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Introduction: Automated seizure detection promises to aid in the prevention 
of SUDEP and improve the quality of care by assisting in epilepsy diagnosis and 
treatment adjustment.

Methods: In this phase 2 exploratory study, the performance of a contactless, 
marker-free, video-based motor seizure detection system is assessed, 
considering video recordings of patients (age 0–80  years), in terms of sensitivity, 
specificity, and Receiver Operating Characteristic (ROC) curves, with respect to 
video-electroencephalographic monitoring (VEM) as the medical gold standard. 
Detection performances of five categories of motor epileptic seizures (tonic–
clonic, hyperkinetic, tonic, unclassified motor, automatisms) and psychogenic 
non-epileptic seizures (PNES) with a motor behavioral component lasting for 
>10  s were assessed independently at different detection thresholds (rather than 
as a categorical classification problem). A total of 230 patients were recruited 
in the study, of which 334 in-scope (>10  s) motor seizures (out of 1,114 total 
seizures) were identified by VEM reported from 81 patients. We analyzed both 
daytime and nocturnal recordings. The control threshold was evaluated at a 
range of values to compare the sensitivity (n  =  81 subjects with seizures) and 
false detection rate (FDR) (n  =  all 230 subjects).

Results: At optimal thresholds, the performance of seizure groups in terms of 
sensitivity (CI) and FDR/h (CI): tonic–clonic- 95.2% (82.4, 100%); 0.09 (0.077, 
0.103), hyperkinetic- 92.9% (68.5, 98.7%); 0.64 (0.59, 0.69), tonic- 78.3% (64.4, 
87.7%); 5.87 (5.51, 6.23), automatism- 86.7% (73.5, 97.7%); 3.34 (3.12, 3.58), 
unclassified motor seizures- 78% (65.4, 90.4%); 4.81 (4.50, 5.14), and PNES- 
97.7% (97.7, 100%); 1.73 (1.61, 1.86). A generic threshold recommended for all 
motor seizures under study asserted 88% sensitivity and 6.48 FDR/h.

Discussion: These results indicate an achievable performance for major motor 
seizure detection that is clinically applicable for use as a seizure screening 
solution in diagnostic workflows.
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1 Introduction

Up to 10% of the world’s population experience at least one seizure 
during their lifetime (Gavvala and Schuele, 2016), and active epilepsy 
has an estimated 0.64% global point prevalence (Fiest et al., 2017; Beghi 
et al., 2019). Moreover, one-third of epilepsy patients have drug-resistant 
epilepsy (DRE), defined as the continuation of seizures despite using 
two or more anti-seizure medications (ASMs) with adequate doses 
either sequentially or in combination (Kwan et  al., 2010). DRE is 
responsible for significant mortality and morbidity (Laxer et al., 2014), 
and the risk of premature death due to epilepsy is 11-fold in comparison 
to the age-matched general population or siblings unaffected by epilepsy 
(Fazel et al., 2013). Nocturnal motor seizures are often unwitnessed and 
represent a major risk factor for sudden unexpected death in epilepsy 
patients (SUDEP), particularly when devoid of nocturnal surveillance 
(Sveinsson et  al., 2020). The gold standard of detecting seizures 
objectively, video-electroencephalographic monitoring (VEM), has high 
cost implications and limited access. The conventional seizure recording 
strategy relies on patient diaries, which have been shown to 
be inconsistent and unreliable, as patients significantly under-report 
seizure occurrence (Hoppe et al., 2007; Naganur et al., 2019). Seizure 
underreporting has been linked to postictal seizure unawareness and 
not simply the patient’s careless documentation (Hoppe et al., 2007).

While postictal interventions such as stimulation, repositioning, 
or airway clearing have been documented to be protective against 
SUDEP (Surges et al., 2009), the need for increased patient safety is 
still warranted and met by automated seizure detection and 
frequency measurement in outpatient settings (Johansson et al., 
2019). Various video detection methods exist in practice, which 
include marker-based (physical markers or sensors attached to the 
body) and marker-free methods (without relying on external 
sensors) (Ulate-Campos et al., 2016). Upon reviewing validation 
studies that qualified as phase 2/3/4, techniques like use of colored 
pajamas to facilitate limb movement tracking (Lu et  al., 2013), 
identifying seizure sounds (Arends et al., 2016), muscle activity 
(Conradsen et al., 2012; Szabó et al., 2015; Milošević et al., 2016), 
periodicity in the luminance signal (Pisani et  al., 2014; Cattani 
et al., 2017), and optical flow motion tracking (Karayiannis et al., 
2005, 2006; Geertsema et al., 2018) have been reported. Vision-
based motion recognition has been widely studied as the 
significance lies in its performance and robustness which is a 
critical functionality for decision support systems, particularly in 
clinical settings when diagnosing and managing epilepsy (Pediaditis 
et al., 2012). Literature (does not include neonates as outside the 
scope/intent-of-use of study’s algorithm) reports the overall 
sensitivity of video detection systems varying from 75 to 100%, 
positive predictive value over 85%, and specificity between 53–93% 
(Cuppens et al., 2012; Kalitzin et al., 2012; Pediaditis et al., 2012; 
Geertsema et al., 2018; van Westrhenen et al., 2020; Armand Larsen 
et al., 2022).

