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Introduction: Polysomnographic recordings are essential for diagnosing many
sleep disorders, yet their detailed analysis presents considerable challenges.
With the rise of machine learning methodologies, researchers have created
various algorithms to automatically score and extract clinically relevant features
from polysomnography, but less research has been devoted to how exactly the
algorithms should be incorporated into the workflow of sleep technologists.
This paper presents a sophisticated data collection platform developed under
the Sleep Revolution project, to harness polysomnographic data from multiple
European centers.

Methods: A tripartite platform is presented: a user-friendly web platform for
uploading three-night polysomnographic recordings, a dedicated splitter that
segments these into individual one-night recordings, and an advanced processor
that enhances the one-night polysomnography with contemporary automatic
scoring algorithms. The platform is evaluated using real-life data and human
scorers, whereby scoring time, accuracy, and trust are quantified. Additionally,
the scorers were interviewed about their trust in the platform, along with the
impact of its integration into their workflow.

Results: We found that incorporating AI into the workflow of sleep technologists
both decreased the time to score by up to 65 min and increased the agreement
between technologists by as much as 0.17 κ .

Discussion: Weconclude that while the inclusion of AI into theworkflowof sleep
technologists can have a positive impact in terms of speed and agreement, there
is a need for trust in the algorithms.
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Introduction

The emergence of explainable artificial intelligence (XAI)
presents vast potential for revolutionizing various application areas,
such as in healthcare (De Bock et al., 2023). However, despite the
great potential, there are significant issues that need to be tackled
before XAI can be fully utilized (Jermutus et al., 2022). One such
issue originates from application areas within healthcare, where
automation of manual tasks and data-driven decision-support has
to take the central stage before XAI can become a viable option (Loh
et al., 2022).

A subfield of healthcare is the collection and analysis of sleep
recordings, referred to as polysomnography (PSG) (Arnardottir
et al., 2021). A PSG is an overnight recording of various
biomedical signals, such as an electroencephalogram (EEG),
electromyogram (EMG), electrooculogram (EOG), and various
respiratory signals. Upon collection, the PSG must be manually
annotated by a sleep technologist which is a cumbersome and time-
consuming task (Arnardottir et al., 2021). PSG scoring is a vital step
in the process of identifying and diagnosing the presence of many
sleep disorders, some of which are extremely prevalent (Benjafield
et al., 2019). A sleep technologist will manually review the recording
according to a set of rules devised by the American Academy of
Sleep Medicine (AASM), labeling events such as respiratory events,
and sleep stages in a process referred to as scoring. The sleep stage
scoring is done by assigning a specific class to each 30-s segment
(also called epochs) in the recording. The sleep stages classes are
categorized into five categorical values: theWake (W) class for wake
period, the rapid eye movement category (REM) and three non-
REM stages (N1, N2, andN3) that respectively describe the depth of
sleep. A product of the PSG scoring is the creation of a hypnogram,
a graphical representation tracing the progression of sleep stages
throughout the night. This visual tool, often complemented by a
hypnodensity graph, provides a detailed overview of the patient’s
sleep architecture, capturing transitions between sleep stages (Jang
et al., 2022; Pevernagie and Arnardottir, 2024). Self-applied-PSG
(henceforth referred to as simply PSG), a newly designed simplified
version of traditional PSG, utilizing frontal EEG instead of the
conventional International 10–20 System, refers to a type of sleep
study that the participant can set up themselves and sleep with at
home for up to three nights in the current work (Arnardottir et al.,
2022).

One of the main drawbacks of the current scoring process is, as
stated earlier, that it can be excessively time-consuming, which can
cause considerable delays in providing sleep reports to healthcare
providers and consequently delay diagnosis (Biedebach et al., 2024),
as well as increase the cost of healthcare considerably (Wickwire,
2021). Adding to this challenge, significant inter-scorer variability
exists (Nikkonen et al., 2024); disagreements can reach 19.3% for
sleep stages (Nikkonen et al., 2024) and 11.6% for respiratory events
(Redline et al., 2007). Delays and disagreements such as these
can have negative effects on patient outcomes, as untreated sleep
disorders can have a significantly negative impact on patient health
(Dikeos and Georgantopoulos, 2011).

The advent of machine learning and other automatic scoring
algorithms offers a potential solution by automating the process
of manual scoring, which the AASM sees great potential in
Goldstein et al. (2020). However, the development and application

of machine learning are often prohibitively technical, requiring
diverse knowledge of computer science to achieve (Giray, 2021;
Brennan and Kirby, 2022). There is also a dire need for
socio-technical alignment, i.e. the multi-disciplinary collaboration
between the computer scientists integrating the algorithms, and
the professionals working in the context in which the algorithms
are being integrated (Brennan and Kirby, 2022). The integration of
AI, machine learning, or advanced data-driven decision-making of
any kind into the workflow may move the industry professionals
from a generative role (creating the outputs themselves) to the role
of auditors, where they correct the output of the algorithms, and
consult with computer scientists to tweak and alter the models
to handle edge cases or incorrect generations by the algorithm
(Grønsund and Aanestad, 2020). Moreover, in the rare case when
socio-technical alignment is reached, trust issues often surface,
where the professionals working within the context that the
algorithms are integrated into, may not trust the outcomes (Islind
and Hult, 2022), which has posed a great limitation in healthcare
(Lee and Yoon, 2021; Jermutus et al., 2022). This mistrust has
received limited focus in terms of research contributions and needs
to be studied further.

