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Recently, graph theory has become a promising tool for biomedical signal 
analysis, wherein the signals are transformed into a graph network and 
represented as either adjacency or Laplacian matrices. However, as the size of 
the time series increases, the dimensions of transformed matrices also expand, 
leading to a significant rise in computational demand for analysis. Therefore, 
there is a critical need for efficient feature extraction methods demanding low 
computational time. This paper introduces a new feature extraction technique 
based on the Gershgorin Circle theorem applied to biomedical signals, termed 
Gershgorin Circle Feature Extraction (GCFE). The study makes use of two 
publicly available datasets: one including synthetic neural recordings, and 
the other consisting of EEG seizure data. In addition, the efficacy of GCFE is 
compared with two distinct visibility graphs and tested against seven other 
feature extraction methods. In the GCFE method, the features are extracted 
from a special modified weighted Laplacian matrix from the visibility graphs. This 
method was applied to classify three different types of neural spikes from one 
dataset, and to distinguish between seizure and non-seizure events in another. 
The application of GCFE resulted in superior performance when compared to 
seven other algorithms, achieving a positive average accuracy difference of 
2.67% across all experimental datasets. This indicates that GCFE consistently 
outperformed the other methods in terms of accuracy. Furthermore, the GCFE 
method was more computationally-efficient than the other feature extraction 
techniques. The GCFE method can also be employed in real-time biomedical 
signal classification where the visibility graphs are utilized such as EKG signal 
classification.
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1 Introduction

In recent years, there has been a substantial increase in the adoption of non-invasive 
devices for measuring brain activity, such as electroencephalography (EEG) (Minguillon et al., 
2017; He et al., 2023). The non-invasiveness and high temporal resolution make it a convenient 
and essential tool for research and clinical diagnosis of neurological diseases (Perez-Valero 
et al., 2021). EEG is measured by placing electrodes on the scalp and it provides indispensable 
insights into the synchronous activity of populations of cortical neurons (David et al., 2002). 
EEG signals can be used to understand the underlying neural dynamics of cognitive, motor, 
and pathological phenomena (Rodriguez-Bermudez and Garcia-Laencina, 2015). For example, 
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EEG signals are used in a wide variety of applications such as 
neuromarketing (Costa-Feito et  al., 2023), investigation of sleep 
architecture (Gu et  al., 2023), detection of neurodegenerative 
conditions such as Alzheimer’s disease (Modir et  al., 2023), 
neurofeedback therapy (Torres et  al., 2023), and epileptic seizure 
detection (Maher et  al., 2023). Over time, various linear and 
non-linear methods have been developed for extracting distinct 
features from recorded time series signals. Linear methods of feature 
extraction encompass families of time-frequency domains such as 
Fourier transformation, Wavelet transformation, and Empirical Mode 
Decomposition (Körner, 1988; Percival and Walden, 2000). On the 
other hand, the non-linear methods involve computations of 
Lyapunov exponents and recurrence networks (Kantz and Schreiber, 
2003; Campanharo et al., 2008). As the EEG time series signals are 
inherently non-stationary and noisy in nature, robust time-series 
analysis techniques are necessary to capture meaningful patterns and 
features in the signal.

In recent years, graph theory approaches have gained popularity 
as an alternative to traditional time-frequency domain methods for 
analyzing brain signals (Stam and Van Straate, 2012). The graph 
networks can reveal non-linear characteristics of non-stationary and 
chaotic signals. In standard graph theory, the graph consists of sets of 
nodes and edges where the nodes represent the samples or data points 
of a time series, and the edges represent the connections or distances 
between two data points. In 2006, Zhang and Small (2006) introduced 
the representation of time series data into complex graph networks, 
revealing chaotic or fractal properties of the time series. In 2008, 
Lacasa et al. (2008) presented the first natural visibility graph (NVG) 
that converted time series into a graph network. Unlike standard 
graphs, which are typically constructed based on predefined 
relationships between data points, visibility graphs convert each data 
point in a time series into a node and then connect nodes with an edge 
if they can ‘see’ each other, usually determined by a line of sight 
criterion over the time series data. The original NVG, as presented by 
Lucas et al., had unweighted edges, meaning it did not consider the 
varying scales or magnitudes of the time series data—this resulted in 
treating the data univariately. In contrast, standard graphs might not 
inherently represent temporal or sequential data and are often not 
designed to handle the dynamic scaling that visibility graphs can 
accommodate. In 2010, Ahmadlou et al. (2010) implemented the first 
visibility graph on EEG signals for detecting Alzheimer’s disease.

