach of RViT have

the potential to enhance current methodologies for brain tumor detection and

extend to other complex imaging tasks.

KEYWORDS
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1 Introduction

The prevalence of brain tumors varies globally, with primary brain tumors representing

17% of all cancers and having an incidence of 39 per 100,000 person-years (Newton

et al., 2022). In the United States alone, around 80,000 new primary brain tumors

are diagnosed annually, with an approximate rate of 24 cases per 100,000 population

(Reynoso-Noverón et al., 2021). Pediatric brain tumors, a significant cause of mortality

in children, have an annual incidence of about 3 per 100,000 children (Abbas et al.,

2021). The prevalence of brain tumors is influenced by factors such as age, gender, race,

and region, with variations observed in different populations (Shobeiri et al., 2023).

Wijethilake et al. (2021) in their paper explores the critical task of survival analysis in

glioma patients, highlighting the integration of imaging and genetic data through advanced

technologies to improve survival estimation. Furthermore, metastatic brain tumors, which

are more common in adults, can arise from various primary neoplasms, with lung,

breast, skin, and gastrointestinal tract tumors being common sources (Abolanle et al.,

2020). Magnetic Resonance Imaging has become an indispensable tool in the detection

and characterization of brain tumors (Byeon et al., 2024). Unlike CT scans, MRI uses

powerful magnets and radio waves to create detailed images of the brain and surrounding
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tissues. One of the significant advantages of MRI over CT is its

ability to provide highly detailed and multi-planar images without

exposing the patient to ionizing radiation. In comparison to other

modalities such as CT scans and PET scans, MRI offers superior

soft tissue contrast, making it particularly adept at distinguishing

between healthy brain tissue and abnormal growths (Xu and Bai,

2023). This enables clinicians to accurately locate and assess the

size, shape, and precise boundaries of tumors, providing crucial

information for treatment planning. Dasanayaka et al. (2022b)

in their paper discusses brain tumors, highlighting the difference

between benign and malignant types, and notes the low survival

rates for aggressive forms like Glioblastoma due to challenges

in early diagnosis. Moreover, MRI’s capability to detect minute

changes in tissue composition and vascularity allows for the

differentiation of benign and malignant tumors. This is especially

important in determining the aggressiveness of the tumor and

guiding treatment decisions.

Diagnosing brain tumors using MRI is crucial for treatment

planning and patient outcomes (Wang et al., 2021). Various

methods have been proposed to enhance the accuracy and efficiency

of brain tumor classification. Deep learning techniques, such as

DenseNet-ResNet based U-Net frameworks and CRNN models,

have shown promising results in extracting features from brain

tumor MRI images (Wang C. et al., 2023). Additionally, computer-

based techniques utilizing MRI imaging have been developed

to detect tumor regions in the brain, categorizing them into

healthy brains and those with malignant or benign tumors

(Hosseini Saber andHosseini Saber, 2023). Incorporating advanced

imaging techniques like functional MRI, diffusion tensor imaging,

perfusion imaging, and spectroscopy aids in differentiating tumor

progression from treatment-related changes, enhancing diagnostic

capabilities and treatment monitoring (Jordan and Gerstner,

2023). Utilizing deep learning methods like CNN and DWT

analysis have shown significant improvements in diagnosing brain

tumors, particularly gliomas, with high accuracy and sensitivity

(Papadomanolakis et al., 2023). In a recent work by Dasanayaka

et al. a Tumor-Analyser is proposed which is a web application

that uses interpretable machine learning to classify brain tumors

from MRI and whole slide images. It addresses the black-box

nature of deep learning models by providing transparent, human-

understandable visualizations of the decision-making process

(Dasanayaka et al., 2022a). Convolutional Neural Networks

(CNNs) in brain tumor analysis from MRI face limitations in

explicitly modeling long-term dependencies due to their inherent

locality of convolution operations. Thus, CNNs primarily capture

local features and have limited ability to model long-range

dependencies in images. Brain tumors can have complex spatial

relationships and dependencies that may not be effectively captured

by CNNs. This can hinder the accurate detection of complex

and low-contrast anatomical structures like gliomas in brain MRI

(Wang P. et al., 2023). Moreover, CNNs are not inherently invariant

to rotations, meaning that their performance can be affected

by the orientation of the brain tumors in the MRI scans. This

sensitivity to rotations can limit the robustness and reliability

of CNN-based classification models. Exploring innovative deep

learning architectures like Vision Transformers can offer promising

solutions to enhance the accuracy and robustness of brain

tumor detection in MRI scans by addressing the limitations

of CNNs.