The application of artificial intelligence (AI) has significantly 
transformed the landscape of epilepsy phenotyping research, offering 
novel opportunities for automated and semi-automated analysis of 
various data modalities, with significant data reduction and the 
promise of clinical adoption of automated seizure detection and 
classification. The application of AI in clinical settings has shown 
tremendous potential in epilepsy diagnosis (Ahmedt-Aristizabal et al., 
2023; Knight et  al., 2024). AI-enhanced diagnostic methods may 

be trained to recognize cerebral localization from complex semiologic 
features, such as those observed in hyperkinetic seizures, which may 
not be reliably identified (or agreed upon) by clinicians (Ahmedt-
Aristizabal et al., 2023). Despite the promise, challenges persist. The 
integration of AI algorithms into clinical practice necessitates robust 
validation, considering challenges such as dataset scarcity, natural 
clinical setting complexities, and the intricate nature of epilepsy 
semiologies (Ahmedt-Aristizabal et al., 2023; Karácsony et al., 2023). 
While vision-based motion analyses have demonstrated success in 
controlled environments, their reliability diminishes in noisy settings 
like epilepsy monitoring units (EMUs) and intensive care units. 
Factors such as varying lighting conditions, environmental occlusions 
(e.g., bed blankets, head wrapping), and interference from non-subject 
entities (e.g., clinicians, nurses) pose unique challenges (Ahmedt-
Aristizabal et al., 2023; Karácsony et al., 2023). Deep learning models, 
though promising (Garção et al., 2023), are still in the early stages, 
struggling to recognize subject-specific semiologic categories and 
achieve fine-grained semiology recognition, crucial for distinguishing 
the stepwise progression of clinical features. These challenges extend 
to action recognition, where complexities in defining body part 
motions and variations between subjects hinder accurate automated 
detection. Moreover, some approaches that directly operate on RGB 
videos, exist with a possibility of privacy leakage of the sensitive 
patient data from videos, and the unrealistic wait for completion of 
the full seizure video to make predictions (Mehta et al., 2023). Other 
visual data modalities, including skeleton, depth, infrared, point 
cloud, and event stream, have their share of benefits and disadvantages 
as well (Sun et  al., 2022). Within this study, we  also took the 
opportunity to explore the challenges associated with 3D motion 
capture, including clinical personnel and soft occlusions such as 
blankets and adverse lighting conditions.

Per the International League Against Epilepsy (ILAE) and 
International Federation of Clinical Neurophysiology (IFCN) 
guidelines, use of clinically-validated wearable devices is 
recommended for the detection of generalized tonic–clonic seizures 
and safety indications (Beniczky et  al., 2021). The guidelines 
emphasized the need to develop and validate automated detection 
systems for other seizure types and indications beyond patient safety. 
However, of the few devices that have ascertained their performance 
validation in phase 3 studies, all require patient contact, and may 
incur minor discomfort. Moreover, only limited evidence is available 
for the detection of motor seizures other than tonic–clonic seizures 
(TCS). There is a clear need to provide proof of utility and accuracy 
of the seizure detection devices for a broader spectrum of seizures, 
including hypermotor and other motor seizures (Beniczky and 
Jeppesen, 2019).

A novel contactless, marker-free, automated, video-based seizure 
detection system (Nelli) has been developed to aid clinicians in the 
detection of seizure events through a selection of relevant epochs 
based on biomarkers derived from audio and video (media) signals 
(Peltola et al., 2023). In a prospective, blinded, phase 3 study, wherein 
we  had evaluated a solution based on an earlier version of the 
algorithm with a predefined detection threshold yielded a performance 
output of 93.7% sensitivity (95% confidence interval (CI): 69.8–99.8%) 
for the major motor seizures recorded, with a false detection rate 
(FDR) of 0.16 per hour (Armand Larsen et  al., 2022). Of these 
seizures, 100% of the TCS and 80% of the hypermotor seizures 
were detected.
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This study continues the previous phase 3 work with an improved 
motor seizure detection algorithm based on an ensemble of machine 
learning models trained on seizures recorded with Nelli in a home 
setting. Unlike the original study, which only focused on nocturnal 
periods, all recorded time periods where the patient was present in the 
scene (including day-time at-rest intervals) were included in the 
analysis. In addition to the generic statistical model used in the original 
study, a set of type-specific models contributed to the final detection 
score. The goal of our study is to assess the receiver operating 
characteristics of these new algorithmic models with major motor 
seizures created by choosing and grouping common ILAE types based 
on clinical use case and urgency. The performance is evaluated both for 
the set of predefined clinical seizure types, as well as all seizures of 
interest treated as a single major motor seizure group. Model stability 
within the dataset was assessed through cross-validation at the optimal 
threshold observed. We  propose two use-case scenarios of the 
automated seizure detection system for clinical application: (1) Patient-
safety: automated, real-time monitoring of videos in institutions; (2) 
Diagnostics: data-reduction of diagnostic home-video-monitoring, 
where epochs selected by the algorithm are reviewed by human experts, 
instead of reviewing the entire recording. We also note areas of future 
work, such as accessing the explainability and uncertainty of the model 
ensemble (and the models respective signals) when applied to a 
larger dataset.

While accurate differentiation between epileptic seizures and 
psychogenic non-epileptic seizures (PNES), can be challenging based 
on history alone (Naganur et al., 2019), the detection performance of 
these events was also included in this analysis. While subtle motor 
seizures can be detected by Nelli, a previous evaluation study indicated 
lower classification performance by hybrid (algorithm-human) review 
due to higher overall false detection rates (Peltola et  al., 2023). 
Therefore, subtle seizure types such as single myoclonic jerks, epileptic 
spasms, and other very short seizures were out of scope for the present 
study and therefore excluded from the performance analysis.

2 Materials and methods

2.1 Study design

Study subjects were prospectively recruited patients referred to 
long-term VEM, as part of their diagnostic work-up, at two sites in 
Denmark: the Danish Epilepsy Centre, Filadelfia and Aarhus 
University Hospital, between June 2019 and July 2021. The study was 
granted approval by The Scientific Ethics Committee for the Zealand 
Region (SJ-756) on April 30 2019. All methods were performed in 
accordance with the relevant guidelines and regulations. Written 
informed consent was obtained from the patients or their parents/
guardians (in case of children) prior to the study. Seizure labels were 
provided by the gold standard VEM methodology using a panel of 
three independent reviewers and blinded to the automated detection 
by Nelli. There was no restriction with the use of blankets by the 
subjects in the EMUs (Epilepsy Monitoring Unit). Use of wireless 
EEG also provided free movement of the subjects as they were 
allowed to leave the bed (as well as the video scene). Each seizure was 
labeled according to the ILAE 2017 seizure classification (Beniczky 
et al., 2017; Fisher et al., 2017), and seizures occurring outside of the 

recording area were excluded from analysis. The goal of combining 
different ILAE seizure types into distinct categories was to create 
groups of seizures that share a common clinical use case and care 
urgency. Five epileptic motor seizure groups were identified. PNES 
with a prominent motor component formed the sixth group, and was 
diagnosed according to the recommendations of the ILAE (LaFrance 
et al., 2013). These groups were clinically relevant since they have 
direct implications for decisions on patient management, and a 
measurable impact on the patient’s quality of life, such as causing 
disruptions to the sleep cycle. Some of these types may also lead to a 
focal-to-bilateral TCS.