Beyond the NVG, several groups have developed different 
variants of visibility graphs, such as Horizontal Visibility Graph 
(HVG) (Luque et  al., 2009), Weighted Visibility Graph (WVG) 
(Supriya et al., 2016), Limited Penetrable Horizontal Visibility Graph 
(LPHVG) (Gao et al., 2016), and Weighted Dual Perspective Visibility 
Graph (WDPVG) (Zheng et  al., 2021). Each of these methods 
construct distinct graph topologies based on the provided time series 
data. To decode and interpret the tropological characteristics of these 
graphs, they are transformed into a matrix form such as the 
Adjacency matrix or Laplacian matrix. Later, feature extraction and 
reduction techniques are applied on these matrices. For instance, 
Zhang et al. (2022) used the weighted adjacency matrix as a feature 
representation for classifying different sleep stages using calcium 
imaging data. In contrast, Mohammadpoory et  al. (2023) 
experimented with various methods to extract features from 
adjacency matrices such as Graph Index Complexity (GIC), 
Characteristic Path Length (CPL), Global Efficiency (GE) (Latora and 

Marchiori, 2001), Local Efficiency (LE) (Latora and Marchiori, 2001), 
Clustering Coefficients (CC) (Saramäki et al., 2007), and Assortative 
Coefficient (AC) (Artameeyanant et al., 2017). Supriya et al. (2016) 
took a different approach and calculated two network properties: 
modularity (Blondel, 2008) and an average weighted degree 
(Antoniou and Tsompa, 2008) from the graph. Likewise, Hao et al. 
(2016) classified EEG seizures by measuring the graph’s “Average Path 
Length” and CC.

Although incorporating techniques that extract multiple features 
simultaneously characterizes the resulting graph more robustly, it also 
requires more computational time to perform feature extraction. In 
addition, as the number of samples rises, computational time also 
proportionally increases. Therefore, in real-time application of EEG 
signals processing, we  must have low computational cost for 
preprocessing and feature extraction methodologies that do not 
compromise accuracy. Driven by this need, this study presents a new 
feature extraction method with low computational cost for time series 
in biomedical signal processing. This study utilizes the Gershgorin 
Circle (GC) theorem (Gershgorin, 1931) as a technique for primary 
feature extraction.

In 1931, mathematician S. A. Gershgorin introduced the 
Gershgorin Circle (GC) theorem, a pivotal method for estimating 
eigenvalue inclusions for a square matrix. The GC theorem offers a 
straightforward yet powerful technique to approximate the location of 
eigenvalues by defining circles in the complex plane, centered at the 
matrix’s diagonal entries with radii determined by the sum of the 
absolute values of the off-diagonal entries in each row. This approach 
not only simplifies the understanding of a matrix’s spectral properties 
but also requires fewer computational operations compared to other 
eigenvalue estimation methods (Varga, 2010). As a result, the GC 
theorem has found extensive applications across various fields, such 
as stability analysis of nonlinear systems (Ortega Bejarano et al., 2018), 
power grids (Xie et al., 2022), and graph sampling (Wang et al., 2020), 
demonstrating its versatility and effectiveness. Furthermore, 
subsequent advancements have refined the theorem, enhancing the 
precision of the eigenvalue inclusions and bringing them closer to the 
actual eigenvalues of a matrix. This evolution underscores the 
theorem’s significant impact on the mathematical and engineering 
disciplines, offering a reliable and efficient tool for analyzing and 
interpreting the eigenvalues of square matrices.

This study introduces a new, low computational feature extraction 
approach for time series in biomedical signal processing. In this 
approach, the GC theorem is used to extract features from a modified 
Weighted Laplacian (mWL) matrix. Figure 1 shows a block diagram 
of the GCFE approach. The outline of this paper is as follows: Section 
2 explains the proposed approach, which is divided into four 
subsections: – signal pre-processing, mWL matrix formation, and 
GCFE and classification model. Section 3 presents a detailed overview 
of datasets utilized in this study. The GCFE method results, and 
discussion are described in Section 4. Finally, Section 5 articulates the 
conclusion of the proposed approach.

2 Methodology

The proposed approach can be distilled into four fundamental 
steps: Preprocessing, forming the mWL matrix, GCFE, and 
feature classification.
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2.1 Preprocessing

In the preprocessing stage, each dataset undergoes into 
normalization, where the data are scaled between 0 and 1, referenced 
to raw recording minimum and maximum values. After signal 
normalization, the whole time series is segmented with N-number of 
samples with vector size of 1�� �N . Each user defined segmented part 
is called an epoch. In this study, we chose an epoch size of 1 56�� � for 
Dataset 1 and 1 1024�� � for Dataset 2. An example in Figure 2 shows 
the complete implementation of GCFE for a random time series with 
five samples and WVG as a graph transformation method. The 

random time series (Q), in Figure 2A represents the normalized values 
which range between 0 and 1, i.e., Q = [0.6, 0.4, 0.1, 0.5, 0.7].