The motivation for Vision Transformers (ViT) in this domain

stems from their ability to capture global features and long-

range dependencies effectively, which is crucial for precise brain

tumor classification (Ferdous et al., 2023). Vision Transformers,

by leveraging self-attention mechanisms, excel in extracting global

information, thus enhancing the classification accuracy of brain

tumors compared to CNNs. Additional, investigating ways to

incorporate rotation invariance into ViTs can enhance their

robustness and generalization capability. Developing rotation-

invariant ViTs can lead to improved classification performance,

especially when dealing with brain tumors that may appear in

different orientations. The shift toward Vision Transformers in

brain tumor analysis aims to overcome the limitations of CNNs

in modeling long-range dependencies, rotational invariance and

capturing global features for improved accuracy in classification

tasks. Thus, the contributions of the proposed method could be

summarized as follows:

• To design a rotation invariant ViT (RViT) architecture tailored

for the purpose of detecting brain tumors.

• To explore methodologies like rotated patch embedding,

whereby rotated iterations of the image are explicitly encoded

and analyzed by the RViT.

• To demonstrate the effectiveness and competitiveness of

the rotational invariant RViT model in comparison to

existing state-of-the-art methods, highlighting its potential for

improved brain tumor classification performance.

2 Related works

The recent advancements in Vision Transformers (ViTs) have

ushered in a paradigm shift in the field of medical imaging,

particularly for brain tumor diagnosis and analysis from MRI

scans. Unlike traditional convolutional neural network (CNN)-

based approaches, ViTs offer novel methodologies that promise

to enhance accuracy, efficiency, and interpretability in medical

diagnostics.

Pioneering studies have demonstrated the potential of ViTs in

this domain. Poornam and Angelina (2024) introduced VITALT,

an innovative system that combines ViTs with attention and linear

transformation mechanisms for brain tumor detection, showcasing

superior performance in classifying tumors from MRI samples and

setting a new benchmark for future research. Jahangir et al. (2023)

compared the effectiveness of ViTs and CNN-based classifiers,

highlighting the unique advantages of ViTs in capturing intricate

patterns and features from medical images.

Addressing data scarcity and variance, a key challenge

in medical imaging, Haque et al. (2023) proposed a novel

approach integrating DCGAN-based data augmentation with ViTs,

demonstrating the transformative potential of combining GANs

and ViTs for enhanced diagnostic accuracy. Bhimavarapu et al.

(2024) developed a system that couples an improved unsupervised

clustering approach with a machine learning classifier, aiming to

enhance the accuracy of brain tumor detection and categorization.

Frontiers inNeuroinformatics 02 frontiersin.org

https://doi.org/10.3389/fninf.2024.1414925
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Krishnan et al. 10.3389/fninf.2024.1414925

Further advancements in the field include Natha et al. (2024)

multi-model ensemble deep learning approach for automated brain

tumor identification, and (Gade et al., 2024) optimized Lite Swin

transformer model combined with a barnacle mating optimizer

for hyper-parameter tuning, achieving higher classification results

and processing efficiency compared to existing transfer learning

methods.

Liu et al. (2023) employed an ensemble of ViTs for glioblastoma

tumor segmentation, exemplifying the power of combining

multiple ViT models to improve segmentation outcomes.

Mahmud et al. (2023) proposed a new CNN architecture

for brain tumor detection using MRI data and compared its

performance to established models like ResNet-50, VGG16, and

Inception V3.

In a related work in the field of Alzheimer’s Disease diagnosis,

Lei B. et al. (2023) proposed FedDAvT, a federated domain

adaptation framework using Transformers to diagnose Alzheimer’s

disease (AD) from multi-site MRI data. They align self-attention

maps and use local maximum mean discrepancy to address

data heterogeneity while preserving privacy (Lei B. et al., 2023).

Similarly, Zuo et al. (2024) develop PALH, a prior-guided

adversarial learning model with hypergraphs, to predict abnormal

brain connections in AD using fMRI, DTI, and MRI. PALH

incorporates anatomical knowledge as prior distribution, employs

a pairwise collaborative discriminator, and utilizes a hypergraph

perceptual network to fuse multimodal representations. Both

studies achieve promising results and provide insights into AD

mechanisms (Zuo et al., 2024).