Machine learningmodels are often deemed a “black box,” owing
to their lack of transparency and the extensive technical knowledge
needed to understand them. Moreover, their incapacity to adapt to
dynamically evolving requisites often leads to their obsolescence.
This has resulted in the increasing prevalence of human-in-the-
loop AI systems (Mosqueira-Rey et al., 2023). Human-in-the-loop
AI systems allow one or more human experts to take an active part
in the training process by continuously evaluating the model and
providing new inputs that are then selectively used to re-train the
model in a process called active learning (Settles, 2009).

To advance and modernize sleep research as well as to enable
the collection of a large-scale European sleep recording dataset, the
Sleep Revolution project, a joint venture involving 24 European
partners, was initiated (Arnardottir et al., 2022). Each partner
contributes ∼60 sets of three-night PSGs. Sleep technologists then
evaluate these on a shared workstation which is a part of the
Sleep Revolution high-performance cluster. After this, healthcare
professionals analyze sleep parameters, which helps them to
diagnose the patient. A significant objective of the Sleep Revolution
is to reduce scoring time (Arnardottir et al., 2022). One strategy to
achieve that goal is to direct the focus of the sleep technologists to
the areas of sleep that automatic algorithms have less “certainty”
of. By displaying these areas of high uncertainty, referred to as gray
areas from now on, we can specifically target the sleep technologists
toward these areas, instead of unilaterally trusting or mistrusting
the automatic scoring algorithms (Jouan et al., 2023).

Most of the research done on automatic sleep staging
algorithms mainly focuses on the increase in model prediction
accuracy or agreement. With recent datasets mobilizing an
ensemble of independent sleep technologists scoring the same
record, research on uncertainty quantification, such as gray area
identification in the domain of sleep staging, is growing (Bakker
et al., 2023; Rusanen et al., 2023; Nikkonen et al., 2024). However,
the union of sleep staging algorithms, including selectively focusing
the attention of sleep technologists using uncertainty or gray
areas during sleep scoring, is a newborn concept that needs to
be assessed.
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To enable these algorithms to benefit sleep technologists in
their daily work, a system is required that bridges the gap between
the data collection and the manual scoring itself. To collect the
data required for this work, a digital platform was designed to
handle automatically collecting, segmenting, and processing the
PSG. The concept of digital platforms takes into account that a
digital platform is both a piece of software, while it is also an
intermediary that connects needs with resources. Therefore the
concept of digital platforms encompasses a larger array than the
software itself as it, in a socio-technical manner, also takes the
context into account. In this case, the digital platform is accessed via
the users’ web browser and is hereinafter referred to as the platform.

Computer-assisted automatic scoring with manual review has
demonstrated the ability to reduce PSG scoring time significantly,
with some studies showing improvements by factors of 1.26–2.41
(Alvarez-Estevez and Rijsman, 2022). Moreover, automatic sleep
scoring algorithms can halve the scoring time (Liang et al., 2019;
Choo et al., 2023).

Some research on the integration of automated scoring has been
conducted in the last few years as listed in Table 1. Rayan et al.
(2023) discuss the challenges and advancements in automatic sleep
scoring in the context of rodent and human sleep research. They
note limitations in handling atypical data and lack of flexibility
but also note that automatic algorithms can make the process
more efficient. A recent study evaluated a deep-learning-based
automatic scoring software for its accuracy and efficiency compared
to manual scoring. The results indicated a high correlation between
the automatic scoring system and manual scoring, particularly
in sleep staging and the apnea-hypopnea index. The automatic
scoring system also demonstrated a significant reduction in manual
scoring time, leading to improved workflow efficiency in sleep
laboratories (Choo et al., 2023). Oxholm et al. (2021) interviewed
nine healthcare professionals and five patients about their attitudes
toward using data from electronic health records in an algorithm
to screen for alcohol abuse in hospitals. Professionals were mixed
in their views, appreciating the tool’s time-saving potential but
concerned about losing instinctual decision-making. While this
work is only tangentially related to our work, the authors point
out the requirement to include healthcare professionals in the
process of integrating automatic algorithms. Gerla et al. (2018)
presented a computer-assisted approach for sleep staging using
EEG recordings and AASM 2012 scoring rules, focusing on real
clinical data with artifacts and missing electrodes, evaluating
the influence of AI in clinical settings by comparing traditional
manual sleep stage classification with AI-based methods, including
expert-in-the-loop strategies, for the analysis of EEG recordings
in sleep studies. In a later study, Gerla et al. (2019) developed
a semi-supervised method for evaluating PSG, blending expert-
scored segments with automated classification. This approach,
tested on both healthy individuals and chronic insomnia patients,
showed enhanced efficiency and accuracy in sleep data analysis
compared to conventional manual scoringmethods, demonstrating
the impactful role of AI in streamlining sleep study workflows.