2.2 Signal to visibility graph

The next stage is the formation of each epoch into a graph to expose 
the underlying nonlinear properties of the time series. Two different 
graph formation methods are utilized to evaluate the performance of 
the proposed approach across various graph types. Alternative visibility 
graph transformation techniques beyond WVG and WDPVG can also 

FIGURE 1

Overall representation of the GCFE framework: from raw signal recording to feature classification.

FIGURE 2

Practical implementation of GCFE on random time series with 5 sample and WVG. (A) Shows a random time series with values over discrete time 
points. (B) Depicts the corresponding Weighted Visibility Graph (WVG) representation with weighted edges Wij. (C) Illustrates the transition from a 
weighted adjacency matrix Aij, to an unweighted adjacency matrix Sij, and a degree matrix Dij. (D) Presents a modified weighted Laplacian matrix Lij 
derived from the graph. (E) Displays the two extracted feature vector by GC Theorem.
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be  integrated into this approach. Any visibility graph consists of a 
number of nodes and edges, where the nodes represent the data points 
of the time series, and the edges represent the distance between any two 
linked nodes. In WVG, only two nodes connect with a weighted edge 
(denoted as Wij) if “visibility” between them satisfies the Equation (1).

 
Q t Q t Q t Q t

t t
t tz y x y
y z

y x
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�
,
 

(1)

where, Q tx� �, Q ty� �, and Q tz� � represents the datapoints of a 
time series with its timestamps tx, ty, and tz respectively. If Equation (1) 
is satisfied, then the timestamp tz lies in between tx and ty i.e., x z y< <
. Then, the weight for each edge is calculated based on Equation (2) 
(Zheng et al., 2021).

 
Weight W
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where, Q i� � and Q j� � are two nodes, t i� � and t j� � are time events 
of nodes i and j. Figure 2B shows the conversion of random time series 
into WVG with weighted node connections Wij. In this example, since 
node-4 and node-5 are visible for node-1, there are weighted links 
between node-1 and node-4 (with W14) and node-1 and node-5 (with 
W15). In contrast, the link between node-3 and node-5 is not connected 
because node-5 is not visible from node-3.

Similar to WVG, the WDPVG is generated by combining two 
distinct visibility graphs: WVG and Weighted Reflective Perspective 
Visibility Graph (WRPVG). To form the WDPVG, we first implement 
the WVG based on Equation (2). Subsequently, the time-series signal 
is inversed (reflected), after which the nodes are connected again by 
Equation (2). An illustrative representation of WDPVG can 
be observed in Figure 1.

2.3 Modified weighted Laplacian matrix

To operate with graph networks, it is often necessary to represent 
these graphs in matrix form. Popular representations of graph 
networks are the Weighted Adjacency (WA) matrix, the (Unweighted 
Adjacency) UA matrix, or the Laplacian matrix. This approach 
introduces a unique modified Weighted Laplacian (mWL), which is a 
strictly diagonally dominant matrix, and consequently, it inherits 
Positive Semi-definite (PSD) properties. To generate the mWL matrix, 
first, the WA (represented by Aij  in Figure 2C) and UA (represented 
by Sij in Figure 2C) matrices are constructed from each WVG or 
WDPVG. The size of each WA and UA matrix depends upon the 
number of nodes, which is equivalent to the number of data points in 
each epoch (N). For instance, in Figure 2B, the WVG has five nodes, 
as there are five samples in the Q-time series. Note that the WA and 
UA are square matrices with the size of N N�� �. Both WA and UA 
matrices are generated according to Equations (3, 4), respectively.
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In the WA matrix, the elements of Aij  are set to edge weights Wij, 
if there is an edge between node i and j; otherwise, the elements are 
set to 0. Likewise, for the UA matrix, the elements of Sij are assigned 
a value of “1” if there is an edge between node i and j, and “0” 
otherwise. Afterward, the Degree matrix Dij  is calculated from the UA 
matrix as per Equation (5). In the Degree matrix, the diagonal values 
represent the row summation of all values of the UA matrix. In 
Figure 2C, an example is presented for Dij , Aij ,and Sij matrices (5 ×5).