Inclusion of seizure events was based on the following criteria:

 1 The seizure type contained a motor component
 2 The behavioral component of the event lasted for more than 

10 s (cut-off selected as per the literature (Meritam Larsen et al., 
2023) documented threshold for clinically relevant ictal 
phenomena, as well as widely accepted for electrographic 
seizures, suggesting clinical relevance for a video-based 
detection system)

Using the proposed standards for testing and clinical validation of 
seizure detection devices that identified four key features and their 
respective study designs for distinguishing between study phases 
(Beniczky and Ryvlin, 2018), the study met or exceeded most 
requirements for an explorative phase 2 study (Table 1). Although the 
hyperkinetic seizure group did not meet the said requirements of 
subjects and seizures, it was included as it had close proximity to the 
recommendation. However, the PNES group was included for 
illustration purposes only as it did not have a significant number 
of subjects.

2.2 Device description and mechanism

A detailed description of the camera specifications can be found 
in an earlier publication (Ojanen et al., 2021). The automated seizure 
detection system (Nelli) consists of a stereo near-IR camera (Intel 
RealSense D435) attached to a compact industrial PC. As a silent and 
non-wearable device, it is designed to be less intrusive than other 
seizure monitoring technologies such as EEG, EMG, or wrist-worn 
devices. The raw data produced by the recording device is grayscale 
30 frames-per-second (Hz) with low compression (VP9-encoded) 
stereo video at 1280×720 (“HD Ready”) resolution and 
accompanying compressed (Vorbis-encoded) 48 kHz stereo audio. 
Sound was captured using the built-in stereo microphone of an Intel 
NUC, a low-cost compact PC. The camera has field-of-view (FOV) 
of 87° × 58° for the stereo video sensors, allowing for capture of the 
complete bed area when the camera is mounted on the ceiling or wall 
above the bed. The use of the near-infrared spectrum allows it to 
capture clear grayscale images in the dark. The device has a global 
shutter, ensuring a fixed frame rate despite changes in lighting 
conditions. In the EMU environment, the camera was mounted in a 
fixed position 1.63 meters above the hospital bed (Figure 1). Unlike 
in other documented literature, the video was not cropped to a 
smaller bed area in this study. The computer’s software clips video 
events based on the presence of scene motion and transfers these 
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clips to cloud storage for further processing. The system was not 
tested with other camera models, but may apply to hardware with 
similar characteristics given the design of the algorithm (described 
in section 2.4).

2.3 Test set

A total of 230 patients with suspected epilepsy were recruited to 
the study. Inclusion criteria were admission to long-term in-patient 
VEM in the EMU. Patients (Gavvala and Schuele, 2016) who did not 
have any motor seizures during the monitoring, and (Beghi et al., 
2019) with completely failed recordings (device deficiency), were 
excluded from the analysis of sensitivity. All recruited patients and the 
entire monitoring time were used to determine the FDR.

Subjects’ ages ranged from 0 to 80, with a mean age of 23. The 
male-to-female ratio was 113:117 (51% female) (Table 2). The total 
number of events recorded by VEM was 1,114 among 103 subjects. 
Seizures lasting for more than 10 s were included in the study, as many 
short seizures are barely perceptible in video recordings (Peltola et al., 
2023), implying 334 motor seizures reported from 81 subjects were 
within the scope of this analysis. This included 21 convulsive seizures, 
14 hyperkinetic, 46 tonic, 45 automatisms, 164 unclassified motor 
seizures and 44 PNES. The events excluded were 218 non-motor 

events and 560 motor events lasting for 10 s or less. Table 3 summarizes 
the seizure type statistics as recorded by the gold standard seizure 
detection (VEM).

2.4 Seizure detection algorithm

Nelli’s seizure detection algorithm is based on a set of biosignals 
derived from physiologically-inspired video and audio analysis 
methods (Ojanen et al., 2021; Armand Larsen et al., 2022). Recordings 
used in training were collected from in-home studies using the same 
camera and microphone applied in the clinical investigation, with a 
total of 36 subjects and 2,570 expert-labeled motor seizure events 
(3,624 total seizure events). No samples from the test set were used in 
training or tuning the models. There were 12 pediatric subjects in this 
training set. Table 4 describes the demographic characteristics of the 
training set.

In order to evaluate on a per-event basis (as opposed to, e.g., a 
time window basis), videos were temporally segmented to events 
based on zero crossing of a signal representing the depth-weighted 
motion content of the scene. The motion threshold was experimentally 
chosen based on the minimal perceptible movement above breathing, 
by observing samples from the training dataset. The events were 

TABLE 1 Feature and design recommendation of a phase 2 study.

Feature Design Recommendation Study

Subjects Simulation/ healthy subjects Excluded The study enrolled patients with suspected epilepsy.

Number of patients with seizures ≥10 Out of 230 enrolled patients, 103 patients had seizures, with 81 patients 

experiencing motor seizures lasting >10 s. Number of patients in the 

seizure groups were as follows: TCS = 15, Tonic = 13 Automatism = 18, 

Unclassified motor = 40, Hyperkinetic = 7, PNES = 2

Number of seizures ≥15 Total number of seizures identified during monitoring was 1,114, of 

which 334 seizures were motor seizures lasting >10 s. Number of seizures 

within each seizure group were as follows: TCS = 21, Tonic = 46, 

Automatism = 45, Unclassified motor = 164, Hyperkinetic = 14, 

PNES = 44.