Interdisciplinary applications of ViTs have also emerged, with

Babar et al. (2023) unifying genetics and imaging through the

classification of MGMT genetic subtypes using ViTs, facilitating

personalized treatment plans. Liao et al. (2023) introduced an

improved Swin-UNet for brain tumor segmentation, integrating

the self-attention mechanism of Swin Transformers with the robust

architecture of UNet, pushing the boundaries of medical image

segmentation.

Datta and Rohilla (2024) presented a pixel segmentation

and detection model for brain tumors, utilizing an aggregation

of GAN models with a vision transformer, underscoring the

versatility of ViTs in enhancing segmentation precision, especially

when combined with advanced data augmentation techniques.

Wang P. et al. (2023) offered a comprehensive review on the

application of Vision Transformers in multi-modal brain tumor

MRI segmentation, serving as a critical resource for understanding

the state-of-the-art transformer-based methodologies and

their implications for future advancements in medical image

segmentation.

These studies collectively present a thorough examination

of the current advancements and future potential in employing

Vision Transformers for the analysis of brain tumors from MRI

scans. Each research contribution introduces distinct viewpoints

and methodologies, enhancing our understanding and capabilities

in the field of medical imaging diagnostics. The development

of a rotationally invariant Vision Transformer (ViT) specifically

for the classification of brain tumors in MRI scans is motivated

by the variability and critical nature of medical imaging

analysis. Conventional imaging techniques often require extensive

preprocessing to standardize orientations, which can lead to

errors or loss of essential information. A rotationally invariant

ViT addresses this issue directly by precisely detecting and

classifying brain tumors regardless of their orientation in the

scan. This functionality not only improves diagnostic precision but

also simplifies the preprocessing workflow, resulting in reduced

time and resources required for data preparation. Despite the

introduction of various ViT-based methods for brain tumor

identification, the exploration of rotational invariance remains

unexplored.

3 Methodology

ViT represents a significant shift in how neural networks are

applied to visual data, diverging from the traditional convolutional

neural network (CNN) approach. ViT adopts the transformer

architecture, predominantly used for natural language processing

tasks. The core idea is to treat an image as a sequence of fixed-

size patches, akin to words in a sentence, and apply a transformer

model to capture the complex relationships between these patches.

This method allows for attention mechanisms to weigh the

importance of different image parts dynamically, enabling the

model to focus on relevant features for classification or other tasks.

The ViT model demonstrated remarkable performance on image

classification benchmarks, outperforming state-of-the-art CNNs in

certain scenarios, especially when trained on large-scale datasets.

This breakthrough underscores the versatility of transformer

models and their potential to generalize across different types of

data beyond text (Dosovitskiy et al., 2020).

3.1 Vision Transformer

The core idea behind ViT is to treat an image as a sequence

of fixed-size patches (similar to words in a sentence), apply a

transformer to these patches, and use the transformer’s output

for classification tasks. This method leverages the transformer’s

capability to capture long-range dependencies, which is beneficial

for understanding complex images. The operation of ViT could be

break down to following tasks:

3.1.1 Image to patches
An image is split into N patches. Each patch is of size P × P,

and the image is of sizeH ×W × C, whereH andW are the height

and width, and C is the number of channels. Each patch is flattened

and linearly projected to a higher dimensional space. Additionally,

a learnable embedding is added to each patch embedding.

3.1.2 Position embeddings
Since the transformer architecture does not inherently process

sequential data, position embeddings Epos are added to the patch

embeddings Epatch to retain positional information. This is similar

to positional encoding in NLP tasks. Hence the embedded patches

EDP could be formulated as in Equation (1).

EDP = Epatch + Epos (1)
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FIGURE 1

Proposed rotation invariant Vision Transformer for brain tumor classification from MRI.

3.1.3 Transformer encoder
The transformer encoder TFE processes the sequence of

embedded patches and returns processed output TFO. It consists

of multiple layers, each with multi-head self-attention and feed-

forward networks, allowing the model to capture complex relations

between patches as given in Equation (2).

TFO = TFE(EDP) (2)

3.1.4 Classification head
The output of the transformer encoder is passed to a

classification head, typically a linear layer, to predict the class labels.