The mWL matrix Lij is computed by taking the difference between 
the Degree matrix (Dij ) and WA matrix Aij� � according to 
Equation (6). Note that the size of the mWL matrix is similar to the 
WA matrix, i.e., (N N× ). For example, the mWL matrix Lij� � shown 
in Figure  2D is strictly diagonally dominant because its diagonal 
elements exceed the absolute sum of the corresponding row values.
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(5)

 L D Aij ij ij� �  (6)

2.4 Gershgorin circle feature extraction

After computing the mWL matrix, the GC theorem is applied to 
extract features from each Lij matrix. The GC theorem states that all 
the eigenvalues of the (N N× ) square matrix lies inside the Gershgorin 
union disks (i.e., Gershgorin circles). The formation of each 
Gershgorin disk relies on a center point and its radius. The radius of 
each disk r Li � � is computed by taking the absolute row summation 
of off-diagonal values of (N N× ) matrix as described in Equation (7). 
The center of each disk c Li ij� � is the diagonal value of each row as per 
Equation (8),

 

r L L i Ni ij
j N i

i j� � � �� �
� � �
�

\

, ,� �

 
(7)

 c L L where i j i Ni ij i j� � � � �� �, , , (8)

where the sets of r Li ij� � and c Li ij� � represents the GCFE. The 
final output of each Lij matrix is oriented in a vector form, such that 
all sets of GC are radii, followed by GC centers. This leads to the 
transformation of Lij matrix features, which is in (N N× ) form, into 
({r Li ij� �} x c Li ij� �� �) or (2 ×N ) vector form. For instance, the Q time 
series in Figure 2E delivers 10 total GC extracted features, which were 
r Li ij� � � � �0 258 0 650 0 700 0 683 0 325. . . . ., , , ,  and c Li ij� � � � �3 4 2 4 3, , , ,  
respectively.
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2.5 Feature classification

With the ongoing advancements in machine learning and deep 
learning, numerous state-of-the-art algorithms have been developed 
for classifying features. Popular algorithms include but are not limited 
to, Support Vector Machines (SVM), Decision Trees, and 
Convolutional Neural Networks (CNN). For this study, the 1D-CNN 
model was selected to classify the extracted features. However, the 
proposed method is not limited to using CNN models for feature 
classification. Other classification methods, such as SVM, Decision 
Trees, and Artificial Neural Networks (ANN), can also be employed; 
however, these methods typically require more computational time as 
the size of the input time-series or the vector size of the extracted 
features increases.

Table  1 summarizes the architecture of the 1D-CNN model. 
Dataset – 1 and Dataset – 2 employ the same architecture model, 
distinguished only by the number of convolution and pooling layers. 
To classify the features, the GCFE sets are supplied into the 1D-CNN 
model and then trained according to the target properties. The size of 

the initial Input Layer depends upon the number of GCFE sets, i.e., 
batch size ({r Li � �} x c Li � �� �), and channels. The Input Layer is 
followed by connecting sets of the Convolution Layer + Pooling Layer. 
For Dataset – 1 and Dataset – 2, two and six sets of Convolution Layer 
and Pooling Layer are used, respectively. Each Convolution Layer 
utilized 32 filters, with a kernel size of 3, and ReLU was used as an 
activation function. In the Pooling Layers, the Max Pooling technique 
was used.

After the final Pooling Layer, a Flatten Layer was connected to 
transform the feature map (filters) into a 1D vector. Next, the Fully 
Connected Network (FCN) was built by joining two Dense Layers and 
one Dropout Layer between the two Dense Layers. Both Dense Layers 
consisted of 100 artificial neurons and a ReLU activation function. To 
prevent overfitting, a 10% dropout value was chosen. The final layer 
of the FCN connects to the Output Layer, the size of which varies 
based on the dataset classes. For the Output Layer, the SoftMax 
activation function was used. Note that the 1D-CNN model uses 
“SparseCategoricalCrossentropy” as its loss function and “Adam” as 
the optimizer. The detailed mathematical exploration of CNN can 
be found in Krizhevsky et al. (2012).

3 Datasets

Two publicly available datasets are utilized to evaluate the 
performance of the proposed methodology. The selection of these 
datasets is strategic, aimed at validating the proposed method on 
distinct types of signals: simulator-generated action potentials for 
intracellular recordings and non-invasive EEG recordings, which 
typically feature a larger number of samples in each epoch. Table 2 
details the total number of epochs for both datasets, facilitating a 
comprehensive assessment of the method’s applicability to different 
biomedical signals.

3.1 Dataset – 1

Dataset – 1 consists of a synthetic, simulated action potential with 
additive Gaussian noise (Bernert and Yvert, 2019). The action 
potentials were generated based on Equation (9), and the details can 
be found elsewhere (Adamos et al., 2008).