Recordings Conventional methods (already existing) Excluded The study uses a dedicated seizure detection device, instead of a 

conventional method.

Dedicated device Compulsory The study used a dedicated device for seizure detection- Nelli.

Continuous Optional Recordings were continuous, including daytime seizures detection.

Multicenter Optional The study was carried out at two EMU sites.

Offline/retrospective Allowed Patients were prospectively recruited in the study. The recordings were 

analyzed retrospectively.

Analysis & alarms Training & testing using the dataset Allowed The training set patients were not included in the test set.

Predefined algorithm and cutoff values Not required The study assessed a predefined algorithm, but cutoff values (threshold) 

was not predefined.

Real time Not required Analysis was not real time.

Blinded Not required Logging of the seizure detection time points was done blinded to all 

other data. The experts providing VEM labels were blinded to all data 

from the device.

Reference standard Video or video-EEG recordings Compulsory The study used VEM as the gold standard.

Information from patient and caregivers Excluded The study did not rely on the patient and caregiver for information.
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recorded considering standard events such as clinicians or family 
members visible in the videos. Base event detections could arise from 
any movement in the scene, even if it does not originate directly from 
the study subject.

In addition to the depth-normalized motion information used 
for event segmentation, a mixed bag of additional signals was 
extracted from each event. The majority of signals are based on pixel 
change statistics (such as those derived from optical flow); as such, 

FIGURE 1

The Nelli recording device is shown mounted above a hospital bed.

TABLE 2 Demographic characteristics of the patients.

Characteristic n =  230

Age range (years)

Infants (0–1) 4 (1.7%)

Children (2–11) 60 (26%)

Adolescents (12–21) 62 (26.9%)

Adults (22–80) 104 (45.2%)

Mean age in years at consent (SD) 23.2 (16.9)

Gender

Male 113 (49.1%)

Female 117 (50.9%)

Total events (subjects) 1,114 (103)

Total motor events > 10 s duration (subjects) 334 (81)
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TABLE 3 Clinical characteristics as seizure group summary of the patients (n  =  81).

Events Subjects Median age Min age Max age Children 
(0–11)

Adolescents 
(12–21)

Adults (22 
and above)

Seizure distribution (number of patients)

1 seizure 2 seizures >2 seizures

Convulsive (tonic–

clonic) seizures

I.D.01 (Focal to 

bilateral) 20 14 31 14 72 0 3 11 10 3 1

II.A.09 (Generalized) 1 1 4 – – 1 0 0 1 0 0

Total 21 15 26 4 72 1 3 11 11 3 1

Duration in secs 

(min-max) 59–1,057

Hyperkinetic seizures

I.C.08 (Focal) 12 6 37.5 5 50 3 0 3 2 2 2

I.B.07 (Focal with 

impaired awareness) 2 1 18 – – 0 1 0 0 1 0

Total 14 7 26 5 50 3 1 3 2 3 2

Duration in secs 

(min-max) 15–424

Tonic seizures

II.A.07 (Generalized) 29 7 4 4 23 4 2 1 2 2 3

I.C.05 (Focal) 17 8 12 4 17 4 4 0 5 0 3

Total 46 13* 5 4 23 6* 6 1 6* 2 5*

Duration in secs 

(min-max) 11–947

Automatism seizures

I.C.07 (Focal) 43 17 26 11 72 1 2 14 8 2 7

I.B.06 (Focal with 

impaired awareness) 2 1 31 – – 0 0 1 0 1 0

Total 45 18 26 11 72 1 2 15 8 3 7

Duration in secs 

(min-max) 13–298

Unclassified motor 

seizures

I.C.01 (Focal) 93 20 15 0 47 7 5 8 6 3 11

II.A.01 (Generalized) 36 7 26 12 46 0 3 4 2 3 2

(Continued)
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Events Subjects Median age Min age Max age Children 
(0–11)

Adolescents 
(12–21)

Adults (22 
and above)

Seizure distribution (number of patients)

1 seizure 2 seizures >2 seizures

III.A.03 (Unknown 

onset) 10 7 5 2 46 3 2 2 5 1 1

I.A.01 (Focal aware) 17 5 27 15 29 0 2 3 3 1 1

I.B.01 (Focal with 

impaired awareness) 8 3 45 27 58 0 0 3 1 0 2

Total 164 39* 23.5 0 58 10 10* 19* 15 8 17

Duration in secs 

(min-max) 11–2,292

PNES** 44 2 34 34 40 0 0 2 1 0 1

Duration in secs 

(min-max)

18–148

To aid in a compact representation of these various seizure types, the suggested codes (Beniczky et al., 2017) have been used.
*Total (n) is not equal to the group total as it excludes the duplicate subjects within the seizure group. **The number of subjects within this group did not meet the recommended standard for seizure detection studies proposed in the current issue (Beniczky and 
Ryvlin, 2018) for a phase 2 study, but the group was kept for illustration purposes.

TABLE 3 (Continued)
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they are sensitive to sudden changes in lighting, shaking of the 
camera, motion from other people in the scene. Naturally, a multitude 
of choices in signal extraction methods, their configurations, 
dimensionality, sliding window length, region of interest, etc. all 
contribute to the quality of the signal and its ability to abstract a 
reliable biomarker for seizure detection. A full discussion of these 
signals is out of the scope of this study, but is based on the methods 
described in a previous published study (Ojanen et al., 2021). The 
sound level-based signals provide a good discrimination power for 
the motor model, the oscillation-based signals are exceptionally 
useful for the motor, hyperkinetic and clonic models, while the 
velocity and acceleration-based signals have high positive impact on 
the performance of the hyperkinetic model. Because patients present 
with oscillating limbs during clonic seizures and the clonic model 
inputs optical flow-based motion signals, this model prefers motions 
with high-frequency oscillations during the seizure events as stated 
in Figure 2.