Contributions

As is evident from Table 1, existing research on automatic
sleep scoring addresses either the impact on workflow or the

opinions of medical professionals on AI in the workflow. To
the best of our knowledge, no research exists that addresses
the integration of automatic sleep scoring into existing work
environments which is an important aspect to consider to achieve
socio-technical alignment.

To fill this research gap, we designed both a platform and a
process for evaluating the effectiveness of introducing gray areas
into the work of sleep technologists and their trust in the process.
By integrating the platform featuring machine learning algorithms
into the work of sleep technologists through our empirical
case within the Sleep Revolution, we extrapolate three main
contributions. Firstly, we outline the architecture for a platform
that has been designed and developed to enable the integration
of automatic scoring. Secondly, we introduce the concept of “gray
areas” as a method of selectively focusing the attention of sleep
technologists on fewer areas in the PSG. Thirdly, we illustrate
the decreased scoring time and increased agreement gained by
integrating the automatic scoring algorithms into the workflow
of sleep technologists. Throughout this research, and particularly
when analyzing the results, we realized that the phenomena we
encountered consistently and that was common to all of our results,
was missing a clear clinical terminology that we attempt to address
in this work.

Materials and methods

PSG sharing and scoring between research centers require
sophisticated architectures that rest heavily on the principles of
storing and processing medical data cohesively. The proposed
platform has the main purpose of connecting needs with resources,
which in this case outlines the sharing and scoring of PSG between
research centers.

The methodology is three-fold; (1) the design and development
of the platform, (2) the validation of the platform, and (3)
interviews with sleep technologists. The design section covers the
architecture, components, and technologies chosen to implement
the platform, the validation section covers how the platform was
assessed in terms of processing duration, sleep technologist speed,
and agreement improvements, and the interview section describes
how sleep technologists were interviewed for their sentiment
toward integrating AI tools into the workflow.

Platform design

The platform needed to be conceived in agreement with
the main constraints as having a simple user interface for sleep
technologists to be able to authenticate and upload their PSG;
providing administrative oversight on uploads from different
centers; being fault-tolerant; and being scalable (Prasad, 2015). The
platform is split into three distinct components:

1. Web-based front-end for user uploads, administration, and
dispatching of jobs to the other components (henceforth
referred to as the front end).

2. Three-night PSG splitter (henceforth referred to as the splitter).
3. Processing pipeline that augments PSGs with automatic scorings

(henceforth referred to as the processor).
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TABLE 1 Comparison of contributions of this work and similar work.

Work Addresses integration into
existing work environments

Addresses impact on
workflow

Addresses opinions of medical
professionals on AI in workflow

Our work X X X

Rayan et al. (2023) X

Choo et al. (2023) X

Oxholm et al. (2021) X

Gerla et al. (2018) X

Gerla et al. (2019) X

Figure 1 shows an overview of the platform architecture. An
important feature of the platform is to allow users (e.g., sleep
technologists and healthcare professionals) to upload multiple
PSGs to be shared and scored at the same time without breaking
the platform. To achieve this, the FastAPI Python web framework
was used, which despite its simplicity handles multi-user web
applications supporting asynchronous code (tiangolo, 2023). The
platform is protected with a user login access in which each user is
a validated member of Sleep Revolution consortium (Sle, 2021).

Additionally, the front end handles receiving signals from both
the splitter and the processor via HTTP requests and issuing jobs to
the splitter when a new PSG is received and to the processor when a
PSG has successfully been split. Splitting is necessary when several
nights’ PSG are combined into one file. The job queue was achieved
using a RabbitMQ queuing server, which is a program that allows
disparate asynchronous programs to communicate by listening
and issuing messages to a queue (RabbitMQ Contributors, 2007).
By utilizing a message-queue protocol, the font end can offload
more time and memory-consuming projects such as generating
automatic scorings to other processes, thus reducing the probability
of users experiencing downtime, or data loss.

The processor is the final component of the architecture. Its
purpose is to prepare the individual night PSG by augmenting the
PSG with the AI scoring, along with the gray area scoring. The
output of the processor is twofold. Firstly, the processor prepares
a “scoring" version of the PSG that is augmented with predicted
sleep stages from an automatic scoring algorithm integrating gray
areas and is made available for manual scoring, and a version
meant for later computer processing and machine learning. Each
component was containerized using the virtualization software
Docker (Merkel, 2014) for enhanced isolation, consistency,
and reproducibility during deployments, which is important in
sustainable and secure development.

As introduced previously, the processor prepares the PSG to
be manually scored, stored, and ready for further analysis. To
reduce the manual work of the sleep technologists, a crucial step
in the processor is highlighting areas in the PSG that are hard to
score for the algorithm, i.e. gray areas. The gray area augmentation
works first by sending each one-night PSG EDF file to the trained
deep learning model aSAGA (Rusanen et al., 2023). The aSAGA
architecture is based on a revisited U-time architecture for scoring
and respiratory events prediction (Perslev et al., 2021; Huttunen
et al., 2022). The U-time is an encoder-decoder structure consisting
of blocks of consecutive convolutional, batch normalization, and
pooling layers. However, in the aSAGA algorithm, a single-channel

model is used, which was first trained on PSGs’ EEG (C4-M1) and
then fine-tuned with an EOG (E1-M2) channel using self-applied
PSGs with frontal setup. This was done to have generalizability
between EEG and EOG channels and to increase the compliance
of the model for frontal EEG and EOG setups. The aSAGA model
is parameterized to return a hypnogram of the same length as the
number of epochs from the signal input. Themodel has an accuracy
of 80% estimated over different scored sleep datasets. This accuracy
is on par with manual scoring Nikkonen et al. (2024), however, the
gray areas from aSAGA model prediction have been validated by
comparing the match with the gray areas from predicted manual
scoring uncertainty.