 
V t Acos
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(9)

The selection of parameters for generating action potentials 
(A ph, , ,τ τ τ1 2 ) are explained in Bernert and Yvert (2019). The dataset 
consists of seven different Signal-to-Noise Ratios (SNRs) – 0.5, 0.75, 
1.0, 1.25, 1.50, 1.75, and 2.0. Each SNR value represents the level of 
Gaussian noise added to the signal. Each set contains three action 
potentials with different shapes and properties which are: N-class_1, 
N-class_2, N-class_3, and signal noise labeled N-class_4. For the 
experiment, only three Signal-to-Noise Ratio (SNR) values were 
chosen for testing: 0.5, 1.25, and 2.0. The test signal was generated with 
a sampling frequency of 20 kHz with a mean firing rate of 3.3 Hz. Each 
SNR set included ten recordings of 200 s. Table 2 shows the number 
of epochs for each class per SNR set. The size of each epoch is set to 

TABLE 1 1D-CNN architecture and each layer’s configurations.

No. of layers Layer name Layer configuration

1 Input layer (Batch size, rows, channels)

2 or 6
Convolution layer

Conv1D – Kernel = 3, 

Padding = “same,” Activation 

Function = “ReLU,” No. 

Filters = 32

Pooling layer MaxPooling1D

1 Flatten layer
(Batch, Flatten last Pooling 

Layer input size)

1 Dense Layer 1
(Batch Size, 100), Activation 

Function = “ReLU”

1 Dropout Layer 0.1

1 Dense Layer 2
(Batch Size, 100), Activation 

Function = “ReLU”

1 Output Layer
(Batch Size, Classes), Activation 

Function = “SoftMax”

TABLE 2 Epoch distribution across datasets and signal-to-noise ratios 
(snrs) for different classes and sets.

Dataset No. of epochs

Dataset 
– 1

N-class_1 N-class_2 N-class_3 N- 
class_4

SNR0.5 6,423 6,595 6,597 6,000

SNR1.25 6,394 6,587 6,597 6,000

SNR2.0 5,553 6,633 6,597 6,000

Dataset – 2

Set A 400

Set B 400

Set C 400

Set D 400

Set E 400
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FIGURE 3

Box plot demonstrating the Distribution of GCFE using WVG for each dataset class, with statistical significance determined by the Wilcoxon rank sum 
test (A) Distribution of GC radii – Sum of weighted edges of Aij (row wise) vs. Dataset Classes; (B) Distribution of GC center – Dij vs. Dataset Classes.

56 samples. The preprocessed segmented datasets were used (Patel and 
Yildirim, 2023).

3.2 Dataset – 2

Dataset – 2 is a publicly available epilepsy EEG dataset that was 
recorded by the Department of Epilepsy at Bonn University, Germany 
(Andrzejak et al., 2001). It contains five different sets of recordings, 
labeled as E – Set_A, E – Set_B, E – Set_C, E – Set_D, and E – 
Set_E. Each set consists of 100 channels of EEG that were sampled at 
173.61 Hz. Each set was recorded for 23.6 s for a total of 4,096 data 
points. Each channel was segmented into 4 epochs with 1,024 samples 
per epoch shown in Table 2. The EEG signal was bandpass filtered 
from 0.53 Hz to 85 Hz. Each EEG set was treated as an individual 
classifying class. Set A was scalp EEG recordings from healthy 
participants with eyes open, Set B was scalp EEG from healthy 
participants with eyes closed, Set C was interictal (between seizure) 
intracranial EEG recordings from hippocampal formations 
contralateral to the epileptogenic zone in mesial temporal epilepsy 
patients, Set D was interictal intracranial EEG recordings within the 
epileptogenic zone in mesial temporal epilepsy patients, and Set E was 
a recording of ictal (seizure) intracranial EEG activity from mesial 
temporal epilepsy patients.

4 Results and discussion

In this paper, GCFE method is compared with seven other feature 
extraction techniques. As shown in Table 1, all feature classification 
experiments conducted by this approach utilized a 1D-CNN model. 
The batch size was set to 32 for 1D-CNN model. All tests were 
conducted on a university supercomputer that was configured with 24 
cores and 24 GB of memory per core. The consistent experimental 
setup ensures a valid assessment of the GCFE approach relative to 
other methods. The performance and accuracy scoring metrics for 
each experiment were determined using cross-validation.

Dataset – 1 was split into three groups: training, validation, and 
testing, with proportions of 70, 15, and 15%, respectively. The Dataset 
– 2 was split only into two groups: training (70%) and testing (30%). 
In Dataset – 2, the validation and testing datasets are kept the same 
size because of the limited number of epochs (instances). The decision 
to use these particular split ratios was guided by methodologies 
commonly adopted in other research papers, which served as 
benchmarks for comparison. Finally, each experiment was trained 
with 30 iterations.