Often, the output corresponding to a special class token added to

the sequence is used for classification as given in Equation (3).

y = Softmax(W · h[CLS]) (3)

Here, W represents the weights of the linear layer, and h[CLS]
represents the output of the transformer encoder corresponding to

the class token.

3.2 Proposed rotation invariant ViT

In computer vision, the performance of a model can be

significantly affected by variations in the input data, such as

changes in orientation. Most convolutional neural networks

(CNNs) and Vision Transformers (ViTs) are not inherently

rotation-invariant, meaning that if an image is rotated, the

model may not recognize the objects in the image as effectively

as it does when they are in their original orientation (Lei

T. et al., 2023). The motivation for rotating images and

then performing patch embedding for rotational invariance is

to make the model more robust to such rotations without

the need for extensive data augmentation or more complex

model architectures.

Rotational invariance is a desirable property for many

computer vision tasks, as objects in images can appear in different

orientations without changing their semantic meaning. However,

traditional Vision Transformers (ViTs) are not inherently

invariant to rotations, which can limit their performance

and generalization ability when dealing with rotated objects

(Heo et al., 2024; Su et al., 2024). This limitation motivates

the development of rotational invariant ViTs. By explicitly

encoding rotated image patches and then performing input

enbedding, ViTs can learn to be invariant to rotations of the

input image. This is achieved by generating rotated versions of

the images and assigning them unique rotation embeddings.

Figure 1 illustrates the novel approach of the proposed

rotation invariant ViT(RViT) for brain tumor classification.

The components of the block diagram are explained further in the

following sections.

3.2.1 Generating rotated patches
Let X ∈ R

H×W×C be the input image, where H, W,

and C denote the height, width, and number of channels,

respectively. The image is divided into a grid of fixed-

size patches Pi ∈ R
N×(P2·C), where N is the number of

patches, P is the patch size, and P2 · C is the flattened

patch dimension.

Furthermore, for the same image X, we generate its rotated

versions X(j), where j ∈ {0, 1, 2, 3, . . .} corresponds to the different

rotation angles θ . The rotated image tensor X(j) can be represented

as X(j) ∈ R
H×W×C after rotation, and then we extract and flatten

patches as before, resulting in R
(j)
i ∈ R

N×(P2·C).
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3.2.2 Patch embedding

Each rotated patch R
(j)
i of the original input X(j) is linearly

projected using an embedding matrix E ∈ R
(P2·C)×D, where D is

the embedding dimension.

The patch embedding Z
(j)
i for each rotation j is obtained as

given in Equation (4):

Z
(j)
i = R

(j)
i E (4)

3.2.3 Averaging the embeddings
For rotational invariance, we take the average of the

embeddings from the original and rotated patches. If we have k

rotations, the final embedding for a patch is given by Equation (5):

Zi =
1

k

k−1∑

j=0

Z
(j)
i (5)

This averaged embedding Zi is then passed through the

subsequent layers of the Vision Transformer for further processing.

3.2.4 Forward pass through transformer encoder
The sequence of embedded patches is passed through L layers

of the transformer encoder as in Equation (6):

TFO = TFE(Zi) (6)

Each Transformer Encoder Layer typically consists of multi-

head self-attention and feed-forward neural networks. The output

of the last transformer encoder layer is used by the classification

head as shown in Equations (2) and (3):

Generally, the class token is typically the first token in the

sequence after the last encoder layer, which is used as the

representation for classification. The Classifier Head can be a

simple linear layer or a more complex neural network. This results

in the final output y, which is the class prediction for the input

image X. The rotational invariance technique used in the RViT

model is also outlined in Algorithm 1.

4 Experimental analysis

For the experimental validation, we utilized the Brain Tumor

MRI Dataset available on Kaggle at https://www.kaggle.com/

datasets/masoudnickparvar/brain-tumor-mri-dataset. This dataset

containsMRI scans of brain tumors, specifically focusing on glioma

tumors and non-tumor cases. From the dataset, we selected the

glioma and non-tumor MRI images for our analysis. The training

set consists of 1,321 glioma images and 1,595 non-tumor images

as provided in the Kaggle dataset, providing a substantial amount

of data for training our models (Nickparvar, 2021). For the testing

set, we allocated 300 glioma images and 405 non-tumor images to

evaluate the performance and generalization ability of the trained

models. The training data was directly sourced from the dataset and

split into an 80% training set and a 20% validation set for model

training and evaluation. The testing images were used as provided

Hyperparameters: PATCH_SIZE, EMBEDDING_DIM,

NUM_HEADS, MLP_DIM Input: Batch of images

X = {X1,X2, ...,XN} Output: Classification predictions

Y = {y1, y2, ..., yN}
1: procedure CREATEPATCHEMBEDDINGS(image, patch_size)