The second part concerns the gray areas. Using the predicted
hypnodensity from the aSAGAmodel as input, a trained clustering
algorithm tags each epoch that belongs to the gray areas (Jouan
et al., 2023). The clustering algorithm is a multi-objective method
based onmultinomial mixturemodels clustering the different levels
of sleep technologist agreement and summarizing the results into
two sets of high-agreement and gray area clusters. The threshold
is selected according to the maximization of the distance between
two distributions of the sleep technologist’s agreement measure.
When the algorithm receives a new hypnodensity, it outputs a
hypnogram called aSAGA-UA with gray area. Figure 2B illustrate
such predicted hypnogram where each gray area are represented as
a line discontinuity named “whitespace.”

Using aSAGA-UA, it becomes easier for the sleep technologists
to view epochs where the AI scoring may not be accurate, and
need to be re-evaluated. In Figure 2A between 12:30 a.m. and
1:30 there are many transitions between Wake, N1, N2, and
REM scored by the algorithm. For the same time period in
Figure 2B, there are many line discontinuities characterized by a
whitespace symbolizing gray areas. For instance, the predicted N1
and REM sleep stages in Figure 2A are not present in Figure 2B
where whitespaces are clearly visible instead. Regarding the high
number of sleep transitions happening in a few minutes, the
associated signal might be hard to interpret by the algorithm.
A manual review from the sleep technologist is needed in that
part of the hypnogram. The method has been evaluated on a
real case of uncertainty analysis of 50 PSGs manually scored by
10 sleep technologists. We refer to this dataset as 50 × 10PSG.
This dataset comes from a cohort of 50 participants that have
previously been scored by ten independent sleep technologists
to create a consensus scoring (Jouan et al., 2023; Rusanen
et al., 2023). After testing the clustering algorithm on predicted
hypnodensities from aSAGA, the threshold separating the gray
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FIGURE 1

Overview of the platform showing how the front end, processor, and splitter are combined.

FIGURE 2

Example of output 2 h hypnograms for the no. 1 PSG from 50× 10PSG, obtained using the processor and rendered in Nox Medical’s Noxturnal
software for manual review. (A) aSAGA predicted 2 h hypnogram. W, wake; R, rapid-eye-movement; 1, 2 and 3 are respectively for N1, N2, and N3.
(B) aSAGA-UA predicted 2 h hypnogram with gray areas. Each discontinuity in the hypnogram line represent a gray area. W: Wake; R:
Rapid-Eye-Movement; 1, 2 and 3 are respectively for N1, N2 and N3.

area clusters from other epochs was lowered to 0.73 according
to a sleep technologist’s recommendations. The new value avoids
the creation of an excessive amount of white spaces in the
final hypnogram.

All three components were hosted on a Linux virtual machine
run on a Cisco Hyperflex high-performance compute system
located at Reykjavik University. The virtual machine was equipped
with 10 Intel(R) Xeon(R) Gold 6248R central processing units, and
20 gigabytes of random access memory.

Sleep technologist time and consensus
validation

The platform is validated with the help of three sleep
technologists, referred to from this point as Sleep Technologist
One, Sleep Technologist Two, and Sleep Technologist Three (ST1,
ST2, and ST3 respectively). ST1 and ST2 are experienced sleep
technologists, whereas ST3 is considered less experienced. Each
sleep technologist was asked to score a randomly selected subset
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TABLE 2 The layout of PSGs to be scored, where X indicates default

automatic scoring and O indicates aSAGA-UA, that is aSAGA with gray

areas.

PSGs 1 2 3 4 5 6 7 8 9 10

ST1 X O X O X O X O X O

ST2 O X O X O X O X O X

ST3 O X X X X X O O O O

The numbers correspond to specific recordings in the 50× 10 PSG.

of from the 50× 10PSG. The sleep technologists looked at multiple
channels when scoring the data, using the NoxTurnal sleep study
annotation program. The EOG channels E2 and E3 referenced
against AFz were used to track eye movements, the EEG channels
AF3, AF4, AF7, AF8 all referenced against the average value of the
eye channels E3 and E4 were used to observe EEG activity. There
were no EMG electrodes as part of the setup, however the sleep
technologists used the muscle component derived from the eye
electrodes to their aid in scoring. Each sleep technologist received
half of the subset scored with a default proprietary industry-
standard automatic scoring and the other half had the automatic
scoring with gray areas (aSAGA-UA). We also refer to these to
options as without and with AI, respectively. The partitioning of
the subsets can be seen in Table 2.