Figures 3A,B show box plot distributions of reduced features for 
distinct dataset classes, specifically focusing on GC radii and GC 
center values, respectively. These figures also provide results from the 
Wilcoxon rank sum test under the null hypothesis that N-Class_4 
from Dataset-1 and E-Set_E from Dataset-2 are superior to the 
remaining classes within their respective dataset groups. The 
distribution values were generated using the WVG method, 
incorporating 200 epochs randomly chosen from each class in 
Dataset-1(SNR – 0.5, 1.5, and 2.0) and from Dataset-2.

From Figure 3A, it can be shown that the GC radii values differ 
among classes. Specifically, N-class_3, characterized by a higher action 
potential amplitude, has significantly (p < 0.05) higher radii values 
compared to the action potentials of N-class_1 and N-class_2. 
Additionally, the Interquartile Range (IQR) of N-class_4 is 
considerably smaller than that of the other classes. This observation 
can be attributed to the fact that N-class_4 represents noise, which has 
a lower amplitude compared to other action potential classes. 
Consequently, the edges of the graph corresponding to N-class_4 are 
smaller, resulting in a smaller sum of weighted edges (Aij). The median 
Aij  values for N-class_1, N-class_2, N-class_3, and N_class_4 were 
0.12, 0.12, 0.16, and 0.08, respectively. A parallel pattern is noted in 
the GC centers for Dataset-1 classes as shown in Figure 3B, where 
N-Class_3 possesses the highest median Dij  value of 7, significantly 
distinct from the other classes (p < 0.05). This is because N-Class_3 
represents the action potential with the highest amplitude. According 
to the visibility graph concept, a graph representing this class will have 
more connections of edges with both near and far samples (nodes) of 
the signal, resulting into higher value of degree (Dij ) that is, greater 
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GC centers values. The median values for GC centers for N-Class_1, 
N-Class_2, and N-Class_4 is 6, 6, and 5, respectively.

In Dataset-2, presented in Figure 3A, E-Set_B was characterized 
by increased radii values (p > 0.05) with a median Aij  value of 0.25, 
comparable to E-Set-E which also had a median value of 0.25. The 
median GC radii values for E-Set_A, E-Set_C, and E-Set_D were 0.21, 
0.14, and 0.15, respectively. Meanwhile, Figure 3B illustrates that, for 
Dataset-2, the GC Centers for E-Set_D were significantly different 
(p > 0.05) with a median value of 14. This pattern indicates that for 
non-stationary recordings with higher amplitude, both the GC radii 
and GC centers tend to exhibit higher median values. Conversely, for 
stationary or nearly stationary recordings with higher amplitude, the 
GC radii still display higher median values, but the GC centers tend 
to have lower median values. This observation is based on the standard 
weighted visibility graph theory, which helps differentiate the dynamic 
characteristics of the recordings based on their structural connectivity 
within the graph.

Table  3 presents eight different feature extraction studies 
represented as F1 (Mohammadpoory et al., 2023), F2 (Javaid et al., 
2022), F3 (Supriya et al., 2016), F4 (Hao et al., 2016), F5 (Bose et al., 
2020), F6 (Cai et  al., 2022), F7 (Ahmadlou et  al., 2010), and F8 
(Proposed). In addition, it also illustrates the number of features 
extracted by each method per dataset. The features for each method 
were arranged in vector form. The F2 method has maximum features 

with 172 and 3,076 for Dataset – 1 and Dataset – 2, respectively. The 
GCFE (F8) for Dataset – 1 and Dataset – 2 were 112 and 2048 features, 
respectively. The F7 method feature count for Dataset – 1 was selected 
similarly to the F8 method, while for Dataset – 2, a maximum of 800 
features were selected.

Table 4 provides insights into each feature extraction method’s 
accuracy, sensitivity, and specificity across two distinct visibility 
graphs. Seven classification experiments were conducted using feature 
extraction methods F1 to F8. The F8 (proposed) method demonstrated 
superior performance over most of the other feature extraction 
methods, labeled F1 through F7. According to Table 4, it is evident 
that the F8 method outperformed the F2 method, which had the 
highest number of features. This outcome substantiates the assertion 
that an increase in the number of features does not necessarily 
enhance classification performance. Additionally, the F8 method 
achieved higher performance with fewer features, further illustrating 
the effectiveness of optimized feature extraction over mere quantity. 
Furthermore, the average accuracy differences computed to accurately 
compare the proposed feature extraction method’s performance 
against others.