The signals were fed through an overlapping 20-s sliding 
window with 50% overlap into an ensemble of algorithmic and 
machine learning models, each with its own feature engineering and 
training dataset. Other sliding window lengths and overlaps were 
experimentally explored during model design, with the chosen 
parameters based on observations of typical behavioral duration of 
seizure activity and a desire to keep the potential maximum latency 
of the system low. The models were trained separately before 
creating the model ensemble, and the training dataset for every 

model was a subset of the in-home patients exhibiting the relevant 
seizure type of the model. For example, the clonic model was built 
by positive and negative samples chosen from the in-home 
recordings of patients with annotated clonic seizures. A model 
outputs a probability of seizure value (0 to 1) for every sliding 
window of an event and the event score is the maximum of these 
probabilities. In order to be considered a positive sample, all models 
in the ensemble must pass their ranked threshold. Then these scores 
are fused together by a weighted gating of all model’s event scores, 
calculated from single-valued feature importances against the 
training set, to arrive at the final “seizure likelihood” score. Notably, 
this means that the base motion segmentation event serves as an 
aggregated time range for multiple model predictions, each limited 
to a 20-s window, and limited to the extracted signals during that 
time range. Therefore, the ensemble is not aware of the entire 
content of the event, but relies on the maximum value output for the 
collection of sliding windows.

Accordingly, although four models are trained on specific 
seizure types, the system does not output distinct probability 
values for each seizure type, but rather a single seizure probability 
for each event. This probability value can then be used at different 
thresholds depending on the use case and target seizure types. The 
determination of these optimal threshold values, dependent on the 
seizure group under study, is explored in the following section. 
The series of extracted features, the participating models in the 
ensemble with their training characteristics, and a description of 

TABLE 4 Demographic characteristics of the training set.

Model Subject count Male:Female 
ratio

Age range Mean age Seizure events Non-seizure 
events

Clonic 21 10:11 16–40 26.4 564 7,222

Hyperkinetic 9 5:4 16–46 31.0 490 4,353

Motor 31 17:14 17–61 28.6 2,570 10,949

FIGURE 2

Diagram of feature signals, type-specific models, and final ensemble compared to operating threshold.
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the final gating process have been described in a flowchart 
diagram presented in Figure 2.

2.5 Performance analysis

To assess the system’s performance, seizure labels were compared 
to the Nelli event detections by intersection of timestamps. A hit or 
true positive (TP) event identified by the system was defined as a 
detection that intersected with the VEM label. A false positive (FP) 
event was defined as an event identified by the system that did not 
intersect with a VEM label. A false negative (FN) event was defined as 
a positive VEM label that was not identified by the system. TP and FP 
events were identified independently for all seizure groups. Sensitivity 
was calculated by dividing the number of TP events and total VEM 
positive events for the group, while FDR was calculated as FP per hour 
of recording. The effectiveness of different video detection systems 
were compared (Ulate-Campos et al., 2016) and a single acceptable 
performance was adopted for the study. The individual performances 
of the seizure groups were considered satisfactory if the sensitivity was 
equal to or exceeded 70% and individual FDR was equal to or below 
7 per hour. A comparative analysis of all the seizure groups was also 
carried out to determine combined optimal thresholds of the 
algorithmic model. False alarm rate was also reported, which was 
calculated by dividing the number of FP events and total VEM 
negative events for each seizure group.

The performance of the algorithmic model was presented using 
sensitivity (95% exact binomial CI) and FDR (95% bootstrapped CI) 
parameters. Interpolation of the CIs for sensitivity was done using 
Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) 
interpolation for attaining smoother plots. Geometric mean FDR 
(subject-level) and 95% CI were reported for seizure groups with 
skewed data, at lower thresholds. Overall FDR (event-level) was used 
at threshold equal or higher than 0.85. Due to high precision at higher 
thresholds, no FP events were reported for few patients and the 
corresponding geometric mean could not be computed. Thus, the use 
of overall FDR at those thresholds was advisable. An individual FDR 
for each seizure group was also reported which included events from 
the patients within the group only and seizures outside the group were 
treated as FP. As an additional outcome measure endpoint, detection 
latency was also calculated, which is defined as the difference (in 
seconds) between the model threshold time and seizure onset time as 
determined by vEEG. It was summarized using non-parametric 
descriptive statistics.

Patient and screen occlusion were also explored in the study. 
Different occlusion scenarios were established and event distribution 
were reported. Performance of each occlusion scenario were reported 
and associations were explored through statistical testing.

A series of k-fold cross-validations was performed to explore the 
stability of the model when subsampled. The resulting median 
performance and interquartile ranges were compared between the 
subsamples, providing some descriptive statistics of the model’s 
performance variability within the population and hinting at its 
potential generalizability for an unseen dataset.

Data analysis and visualization were carried out using Python 
(version 3.10.6) with pandas, matplotlib, numpy, seaborn, sklearn and 
scipy packages.

3 Results

3.1 Absolute performance of seizure groups

Grouped TP and FP events by ILAE seizure types, as defined in 
Table 3, was used to calculate sensitivity and FDR per hour for each 
seizure group. A range of thresholds was evaluated at suitable 
increments comparing sensitivity and FDR per hour. Figure 3 shows 
the absolute performance of the seizure groups in terms of sensitivity 
and FDR per hour respectively, against detection thresholds.

The optimal thresholds were determined from the individual 
seizure group’s performance output, which best balanced the 
sensitivity and specificity, and yielded the maximum sensitivity for 
each group while detecting a lower FDR than 7. Upon comparison 
with the VEM labeling, sensitivity was found to be higher than 70% 
for all the seizure groups (Table 5). The model performed best for 
convulsive and hyperkinetic seizures, where only a single seizure 
event was missed. Tonic, automatism, and unclassified motor 
seizure groups also had an above-satisfactory performance at lower 
thresholds, while only five events were missed in the PNES group 
(note that only two subjects were present in this group, and 
therefore are not likely representative of this seizure type). The 
population FDR was as low as 0.09 and 0.64 per hour for TCS and 
hyperkinetic seizures, while the highest detection was recorded in 
the tonic seizures as 5.87/h. False alarm rate was reported as low as 
0.003  in the TCS group, with a maximum rate of 0.26  in the 
tonic group.