The sleep technologists were instructed to score sleep stages
and arousals. The PSGs with the default automatic scoring were
manually reviewed as sleep technologists would normally do in
a clinical setting, reviewing every epoch manually. For the PSGs
with aSAGA-UA, only the gray areas were manually reviewed by
the sleep technologists. The standard operating proceeding follows
these specific steps:

1. Start by running automatic analysis.
2. Adjust the time frame from lights out to lights on (start and stop

times for the correct analysis period).
3. Score sleep stages and arousals according to AASM version v. 3.0

(Troester et al., 2023).
4. For the aSAGA-UA scoring, after reviewing all visible gray areas,

look for possible missed epochs by searching for sleep stage
scorings that contain the word “uncertain,” and correct them.

Each sleep technologist was asked to accurately measure the
duration of the scoring process for each PSG in their subset.
Subseqently, their scoring was collected andcompared it to the
existing consensus scoring from the 50 × 10 PSG. The scoring
accuracy of the sleep technologists using the system as support
was assessed via Fleiss’s multi-rater (Fleiss, 1971) κ coefficient.
This coefficient κ ∈ [0, 1] measures the agreement of the current
sleep technologist sequence to the scoring sequences given by the
ten sleep technologists in the consensus scoring. In the case of
samples with high agreement between sleep technologists, Fleiss’s
κ coefficient converges to 1 and 0 otherwise.

Interviews with sleep technologists

The perceived trust and reliability of the automated scoring
system were evaluated through semi-structured interviews with the

three sleep technologists, following an interview guide. These 30-
min interviews aimed to explore the sleep technologists’ confidence
in the system’s output and their comfort in integrating the system
into their workflow. The sleep technologists provided feedback
on the system’s overall performance, as well as reflected on
their trust in the system’s automatic scoring algorithm and gray
area identification. The interviews were transcribed verbatim and
relevant segments of the interviews were and the qualitative data
was analyzed with thematic analysis.

Results

This section is divided into three main subsections. Firstly, we
present the performance of the platform itself. Secondly, we present
the performance gain in terms of both scoring time and agreement
of the sleep technologists. Thirdly, we present the results from
interviews with sleep technologists.

Platform performance

Table 3 lists the time taken by the two main components of the
pipeline, the splitter and the processor. Since the platform must
split the upload into individual nights before further processing, the
initial three-night PSG takes∼458.5 s (7.6 min) to become available
for scoring, including both splitting and processing time. However,
for the subsequent PSGs, the sleep technologists mainly perceived
the processing time, which averages 336.2 s (5.6 min) per PSG. The
processing time for later PSGs is negligible, as the sleep technologist
can begin scoring the first file while the others are being processed.
Consequently, the processing time is optimally utilized, preventing
any significant delays in the scoring workflow. When employed
in the early stages of the data collection, the queue sizes of the
splitter and processor did not grow to excessive lengths, with the
processor queue generally not exceeding the size of three pending
processing jobs.

The front end was designed to be clean, and provide a
structured interface to submit both the PSG itself and information
about the participant. A screen grab of the user interface is
presented in Figure 3.

Sleep technologist time and consensus
validation

This section provides insights into sleep technologists’
performance when using the AI for scoring. Each sleep technologist
received an identical set of PSGs to score, both with and without
aSAGA-UA. Here, the analysis encompasses the sleep technologist’s
time efficiency and agreement metrics.

In the following section, the study results first delve into
the outcomes of the sleep technologist’s time to score. Figure 4
displays the scoring duration for each of the 10 PSGs and all
sleep technologists with and without aSAGA-UA assistance. As
seen in Figure 4A, ST1 using aSAGA-UA assistance shows an
average ± standard deviation scoring duration of 20.8 ± 8 min
compared to 36.8 ± 16 min for ST2. ST1 reviews faster than ST2.
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TABLE 3 Samples of processing time in minutes (min) taken by each queue according to file size in mego octets (Mo).

Splitter Processor

File size (Mo) Processing time (min) File size (Mo) Processing time (min)

1, 920 1.8± 0.3 640 3.4± 0.3

2, 160 2.1± 0.0 720 4.6± 0.3

2, 400 2.0± 0.0 800 4.8± 1.2

FIGURE 3

Front end user interface for uploading recordings.

This efficiency translates into an average scoring duration reduction
of 16 min.

Meanwhile, as seen in Figure 4B, when using aSAGA-UA, ST2
approximately equaled the time of ST1. ST2 displayed a scoring
duration of 26 ± 9 min, and ST1 displayed 30 ± 6 min, with ST2
reducing their mean scoring duration by 4min when using aSAGA-
UA. Finally, Figures 4A, B display ST3 having a time of 111 ±

26.7 min without AI. ST3, as the least experienced in this study,
was noticeably slower in scoring than the other sleep technologists.
However, Figure 4C shows that ST3 depicted a significant decrease
in the time to score, of 46 ± 20.2 when using aSAGA-UA, or a
reduction of 65 min.

Turning to the agreement analysis, Table 4 is divided into two
parts; the first half details the sleep technologist’s agreement based
on the analysis of the complete PSGs, while the second half assesses
the agreement specifically for the gray area epochs which the sleep
technologist handled with aSAGA-UA assistance.