Figure 4 presents a visual comparison of the average accuracy 
differences for the F8 method across seven studies, utilizing both WVG 
and WDPVG techniques. The process involved calculating the mean 
accuracies for WVG and WDPVG in each experiment, followed by 
determining the average difference in accuracy between the F8 method 
and the other studies. Figure 4 shows that experiment F8 consistently 
outperforms the F1 to F7 methods by having a positive average 
accuracy difference across all datasets. Among all the experiments, the 
F8’s performance for Set A vs. Set E had the lowest average accuracy 
difference. Additionally, in the SNR dataset experiment, F8 shows 
robustness and superior performance, especially as the signal became 
noisier (at SNR 2.0) compared to other methodologies.

Figure 5 presents the average computational time for each feature 
extraction method across the two datasets. Figure  5A represents 
Dataset – 1, and Figure  5B represents Dataset – 2. In both 
representations, the x-axis denotes the number of features for each 
method. The y-axis displays the average computation time for each 
method in seconds on a logarithmic scale. The computation time is 
calculated for each method for an average of 25,325 and 800 epochs 
for Dataset – 1 and Dataset – 2, respectively.

Similar trends were observed in Figure 5B for Dataset 2, where 
the F8 method was the most time-efficient, averaging 11.34 s. In 
contrast, the F2 method was the most time-consuming, requiring an 
average of 336.69 s. Despite having fewer features, as indicated in 

TABLE 3 Number of studies and its features counts per dataset.

Study name Features No. of features for Dataset – 1 No. of features for Dataset – 2

F1 GIC, CPL, GE, LE, CC, AC 61 1,029

F2 CC, CPL, AC, WD, GE, LE, NBC 172 3,076

F3 Modularity, CC 57 1,025

F4 CPL, CC 57 1,025

F5 CC, GE, LE, Transitivity 59 1,027

F6 WD, CC 112 2048

F7 PCA 112 800

F8 (Proposed) GCFE 112 2048

FIGURE 4

Comparative analysis of the average accuracy differences for the F8 
(GCFE) method using WVG and WDPVG graph types across seven 
experiments.
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TABLE 4 Summary of performance metrics for feature extraction studies using weighted visibility graphs and weighted dual perspective visibility 
graphs. the metrics are arranged in rows, in the order of accuracy, sensitivity, and specificity.