The median detection latency for TCS, tonic seizures, unclassified 
motor seizures and PNES were well-aligned to the vEEG-labeled time, 
and were over −10 s for hyperkinetic seizures and automatisms. This 
shows that the optimal threshold tuning for the seizure groups 
activated the moment when the motor component of the seizure 
became more prominent than normal sleep movement or all seizures, 
with the possibility of getting triggered by more common movement 
events in case of hyperkinetic seizures and automatisms.

The prioritization of convulsive seizures as the primary focus 
necessitated an examination of potential oversights within this seizure 
group. It was observed that the one non-TP seizure event (1/21) in the 
convulsive seizure group, while not entirely missed, was identified as 
a medium-priority seizure event (characterized by hyperkinetic, tonic, 
automatisms, and unclassified motor manifestations) at the designated 
threshold. In terms of its implications for the treatment trajectory 
(assuming Nelli would be the sole seizure monitoring device), the 
deduction drawn herein suggests that the patient experiencing this 
missed convulsive seizure might have faced a potential delay in 
treatment, albeit without any subsequent alteration in the ultimate 
clinical outcome.

3.2 Combined performance of seizure 
groups

After an absolute performance analysis of the individual 
seizure groups, a comparative analysis was also conducted 
(Figure 4). A combined performance output of all seizure groups 
is presented as a black line plot for sensitivity and FDR per hour 
in Figure 4. This combined plot for FDR was found to follow the 
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trend of individual seizure group absolute performance, and thus 
served as the best representation for deriving recommended 
thresholds for the algorithmic model as a whole. Three 
recommended thresholds were derived from the comparative 
analysis as t1 (0.88), t2 (0.47), and t3 (0.12). The first recommended 
threshold, t1, would be useful in detecting most of the convulsive 

(TCS) seizures (95.2% sensitivity), with an FDR that is likely 
acceptable in an urgent care facility (0.09 per hour). The second 
recommended threshold t2 would perform best in screening TCS 
along with hyperkinetic seizures (92.9% sensitivity) in patients, 
with a comparatively higher but acceptable FDR in an EMU 
setting due to the presence of monitoring staff (0.62 per hour). At 

FIGURE 3 (Continued)
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this threshold, the algorithm can be seen yielding 100% sensitivity 
for TCS, which is far below the t1 threshold. This denotes that t2 
can be deemed a reasonable place to maximize patient safety with 
respect to convulsive seizures, coupled with the detection of 
maximum hyperkinetic seizures. The third recommended 
threshold t3 would work well in the detection of all major motor 
seizures under investigation (88% sensitivity), while keeping the 
FDR below 7 (6.48 per hour).

3.3 Occlusion scenarios and their impact

The different sources of patient occlusion and scene disturbance 
include the use of a blanket, other people, and disruptive lighting 
changes. Table  6 provides a detailed description of the occlusion 
scenarios identified within the dataset, with the aim of assessing if 
there is a significant association between the types of disturbance and 
sensitivity reported in each scenario.

FIGURE 3 (Continued)
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Events with multiple sources of occlusions were also recorded. 
A total of 272 events (of 334) were recorded with blanket occlusion, 
of which 129 events had only occlusion by blanket. Similarly 61 (of 
334) events were recorded with external light source interruption 
in them, of which 2 were exclusive. Events that involved another 
person occluding the patient numbered 193 (of 334), of which 40 
were exclusive of other disturbances. The scenario-wise sensitivities 
were recorded for both overall groups and their respective exclusive 

groups (Table 7). Association between the scenario type and their 
respective sensitivities (at the optimal generic threshold for all 
motor seizure types) were analyzed using the chi-square test for 
variable independence. Under the conditions with only blanket 
occlusion, the model detected 76.7% of the seizures, while 95% of 
the seizures were detected by the model when the event reports 
occlusion through another person. In conditions with overlapping 
disturbance types (blanket, another person, disruptive lighting), the 

FIGURE 3

Absolute performance of the seizure groups at incremental thresholds - (A) Tonic–clonic seizures, (B) Hyperkinetic seizures, (C) Tonic seizures, 
(D) Automatisms, (E) Motor seizures, (F) PNES.
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model detected 96.3% events (p < 0.001). As none of the exclusive 
scenarios reached statistical significance for variable independence, 
when considered individually, the data does not support the 
conclusion that any of the observed disturbances exert a significant 

challenge to the overall study sensitivity or the functionality of 
the algorithm.

While it is expected that scene disturbances may have an adverse 
effect on the performance of the algorithm, the correlation of these to 

FIGURE 4

Comparative performance of the seizure groups in terms of sensitivity and FDR per hour against incremental thresholds.

TABLE 5 Nelli performance summary of seizure events analyzed.

Seizure 
group

Subjects 
with 

events

Optimal 
threshold

VEM 
positive 
events

Nelli true 
positive 

detections

Sensitivity 
(95% CI)

Group FDR/h 
(Bootstrapped 

95% CI)a

Population 
FDR/h 

(Bootstrapped 
95% CI)b

Population 
False Alarm 

Rate

Detection 
latency in 

secs (median 
[Q1, Q3])

Convulsive 15 0.88 21 20 95.2% (82.4, 100%) 0.11 (0.06, 0.18) 0.090 (0.077, 0.103) 0.003 −3.3 [−19.5, 0]

Hyperkinetic 7 0.47 14 13 92.9% (68.5, 98.7%) 0.65 (0.39, 1.07)* 0.64 (0.59, 0.69)* 0.023 −14.3 [−16, −4.3]

Tonic 13 0.13 46 36 78.3% (64.4, 87.7%) 5.54 (4.45, 6.91)* 5.87 (5.51, 6.23)* 0.257 −4.8 [−21.8, 0.1]

Automatisms 18 0.2 45 39 86.7% (73.5, 97.7%) 3.34 (2.44, 4.57)* 3.34 (3.12, 3.58)* 0.134 −12.0 [−28.0, 0.2]

Unclassified 

motor

39 0.15 164 128 78.0% (65.4, 90.4%) 4.64 (3.88, 5.54)* 4.81 (4.50, 5.14)* 0.205 −2.3 [−17.4, 1.7]

PNES 2 0.3 44 43 97.7% (97.7, 100%) 1.31 (1.01, 1.71)* 1.73 (1.61, 1.86)* 0.065 −3.3 [−9.2, 0]

aIncludes events from the patients within the seizure group; seizures outside the group are treated as FP.
bIncludes events from the entire population (n = 230); seizures outside the group are not treated as FP.
*Geometric mean and 95% CI.