When the agreement was calculated based on gray areas, the
sleep technologist using aSAGA-UA assistance was the only one

aware of the nature of these epochs. A steady trend in the overall
agreement of sleep technologists using AI for scoring is observed
in Table 4. However, the agreement rating of ST3 appears to
be negatively affected by the use of aSAGA-UA assistance. This
reduction is possibly attributed to a more challenging sample of
associated PSGs, which generally achieved a lower agreement score,
but this is not clear.

Figure 5 shows the agreement analysis of each of the three
sleep technologists in this study with the 50 × 10 PSG with and
without aSAGA-UA. The performance levels of ST3, represented
in Figures 5A, C, consistently matched or surpassed the levels
achieved by ST1 and ST2while using the aSAGA-UA tool. However,
there is a discernible decrease in scoring agreement for the
three PSGs illustrated in Figure 5E when ST3 utilizes aSAGA-
UA. Despite this decrease, the performance levels of ST3 generally
remained comparable to and occasionally exceeded those of ST2.
Moreover, across all three Figures 5A, C, E, the agreement of the
sleep technologists stayed consistent, indicating that the scorings
produced traditionally and using aSAGA-UA are comparable.
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TABLE 4 Fleiss’s multi-rater κ mean ± standard deviation estimated on overall hypnograms and gray areas epochs only by sleep technologists manually

scoring and using aSAGA-UA assistance.

Complete hypnogram Gray areas only

Sleep technologist Without AI With AI Without AI With AI

ST1 0.87± 0.05 0.86± 0.05 0.76± 0.12 0.73± 0.08

ST2 0.72± 0.08 0.85± 0.04 0.48± 0.22 0.65± 0.17

ST3 0.84± 0.04 0.80± 0.08 0.60± 0.11 0.77± 0.12

FIGURE 4

Overlapped bars of scoring duration comparison of PSG with one sleep technologist using aSAGA-UA and the other two using the standard
procedure. (A) Scoring duration with ST1 using pipeline aSAGA-UA assistance. (B) Scoring duration with ST2 using pipeline aSAGA-UA assistance. (C)
Scoring duration with ST3 using pipeline aSAGA-UA assistance.

For instance, PSGs IDs 1, 7, 8, and 10 all display complete
agreement, having been scored twice by the sleep technologists
using aSAGA-UA.

A second aspect depicted in Table 4 is the agreement of the
sleep technologists only calculated for the gray areas on both
samples (sleep technologists using aSAGA-UA assistance and
without aSAGA-UA assistance). In this table, ST2 and ST3 got a
marked increase in their agreement when using aSAGA-UA, with
ST2 and ST3 gaining∼0.17 κ , but with ST1 a decrease of 0.03 κ for
the gray areas.

Figures 5B, D, F offer the Fleiss’s multiraters κ estimated on
only gray areas per PSG ID. In this comparison, only the sleep
technologist using aSAGA-UA knew that these epochs were labeled
as gray areas. As expected, in Figures 5B, D, F, ST1 depicted the
same stability observed previously. ST2 and ST3 showed an increase
in κ when using aSAGA-UA. The increase, however, was less strong
for ST2 who showed more agreement’s dispersion among the PSGs.
Otherwise, in Figure 5F, ST3’s agreement showed a significant
increase for PSGs 1 and 9 compared to ST2’s agreement which
might explain the difference in Figure 5E. This last result indicates
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FIGURE 5

Agreement analysis of 10 sleep technologists compared to a sleep technologist with or without aSAGA-UA assistance. The first column (A, C, E)

shows the total agreement per polysomnographs. The second column (B, D, F) shows the agreement for gray area epochs tagged by the artificial
intelligence. (A) Fleiss’s multiraters κ overview with ST1 using aSAGA-UA assistance. (B) Fleiss’s multiraters κ of only gray area epochs with ST1 using
aSAGA-UA assistance. (C) Fleiss’s multiraters κ overview with ST2 using aSAGA-UA assistance. (D) Fleiss’s multiraters κ of only gray area epochs with
ST2 using aSAGA-UA assistance. (E) Fleiss’s multiraters κ overview with ST3 using aSAGA-UA assistance. (F) Fleiss’s multiraters κ of only gray area
epochs with ST3 using aSAGA-UA assistance.

that aSAGA-UA assistance may benefit a beginner more than an
experienced sleep technologist.

In summary, all the participating sleep technologists showed
a decrease in their time to score but to a different degree.
Regarding their scoring agreement, the sleep technologists depicted
three distinct results when using aSAGA-UA. The agreement of

the experienced sleep technologist with the PSG signals was not
affected by aSAGA-UA. On the other hand, the second experienced
sleep technologist has shown more dispersion among the PSG
with on average an increase when using aSAGA-UA. Finally, the
third, less experienced sleep technologist benefited the most from
aSAGA-UA assistance.
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FIGURE 6

A word cloud of the interview transcripts.

Interviews with sleep technologists

The sleep technologists were interviewed about their experience
when using aSAGA-UA. The transcript of the interviews was
compiled as a word cloud (Figure 6).