2: patches← Split image into patches of size

patch_size

3: patches← LinearProjection(patches)

4: return patches

5: end procedure

6: procedure ADDPOSITIONEMBEDDINGS(patches)

7: position_embeddings← Learnable position

embeddings

8: patches← patches+ position_embeddings

9: return patches

10: end procedure

11: procedure TRANSFORMERENCODER(patches,

embedding_dim, num_heads, mlp_dim)

12: attended_patches← MultiHeadAttention(patches,

embedding_dim, num_heads)

13: patches← LayerNorm(patches+ attended_patches)

14: mlp_output← MLP(patches, embedding_dim, mlp_dim)

15: patches← LayerNorm(patches+mlp_output)

16: return patches

17: end procedure

18: procedure ROTATIONALINVARIANTVISIONTRANSFORMER(I)

19: for all Xi ∈ X do

20: for all θ ∈ {0◦, 90◦, 180◦, 270◦} do

21: rotated_image← Rotate Ii by angle θ

22: patchesθ ← CreatePatchEmbeddings(rotated_image,

PATCH_SIZE)

23: patchesθ ← AddPositionEmbeddings(patchesθ)

24: end for

25: averaged_patches← Aggregate(patches0◦ , patches90◦ ,

patches180◦ , patches270◦)

26: encoded_patches← TransformerEncoder(averaged_

patches, EMBEDDING_DIM, NUM_HEADS, MLP_DIM)

27: pooled_features ← GlobalAveragePooling(encoded_

patches)

28: yi ← MLP(pooled_features, EMBEDDING_DIM, 2) ⊲

Output layer for binary classification

29: end for

30: return Y

31: end procedure

Algorithm 1. Rotation invariant Vision Transformer.

in the dataset, ensuring that the test cases represent the real-world

scenario. This approach maintains a balanced representation of

glioma and non-tumor images in both the training and testing

phases, facilitating robust model training and evaluation.

By utilizing the above mentioned dataset, we aim to develop

and validate our rotation invariant Vision Transformer (ViT)

model for accurate brain tumor classification, comparing its

performance against state-of-the-art deep learning architectures.

The dataset’s diverse collection of glioma and non-tumorMRI scans

serves as a reliable benchmark for assessing the effectiveness of our
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TABLE 1 Hyperparameters of RViT.

Parameter Description

Image size 224× 224

Patch Size 16

Patch embedding dimension 142

Depth 10

Number of heads 10

MLP size 480

Embedding integration Average

Batch size 32

Attention dropout 0.1

Optimizer Adam

Weight decay 0.01

Learning rate 0.001

TABLE 2 Hyperparameters of the Base-ViT.

Parameter Description

Image size 224× 224

Patch size 16

Patch embedding dimension 768

Depth 12

Number of heads 12

MLP size 1,024

Batch size 32

Attention dropout 0.1

Optimizer Adam

Weight decay 0.01

Learning rate 0.001

proposed approach in real-world clinical scenarios. The technical

implementation of the RViT and its variant models utilized an

RTX4000 GPU with 8 GB VRAM, 30 GB RAM, and an 8-core

CPU. The model was developed using PyTorch version 1.12, a

deep learning framework offering diverse functions and libraries for

model training and evaluation.

In the experimental analysis, our Rotation invariant Vision

Transformer (RViT) and a baseline Vision Transformer (Base-ViT)

were used for brain tumor detection. Both models were configured

with distinct hyperparameters as outlined in Tables 1, 2. For RViT

and Base-ViT, we set a standard patch size of 16. However, RViT had

a depth of 10 while Base-ViT had a depth of 12. Notably, the MLP

size for Base-ViT was set to 1,024, compared to RViT’s 480. The

parameters of Base-ViT are selected based on published literature

(Dosovitskiy et al., 2020). Each model was trained using Adam

optimizer, with an identical learning rate of 0.001 and weight decay

of 0.01.