TABLE 6 Different patient and scene occlusion scenarios observed during labeled seizures.

Scenario Description

1 No occlusion

2 Blanket (covering any part or limb, for entire video or removed later)

3 Person between patient and camera within 10 s of seizure onset (occluding at least 10% of the patient as judged visually)

4 Person between patient and camera within 20 s of seizure onset (occluding at least 10% of the patient as judged visually)

5 Person between patient and camera within 20 s of seizure onset (occluding at least 10% of the patient as judged visually)

6 Another person in the scene at any time during the seizure

7 Disruptive lighting changes (e.g., the room lighting is changed suddenly, or a moving external light source is introduced in the scene)
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the algorithm’s sensitivity in this dataset is inconclusive. A closer 
analysis of the signal quality of the derived biomarkers in selected 
samples would be warranted in order to better understand the effect 
of these disturbances and how to mitigate the addition of noise to the 
underlying physiological biomarkers. It would also be warranted to 
observe the sensitivity effect over a range of operating points, as the 
association may be  more prominent as the threshold is raised. 
Furthermore, the strong statistical association with increased 
sensitivity in some types of disturbances may be  attributed to 
additional signal content, or may simply be  correlated to the 
underlying clinical explanations, such as larger (and therefore easier 
to detect) seizures leading to faster intervention from hospital staff.

3.4 Model stability

The 10-fold, 5-fold and 3-fold cross-validation (CV) strategies 
were used to test the model stability at the observed optimal threshold 
(0.12). The study population included patients with seizures of interest 
(n = 81) for sensitivity and all enrolled subjects (n = 230) for FDR. The 
cross-validation of the study test set utilized patient-level splits, and it 
was split into k consecutive folds of “In-sample (IS)” and “Leave-out-
of-sample (LOOS)” sets and a median performance assessment was 
reported for each cross-validation strategy, along with first quartile 
and third quartile as a measure of variability. 10-, 5- and 3-fold CV 
divided the study population into two subsets of 9–1 folds, 4–1 folds, 
and 2–1 folds, for IS and LOOS sets, respectively, with 10, 5 and 3 
iterations. Event-level sensitivity and FDR were calculated for each 
iteration and a statistical average (median sensitivity and FDR) along 
with a measure of variability (IQR) were reported for all k-fold 
strategies. The resulting number of patients in each set and the 
performance assessment of the IS and LOOS sets have been presented 
in Table 8. As each patient reported multiple types of seizures, class 
distribution was not a critical factor in patient-level cross validation.

The median sensitivity and FDR were similar across the folds in 
the IS set, despite the high variability within the data. At lower values 
of k, variability in the IS set remains low, suggesting that the model is 
generally stable for the study dataset and is not strongly affected by 
outliers. The results of the cross-validation indicate that the LOOS set 
exhibited performance metrics that were consistent with those 
observed in the IS set. This suggests that the model performance is 

stable across the assessed population, and might be expected to offer 
a similar level of performance on an unseen dataset.

4 Discussion

In this phase 2 study, the operating characteristics of the 
automated, video-based seizure detection algorithm of Nell were 
tested in an EMU setup against the gold standard (VEM). We found 
that different motor seizures across the epilepsy spectrum, as well as 
a selection of PNES, were detected by the system at a satisfactory 
performance level for manual video-based diagnostic review. 
Furthermore, for the detection of convulsive seizures, the FDR was 
sufficiently low for real-time application of the system as a seizure 
alarm. The detection latency of the model was well-aligned to the 
seizure onset time determined by the gold standard (under −15 s for 
all groups).

At optimal thresholds (balancing sensitivity versus FDR), the 
system detected tonic–clonic seizures, hyperkinetic seizures, tonic 
seizures, automatisms, unclassified motor seizures, and PNES with 
sensitivity higher than 70% and FDR lower than seven per hour. Using 
the comparative analysis, three recommended thresholds were sought 
for the combined performance of the seizure groups. These thresholds 
(t1, t2, t3) have been reported to accurately detect TCS, hyperkinetic 
seizures, and other motor seizures under study, respectively. When 
considering a single generic threshold, all major motor seizures were 
detected with 88% sensitivity, 6.48 FDR/h at 0.12 threshold. These 
results are indicative of the recommended pre-specified thresholds for 
the automated seizure detection system and the performance yield 
achievable from it. These results corroborate the performance yield 
achieved in the phase 3 study, wherein all 11 TCS (100% sensitivity; 
95% CI: 71.5–100%) and four out of five (80% sensitivity; 95% CI: 
28.4–99.5%) hypermotor seizures were detected among 51 patients 
(Armand Larsen et al., 2022). However, in the previous study that 
analyzed only nocturnal recordings, the FDR for all nocturnal motor 
seizures among the 181 total patients was reported as 0.16 per hour. 
The increase in FDR (t2 threshold) in the present study results from 
the inclusion of daytime motor seizures at rest apart from the 
nocturnal seizures. Although the sensitivity was relatively similar, with 
92.9% sensitivity among 35 seizures, compared to 93.7% sensitivity 
among 16 seizures in the phase 3 study. This level of performance is 
clinically relevant when considering different real-world use scenarios, 

TABLE 7 Performance recorded in different occlusion scenarios (presented both inclusive and exclusive of overlapping disturbance types).