Initially, the sleep technologists approached the new system
with optimism. ST1 expressed initial enthusiasm: “[Before starting]
I was very optimistic that it would decrease the scoring time.” All
sleep technologists found it simple to integrate AI scoring with
gray areas into their current workflows with ST3 commenting
“I do not think it is an issue at all [...] it is pretty easy
to implement.”

However, as they used the new system, the sleep technologists
noticed a need for a more accurate staging algorithm, with ST1
noting “What I saw is that the algorithm is not good enough.”
For ST1 and ST3, improved accuracy is essential for reducing the
scoring time and building trust in the new system. ST2 provided
a slightly different perspective, suggesting that the system’s staging
accuracy might already be on par with the inter-scorer agreement
of human sleep technologists.

Overall, all three sleep technologists expressed in various
ways that trust in AI technology is significant for its continual
adaptation into their practice. The sleep technologists articulated
the psychological impact of integrating AI staging with gray areas
into their workflows. ST2 expressed concern that the AI suggestion
might slightly shift their bias in selecting a sleep stage. ST3 spoke
along similar lines: “Maybe I had an unconscious bias to lean
toward the [suggested sleep stage].”

Overall, the sleep technologists found the new system
promising and were optimistic about the approach. ST3 was
interested in seeing a more detailed quantification of the gray
area uncertainty, asking for “the percentage of the prediction or
something like that.” However, all sleep technologists agreed that
improving the staging algorithm’s accuracy was important, as ST1

put it: “You need to trust the algorithm.” Their sentiments reflected
a cautious optimism, recognizing the potential benefits while
anticipating enhancements in usability and trust as the accuracy of
the underlying staging algorithm improves.

Discussion

Main contributions

This paper introduces an advanced web platform aimed at
filling the gap of sharing, processing, and storing three subsequent
nights of PSG in the sleep research field. The platform has three
distinct components: a front end, a PSG splitter, and a processor
component with automatic scoring and storing of each PSG. The
front end is connected with the two subsequent parts using a
flexible message-queue protocol, preventing the front end from
crashing in case of failure in the processing of PSGs. The platform
was tested on a set of 60 three-night PSGs files. The average
processing time of the platform ranged between 5.6 min, for
an associated file size of 1,920 Mo, and 7.6 min, for a file of
size 2,400 Mo.

Moreover, the automatic scoring, including the gray areas
implemented in the processor component has been assessed with
the help of three sleep technologists. The predicted scores by the
platform showed a decidedly positive effect on the speed of scoring.
This enhancement is achieved without significantly complicating
the workflow of sleep technologists. The strategic incorporation of
AI support into their routine not only optimizes the time efficiency
of scoring but also adds a layer of precision and reliability to the
process. The most experienced sleep technologists showed a high
agreement on an average of 0.85 κ when using AI support. This
value of agreement is in line with the observed agreement obtained
for other data sets manually scored (Rosenberg and Hout, 2013).

Frontiers inNeuroinformatics 10 frontiersin.org

https://doi.org/10.3389/fninf.2024.1379932
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Holm et al. 10.3389/fninf.2024.1379932

Additionally, a significant increase in both the scoring speed and
agreement was observed for the less experienced sleep technologist,
suggesting that the use of automatic algorithms and gray area
assistance has the potential to bridge the gap between more
experienced sleep technologists and the less experienced ones, and
thus speeding up the training of new sleep technologists.

Platform insights

Utilizing a message queue protocol imparted a considerable
complication in implementing the platform that would have been
avoidable if we had instead opted for a separate process using
e.g. HTTP requests, or implemented the splitting and processing
as part of the same program as the front end. Utilizing message
queues in favor of more ad-hoc solutions allowed us more flexibility
and scalability than with other solutions. The need to split PSGs
similarly complicated the work, since it added a component to the
process. However, the benefits gained from working with separate
nights later in the process outweighed this added complexity.

In the results part, the processor component has been evaluated
over a study composed of three sleep technologists with different
experiences scoring 10 PSGs with and without aSAGA-UA.
However, the dispersion obtained in the results reflected a lack
of PSG required to obtain an accurate representation of the time
to score and sleep technologists’ agreement distributions. A study
with a greater number of PSGs would allow us to validate the
result obtained in the presented paper. Moreover, using aSAGA-
UA, the effectiveness of the sleep technologists in terms of scoring
duration is affected differently. Their disparity may be explained
by the difference in experience with the self-applied PSG frontal
signals, the baseline speed of both sleep technologists, and the trust
given to the AI-predicted scores in the gray areas. Furthermore, a
study with a higher number of PSGs and more sleep technologists
is needed to have a better estimation of the effectiveness obtained
by the use of AI as a scoring support tool.

The interviews revealed the sleep technologists’ agreement
that the platform integrated well into their workflow, with ST3
commenting especially on the ease of implementation. The sleep
technologists did raise issues with the performance of the scoring
algorithm itself, with ST1 reporting that the scoring algorithm
is “not good enough.” ST3 expressed some concern that the
sleep stage recommendation system was influencing their decision-
making. This worry reflects the need for trust and alignment
between the sleep technologist and the algorithms, especially in
the context of healthcare AI recommendation systems. As the final
sentiment of ST3 indicates, the experts display interest in having
more insight into the reason why the algorithm assigned areas
as gray, aligning with the rise in demand for xAI, reflecting a
broader desire for transparency and clarity in human-in-the-loop
AI systems.