Figure 2A illustrates the loss curve for the proposed approach

of using RViT. We could observe that training and validation loss

showing a decreasing trend over epochs indicates that the model is

learning effectively. Similarly, Figure 2B shows the accuracy curve

of the RViT showing an increasing trend over epochs indicating

that the model’s performance is improving. At the end of the

training and validation phase the model is stored for determining

the classification performance of the tumor detection based on test

dataset.

During the training of the Base-ViT model as illustrated in

Figure 3, both the loss and accuracy demonstrated improvement

over 25 epochs, with the training loss decreasing significantly and

the training accuracy reaching a steady value above 93%. The

validation loss and accuracy fluctuated but generally followed the

training trends, indicating good generalization without overfitting.

4.1 Ablation study

Our investigation of the RViT model through ablation studies

plays a crucial role in elucidating the importance of its architectural

elements. At the outset, we eliminated the rotated patch embedding

scheme, a key feature that enables the model to address rotational

variability in imaging data. This methodology usually consists of

partitioning the image into patches and implementing rotations to

account for the diversity in image orientation, a critical process for

precise classification endeavors in medical imaging.

Furthermore, we explored the impact of omitting depth-

wise convolutional layers from the architecture. Depth-wise

convolutions are an efficient variant of the standard convolution

that processes each input channel independently, thus reducing

computational complexity and preserving spatial hierarchies. Their

inclusion in Vision Transformers (ViTs) like ours is not standard

but can provide localized spatial filtering, which is beneficial for

tasks that require detailed spatial understanding, such as detecting

complex structures in MRI scans.

To quantify the effects of these modifications, we conducted

experiments across all variants of the RViT model. The results of

these experiments were captured in confusion matrices, displayed

in Figure 4 for the baseline ViT and our proposed RViT model,

and Figure 5 for the two variants of RViT. The matrices reveal

the models’ performance in distinguishing glioma from non-

tumor MRI scans. Figure 4B shows the superior performance of

the proposed RViT, with perfect identification of glioma cases

and a high true negative rate. In contrast, Figure 5 illustrates

the outcomes for the RViT variants, highlighting the decrement

in performance upon removing rotated patches and depth-wise

convolutions, as evidenced by increased false negatives and false

positives, respectively. These findings underscore the critical role

of rotational invariance and depth-wise convolutions in our RViT

model’s ability to accurately classify brain tumors.

The evaluation of the deep learning models as presented

in Tables 3, 4 showcases the performance and efficiency trade-

offs between the Base-ViT, the full RViT model, and its ablated

variants. The RViT outperforms the base Vision Transformer

in terms of accuracy (ACC), achieving a 0.986 score compared

to ViT’s 0.944. It also maintains high sensitivity and specificity,

although there is only a slight difference in sensitivity when

compared to the baseline ViT. This trade-off comes with
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FIGURE 2

(A) Loss and (B) accuracy curves for the proposed rotation invariant ViT (RViT).

FIGURE 3

(A) Loss and (B) accuracy curves for Base-ViT.

significant gains in model efficiency, as seen in Table 4, where

the RViT has considerably fewer parameters (7,527,612) compared

to the ViT’s 38,558,978, without a significant compromise on

performance metrics.

The ablation studies highlighted in RViT_Variant1 (No

Rotated Patch Embedding) and RViT_Variant2 (No Depth-

wise Convolution) show a marginal decrease in performance

metrics, including F1-score and Matthew’s Correlation Coefficient

(MCC), when depth-wise convolutions and rotational patch

embedding are removed. Notably, RViT achieves a higher

ACC than the baseline ViT, RViT_Variant1 and RViT_Variant2

demonstrates that rotational patch embedding contributes

to performance.

These findings are significant for clinical applications where

both accuracy and computational efficiency are crucial. The

reduced parameter count and shorter training time of the RViT

and its variants as shown in Table 4, as compared to the base

ViT, underscore the potential of these models for scalable and

efficient medical image analysis. The RViT model not only excels

in performance by offering high accuracy but also requires fewer

parameters and less training time compared to the baseline ViT

model experimented here.

The prediction results of the proposed RViT model, as depicted

in Figure 6, are a testament to its robustness. The model accurately

predicts the presence or absence of glioma in MRI images with an

accuracy score of 1.00. The top row of the figure presents cases

with glioma (True: 1), and the RViT model correctly identifies

them (Predicted: 1), showcasing its effectiveness in recognizing

complex tumor patterns. Similarly, the bottom row demonstrates

the model’s precision in identifying non-tumor images (True: 0)

with perfect accuracy (Predicted: 0). These results underline the

model’s capability to handle various imaging rotations, ensuring

high reliability in detecting brain tumors’a crucial requirement for

aiding diagnostic procedures in healthcare.
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FIGURE 4

Confusion matrix. (A) ViT. (B) Proposed RViT.