Experiments F1 F2 F3 F4 F5 F6 F7 F8

Weighted visibility graph

SNR 0.5

98.620 99.661 98.178 98.412 98.594 99.687 99.810 99.578

98.620 99.661 98.178 98.412 98.594 99.687 99.810 99.578

98.623 99.662 98.213 98.412 98.604 99.688 99.810 99.579

SNR 1.25

92.598 98.227 91.399 91.920 90.930 97.367 97.888 97.888

92.598 98.227 91.399 91.920 90.930 97.367 97.888 97.888

92.695 98.234 91.408 91.947 91.066 97.460 97.888 97.888

SNR 2.0

79.639 89.429 79.343 80.473 79.612 88.784 87.808 89.454

79.639 89.429 79.343 80.473 79.612 88.784 87.808 89.454

79.766 89.397 79.349 80.351 79.706 88.770 87.886 89.539

Set A vs. E

96.500 96.500 95.833 97.500 95.000 97.083 97.500 98.333

96.500 96.500 95.833 97.500 95.000 97.083 97.500 98.333

96.531 96.342 96.057 97.559 95.095 97.118 97.559 98.391

Set B vs. E

94.166 94.583 96.666 96.666 96.666 97.916 95.416 97.916

94.166 94.583 96.666 96.666 96.666 97.916 95.416 97.916

94.392 95.151 96.726 96.795 96.683 97.950 95.453 98.006

Set C vs. E

95.000 97.916 95.000 96.250 93.333 98.750 96.666 97.916

95.000 97.916 95.000 96.250 93.333 98.750 96.666 97.916

95.131 97.950 95.037 96.342 93.417 98.754 96.710 97.950

Set D vs. E

94.166 96.250 94.583 91.666 95.833 96.666 96.250 98.333

94.166 96.250 94.583 91.666 95.833 96.666 96.250 98.333

94.186 96.286 94.995 91.692 95.894 96.726 96.286 98.333

Weighed dual perspective visibility graph

SNR 0.5

98.516 99.609 98.282 98.230 98.074 99.661 99.831 99.493

98.516 99.609 98.282 98.230 98.074 99.661 99.831 99.493

98.532 99.611 98.291 98.238 98.087 99.662 99.831 99.498

SNR 1.25

91.920 98.123 92.025 91.842 91.712 97.993 97.973 98.163

91.920 98.123 92.025 91.842 91.712 97.993 97.973 98.163

91.903 98.132 92.007 91.947 91.923 98.000 97.973 98.163

SNR 2.0

81.011 89.133 79.639 79.747 79.935 89.187 87.873 89.346

81.011 89.133 79.639 79.747 79.935 89.187 87.873 89.346

81.120 89.394 79.531 79.730 79.982 89.228 87.789 89.442

Set A vs. E 97.500 96.250 96.666 97.500 96.666 95.833 97.916 98.333

97.500 96.250 96.666 97.500 96.666 95.833 97.916 98.333

97.559 96.255 96.666 97.559 96.890 96.057 98.006 98.391

Set B vs. E 93.333 97.083 91.666 89.583 97.500 92.916 92.083 97.083

93.333 97.083 91.666 89.583 97.500 92.916 92.083 97.083

93.675 97.256 92.938 91.498 97.516 93.857 92.391 97.174

Set C vs. E 95.833 97.916 95.416 95.833 95.000 97.916 97.083 97.916

95.833 97.916 95.416 95.833 95.000 97.916 97.083 97.916

95.851 97.921 95.416 95.833 95.131 97.950 97.088 98.006

Set D vs. E 95.833 96.666 95.833 94.583 89.166 97.500 94.166 97.083

95.833 96.666 95.833 94.583 89.166 97.500 94.166 97.083

96.057 96.795 96.057 94.621 89.486 97.559 94.230 97.118
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Table 3, the methods F1, F3, F4, F5, and F7 still demanded more time 
than F8, with average times of 178.94 s, 13.79 s, 44.11 s, 140.46 s, and 
130.39 s, respectively. The F6 method was the only feature extraction 
method that came close to F8 in terms of computation time, averaging 
13.06 s. From Tables 4 and 5, it is revealed that possessing a larger 
number of extracted features, specifically the F2 method with the 
most features, does not enhance classification accuracy and leads to 
increased computational time. All the results and supporting code are 
made available on GitHub (Patel, 2023).

5 Conclusion

In conclusion, this paper demonstrated a new implementation of 
the GC theorem with the mWL matrix as a feature extraction 

methodology for biomedical signals. In addition, the results clearly 
support that the GCFE approach surpasses other feature reduction 
techniques. Additionally, GCFE delivered consistently positive average 
accuracy difference across both datasets and two distinct graphs. 
Further, the computational efficiency of the proposed methodology 
was better when compared to other methods. The superior accuracy 
and decreased computational time of GCFE demonstrates that it 
exceptionally well-suited for real-time biomedical signal classification 
applications. However, the proposed GCFE is constrained to 
extracting a fixed number of features, converting an N x N Laplacian 
matrix to a 2 × N vector due to its non-parametric approach. Future 
research could expand the potential uses of GCFE by integrating 
alternative eigenvalue inclusion theorems or by modifying the GC 
theorem to predict more precise eigenvalue inclusions of random 
Laplacian matrices.

FIGURE 5

Representation of average (avg.) computational time for both datasets vs. number of features in each feature extraction method: (A) Log-scale avg. 
computational time vs. number of features in Dataset – 1; (B) Log-scale avg. computational time vs. number of features in Dataset – 2.

TABLE 5 Computational times (in seconds) for feature extraction studies using weighted visibility graphs and weighted dual perspective visibility 
graphs across various experiments.

Experiments F1 F2 F3 F4 F5 F6 F7 F8

Weighted visibility graph

SNR 0.5 27.4 33.7 4.3 4.5 25.3 2.6 27.4 1.5

SNR 1.25 22.4 30.5 4.1 4.2 19.9 2.6 26.5 1.5

SNR 2.0 19.6 26.6 4.0 4.1 17.6 2.5 25.1 1.5

Set A vs. E 104.7 246.2 13.2 37.8 76.7 12.8 128.3 10.8

Set B vs. E 105.7 247.2 13.7 37.7 76.4 13.6 133.0 11.3

Set C vs. E 124.6 285.2 13.9 40.6 94.9 12.3 129.5 11.2

Set D vs. E 176.9 345.3 13.8 42.2 141.9 12.2 131.3 11.5

Weighed dual perspective visibility graph

SNR 0.5 35.2 45.5 5.1 6.1 34.3 3.2 27.6 1.5

SNR 1.25 28.9 38.2 5.0 6.2 25.8 2.8 26.6 1.5

SNR 2.0 26.6 35.0 4.1 5.4 23.9 2.6 24.9 1.4

Set A vs. E 159.4 314.9 14.5 44.8 120.9 12.9 131.8 11.5

Set B vs. E 164.3 306.7 13.1 49.5 119.3 13.7 131.6 11.2

Set C vs. E 208.2 346.9 14.5 49.0 142.0 13.9 127.2 11.4

Set D vs. E 387.7 601.1 13.6 51.3 351.6 13.1 130.4 11.8
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