Clinical acquiescence of AI

Traditional accuracy and agreement measures are both derived
from the confusion matrix offering an overview of the performance

of the classification algorithm. Accuracy variation across different
datasets of <1% is considered insignificant for that kind of
algorithm (Phan et al., 2023; Rusanen et al., 2023). However,
confusion matrix-derived metrics such as accuracy only assess
if the algorithm prediction matches the correct output. It does
not guarantee that the algorithm captures a key signal pattern
related to a specific sleep stage hiding in this 1% accuracy
variation. For clinical experts, such as sleep technologists, it is
crucial to ensure that key signal patterns are correctly interpreted.
If a scoring algorithm with high accuracy and agreement is
missing these key patterns, it becomes hard for the sleep
technologist to trust the algorithm’s prediction. To summarize,
there is a need for a metric assessing the scoring algorithm’s
conformity that also assures sleep technologists’ trust in the
algorithm. Clinical acumen is a term symbolizing the ability of
healthcare professionals to make quick and accurate decisions
on complex issues that a clinical AI along with a human-
in-the-loop might include in the future to make a diagnosis
(Krause et al., 2018). In this work, we would like to introduce
a general term to define the act of accepting or agreeing to
the use of AI as a decision-making tool by clinical experts:
Clinical Acquiescence.

Study limitations

Our research is not without limitations and below we
highlight the most notable ones. Although the web platform was
architectured with the main purpose of being scalable and robust,
this paper does not include an extensive scalability evaluation
of the web platform itself. In the current study, this was not
the focus, as the platform was tested and evaluated primarily
on the improvement it could provide in the task of scoring
PSG. Future works could be directed toward stress-testing the
platform, evaluating the maximum number of PSG it can handle
simultaneously, and determining whether the web platform could
sustain heavy traffic loads without considerably slowing down or
crashing. Since neither the splitter nor processor queue grew to
prohibitively big lengths during testing, we did not see a reason
to implement scaling functions, nevertheless, the implementation
of the system as a whole lends itself well to dynamic scaling.
The gray area threshold of 0.73 was selected with the help of
a sleep technologist, and adjusted to produce the least number
of gray areas without including blatantly incorrect algorithmic
scorings. This study does not evaluate the effect of this threshold
on scorer speed or reliability and notes that the threshold value is
highly dependent on the algorithm used to produce the scoring.
Detailed sensitivity analysis would need to be performed on the
threshold value in order to evaluate its performance and create
guidelines on how to optimally determine its value. Only global
metrics such as the scoring duration and the agreement of the sleep
technologists have been considered in this paper. However, this
study does not go into detail about the source of the uncertainty
in sleep staging between sleep technologists. For instance, it is
well known that one primary uncertainty source is the transition
between the sleep stages N2 andN3 (Bakker et al., 2023; Jouan et al.,
2023).
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Future work

In the future, a replication of this study needs to be performed,
with a greater number of both sleep technologists and a larger
subset of PSG to gain a broader perspective of the effects of
integrating AI augmentation into the sleep technologist’s workflow,
along with algorithm trust assessment.

The next step would be to loop the manual review of the gray
area with the automatic scoring algorithm. This process is referred
to as active learning (Settles, 2009; Ren et al., 2021), and aligns with
the AI-integrated human-in-the-loop workflow. A continuous loop
would link the reviewed gray area with the scoring AI updating the
model and sending a new set of gray areas corresponding to the
actual sleep technologist.

Due to the modularity of the platform, it is easy to add
more algorithms and augments to the processor, making the
adoption of any additional algorithms more approachable without
resulting in downtime or causing data loss. For example, the
BreathFinder (Holm, 2020) respiratory isolation algorithm is
planned for addition to the processor to allow future analysis of
individual respiratory cycles. Additionally, adding new destinations
and output formats for the PSGs is made easy, e.g. using a micro-
scoring platform with integrated machine-learning capabilities,
currently under development.

One possible avenue to further advance the platform is to allow
researchers to upload their custom automatic scoring algorithms
to be vetted and be run autonomously on test data, without ever
having to gain physical or digital access to the data, allowing for
a reliable method for testing disparate algorithms on the same
datasets for greater consistency, reproducibility and transparency
in future sleep research.

Conclusion

In this work, we presented a platform that enables PSG
collection, integrated with automatic AI scoring algorithms. We
evaluated the platform in terms of its effect on sleep technologists’
time, and accuracy when scoring PSGs that incorporate AI
assistance. In our results, we observed a clear gap in research
addressing the integration and evaluation of automatic scoring
algorithms for PSG. The proposed platform incorporates AI
assistance but still prioritizes the human expert as the ultimate
decision-maker. This balance of human expertise and AI presents
a promising avenue for future advancements in the field of sleep
study and analysis, potentially leading to more refined and accurate
diagnostic practices.
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