FIGURE 5

Confusion matrix. (A) RViT—variant1. (B) RViT—variant2.

5 Discussion

The experimental analysis done in this research work suggests

that, the Rotation Invariant Vision Transformer (RViT) model is

effective in brain tumor classification, outperforming several state-

of-the-art methodologies. Specifically, the RViT’s incorporation of

rotational patch embeddings permits adept handling of rotational

variations in MRI scans, a notable limitation in conventional

Vision Transformers. Comparative analysis reveals the RViT’s

precision; for instance, it achieves an accuracy (ACC) of 0.986 and

perfect Precision (PREC) for non-tumor identification, surpassing

other approaches like the Lite Swin transformer and Fuzzy c-

Means+Extreme ML approaches, which exhibit marginally lower

precision in the same tasks, according to the Table 5 summary

(Bhimavarapu et al., 2024; Gade et al., 2024). This suggests RViT’s

pronounced ability to accurately distinguish between glioma and

non-tumor instances, validated by the performance scores from our

experimental results.

Moreover, when scrutinizing the model’s sensitivity (SENS), the

RViTmodel impeccably identifies glioma instances (SENS = 1.0), as

indicated in the comparison table, reflecting its acumen in detecting

true positive cases without fail. The proficiency of RViT is further
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TABLE 3 Performance metrics of the deep learning models studied here that includes base-ViT, proposed RViT and its variants.

Method Sensitivity Specificity F1-score MCC ACC

ViT 0.996 0.906 0.938 0.893 0.944

RViT 1.0 0.975 0.984 0.972 0.986

RViT_Variant1 0.996 0.960 0.972 0.951 0.975

RViT_Variant2 0.956 0.985 0.968 0.944 0.973

TABLE 4 Parameter size of the deep learning models evaluated here.

Name # Parameters Training time (sec)
epochs = 25

ViT 38,558,978 5,802

RViT 7,527,612 2,055

RViTVariant1 7,527,612 1,842

RViT_Variant2 5,826,562 1,687

substantiated by the F1 scores it garners, which remain comparable

to its counterparts. Such efficacy is a testament to RViT’s specialized

architecture, adeptly engineered to navigate the intricacies of brain

tumor MRIs.

It is essential to recognize that the literature employing

the same Kaggle dataset has underscored the robustness of

RViT. When juxtaposed with related works, RViT’s optimized

model unequivocally demonstrates better classification results

and processing efficiency, thus, underscoring its superiority.

RViT’s combination of Rotated Patch embedding and Depth-wise

convolutions are pivotal for its high accuracy and minimal false

predictions, as reflected in the confusion matrix for the baseline

ViT and proposed RViT shown in Figure 4. The importance of these

architectural components is further highlighted by the confusion

matrices in Figure 5, which illustrate the decrement in performance

upon removing rotated patches and depth-wise convolutions,

respectively. Furthermore, the interpretability of the RViT model

is analyzed using GradCAM visualizations presented in Figure 7.

These visualizations reveal that the tumor regions exhibit higher

activations, indicated by the arrows, suggesting that the proposed

model effectively learns tumor regions based on their textures.

However, the visualizations also highlight regions attributed to

the model’s decisions due to similar intensity levels as tumor

regions, despite not containing actual tumors. This interpretability

analysis enhances the transparency and trustworthiness of the

proposed approach while also identifying potential areas for further

improvement in the model’s decision-making process.

The major limitations are, the computational intensity of the

rotational embeddings in the RViT model is not trivial, though

its accuracy is without question at the forefront. The balance

between computational demand and the precision of the model is

critical, particularly when considering the extensive dataset needed

to maximize RViT’s proficiency. While this comprehensive dataset

fortifies the model’s robustness and its ability to generalize, it also

hints at the untapped potential of RViT, as the full breadth of its

capabilities has yet to be fully explored. This aspect becomes critical

when envisioning RViT’s deployment in clinical environments

where it must interpret a vast spectrum of MRI scans effectively.

The efficiency of RViT is anchored not only in its architectural

design but also in the thorough experimentation to which it is

subjected. The confluence of these factors culminates in the model’s

adeptness at classification tasks, as the data tables suggest, pointing

to the transformative promise of RViT in the realms of brain tumor

detection and classification within the medical field.

However, a pertinent limitation is the model’s focus on

binary classification, whereas other studies in the field often

tackle multiclass scenarios, presenting a more nuanced challenge

(Mahmud et al., 2023; Natha et al., 2024). Additionally, the

incorporation of rotational patch embedding introduces an extra

layer of complexity, but this does not translate to an increase in

hyperparameters due to the rotational operations. It’s important

to note that the RViT model currently contemplates only

four rotational orientations. This represents a limited scope as

real-world medical scenarios may encounter a wider range of

orientations, which necessitates further investigation to ensure the

model’s applicability across more varied diagnostic situations.

6 Conclusion

This research introduces the Rotation Invariant Vision

Transformer (RViT) as a powerful model for brain tumor

classification from MRI scans. Our model addresses the rotational

variance in brain tumor imaging, a significant challenge for

traditional deep learning models. The RViT’s incorporation of

rotational patch embeddings allows it to detect and classify brain

tumors with high sensitivity and specificity, achieving an overall

accuracy that surpasses the base Vision Transformer model and

current state-of-the-art methods. Through experimental validation

using the Brain Tumor MRI Dataset from Kaggle, the RViT

demonstrated its robustness, outperforming other techniques with

impressive Sensitivity and Specificity. It is particularly adept

at handling the complex spatial relationships and dependencies

characteristic of gliomas, as evidenced by its perfect classification

results.

However, the study acknowledges limitations, notably

the binary nature of the classification, while many practical

applications may require multiclass capabilities. Moreover, the

RViT considers only a limited number of rotational orientations,

suggesting the need for further research into models that can

handle an expanded range of tumor appearances. The rotational

patch embedding introduces additional complexity but does not

lead to an increase in the model’s hyperparameters, maintaining

computational efficiency. The research also points to the need for
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FIGURE 6

Prediction result of the proposed RViT.

TABLE 5 Comparative analysis of the proposed method with some of the state-of-the -art methods for tumor classification based on Kaggle dataset.

Study Method Class Performance scores

ACC SENS PREC F1

VSR Gade et al. (2024) Lite Swin transformer No tumor 0.980 0.962 0.921 –

Glioma 0.968 0.943 0.939 –

Bhimavarapu et al. (2024) Fuzzy C-Means+ Extreme ML No tumor 0.994 0.996 0.998 –

Glioma 0.992 0.999 0.997 –

Mahmud et al. (2023) Pre-trained CNNmodels No tumor 0.935 0.956 0.944 –

Glioma 0.931 0.956 0.946 –

Natha et al. (2024) SETL_BMRI No tumor 0.987 0.990 1.000 0.990

Glioma 0.987 0.970 1.000 0.990

Proposed RViT No tumor 0.986 0.975 1.000 0.988

Glioma 0.986 1.0 0.968 0.984
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FIGURE 7

Interpretability of the proposed RViT model based on GradCAM method for a sample of test images provided in the Kaggle dataset. (A–D) shows

activations maps of the sample images (Selvaraju et al., 2019).

a larger, more diverse dataset to enhance the model’s robustness

and generalization ability. While the RViT’s current performance

is promising, its full potential is yet to be tapped with a more

extensive dataset. This expansion would not only bolster the

model’s diagnostic accuracy but also its applicability to real-world

clinical settings where the variance in tumor presentation is vast.

The RViT represents a significant step forward in the

application of Vision Transformers to medical diagnostics. Its

design, combining the power of deep learning with an innovative

approach to rotational invariance, has the potential to streamline

brain tumor detection and classification, ultimately leading to

better patient outcomes. Future work will look to address these

limitations by expanding the number of rotational orientations

considered, exploring multiclass classification scenarios, and

testing the model on a broader dataset. Additionally, there

is potential in exploring how the RViT framework could be

adapted or extended to other medical imaging modalities and

diagnostic tasks.

The findings of this study contribute to the ongoing evolution

of AI in medical imaging and highlight the importance of

specialized model architectures like RViT in addressing the unique

challenges presented by complex imaging data. With continued

research and development, models like RViT could soon become

a standard tool in clinical diagnostics, aiding physicians in the

accurate and efficient diagnosis of brain tumors and potentially

other conditions.
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