Scenario Inclusive TP/T Sensitivity Exclusive TP/T ME Sensitivity

1 7/8 87.5% – –

2 237/272 87.1% 99/129 76.7%

3 47/48 97.9%* 13/13 100%

4 14/14 100% 2/2 100%

5 77/77 100%*** 12/12 100%

6 48/54 88.8% 11/13 84.6%

3/4/5/6 186/193 96.3%*** 38/40 95%

7 60/61 98.3%** 1/2 50%

TP, True Positive, T, True events as recorded by video-EEG monitoring Chi-square test for independence was used to check the association between the scenario and the detection by model. 
Corresponding p-values have been shown as *p < 0.1, **p < 0.01, and ***p < 0.001.
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including enhancement of a hybrid (algorithm-human) system for 
retrospective detection and classification of motor seizures (Peltola 
et al., 2023), as well as for real-time detection of TCS and hyperkinetic 
seizures in home, institutional care or EMU settings (Armand Larsen 
et al., 2022). It is notable that the model design may leave “performance 
on the table,” as it does not yet leverage uncertainty in statistics when 
applying model weights. When applied to a larger training dataset 
(such as the test set in this study), the ensemble may perform 
significantly better by leveraging knowledge of the types of signal 
profiles where the individual models have the highest levels of 
certainty. Such a study would also allow for examining the 
performance of individual models (and their underlying signals) in a 
systematic way to provide better explainability for the system.

The performance yields and detection latency observed in both 
convulsive and hyperkinetic seizure groups align closely with findings 
from previous studies investigating seizure detection through 
automated video analysis employing optical flow signal (Geertsema 
et al., 2018; van Westrhenen et al., 2020). Furthermore, the sensitivity 
demonstrated for convulsive seizures is coherent with the performance 
reported by wearable seizure detection devices validated in phase 3 
studies (Beniczky et al., 2021). Beyond the detection of high-priority 
TCS, the algorithm successfully identified automatisms with a 
sensitivity exceeding 70%, similar to results reported in another study 
utilizing wearable sensors (Tang et al., 2021).

Screening and differential diagnosis are essential components in 
the detection of seizures and the correct implementation of treatment 
(Elger and Hoppe, 2018). One of the major obstacles in the 
classification and differential diagnosis of suspected epileptic seizures 
is the patient’s inability to accurately describe key features of these 
events (Mielke et al., 2020). Additionally, the ability to monitor seizure 
activity over time (Duun-Henriksen et al., 2020) also favors a better 
understanding of seizure types, frequency, and severity, helping 
clinicians to better understand the patient’s condition and to assess the 
effect of medical interventions (Basnyat et al., 2022).

In an urgent care setting, convulsive seizures are highly undesirable 
and accurate detection is imperative. In such a clinical case, the first 
threshold t1 is recommended, as the corresponding FDR is likely 
acceptable in a real-time monitoring scenario. The second recommended 
threshold t2 could potentially be used from real-time monitoring in 
cases where a higher FDR is acceptable (e.g., in an EMU with monitoring 

staff or in some residential care units) while detecting TCS along with 
hyperkinetic seizures among the patients. Hyperkinetic seizures often 
result in large-scale body movements, loss of consciousness, and can 
be  confused for non-epileptic seizures due to the similarities in 
symptoms and therefore, are challenging to accurately differentiate (Lee 
and Khoshbin, 2008; Anne, 2013). Moreover, these seizures can lead to 
patient injury due to collapse and falling out of bed. The third 
recommended threshold t3, with a sensitivity of 88% and FDR of 6.48 
per hour, is still relevant in detecting other concerned epileptic seizures 
and unclassified motor seizures, as well as PNES, taking into 
consideration the patients with developmental disorders, dissociative 
disorders, or intellectual disability tend to have higher FDRs due to 
more frequent or repetitive idiosyncratic movements. This threshold is 
especially relevant for the enhancement of a hybrid (algorithm-human) 
system for retrospective detection and classification of motor seizures 
(Peltola et al., 2023).

One recognizes the rapid advancements in deep learning 
methodologies in the context of video-based detection methods; 
however, it is imperative to acknowledge that despite these strides, 
there remains a notable gap in the clinical validation of these 
techniques, particularly on suitably large clinical datasets (Ahmedt-
Aristizabal et al., 2023). Of the majority of seizure detection devices 
that are available, most have been developed using the same datasets 
for training and testing in the algorithm development phase, creating 
an inclusion bias. This limits the validity of the algorithm’s performance 
due to potential overfitting and may produce misleadingly high 
performances (Johansson et al., 2019; Ahmedt-Aristizabal et al., 2023). 
On the contrary, the results of our study stand valid as there was no 
overlap between the patients in the training and test datasets. A clear 
separation of patients between training and testing sets ensures that all 
recorded instances of a particular patient are exclusively assigned to 
either the training or testing set and is essential to accurately appraise 
the system’s ability to generalize (Ahmedt-Aristizabal et  al., 2023). 
However, the cut-off thresholds were not predefined (but rather 
explored as part of the study design), and therefore may not necessarily 
generalize to another dataset. Achieving generalization to unseen 
subjects has consistently proven challenging in the realm of medical 
machine learning, primarily attributed to the substantial variability 
observed among subjects (Ahmedt-Aristizabal et al., 2023). Despite the 
absence of a blinded test set, some exploration into the model’s stability 

TABLE 8 Model stability assessment through cross-validation and comparison of sub-sampled data variabilities.

CV strategy Number of subjects per fold Performance metric IS set LOOS set

10-fold IS: 73

LOOS: 8

Median Sensitivity (Q1, Q3)

87.7 (87.1, 88.5) 90.9 (82.0, 96.5)

IS: 207

LOOS: 23

Median FDR (Q1, Q3)

7.46 (7.38, 7.47) 7.07 (6.86, 7.74)

5-fold IS: 65

LOOS: 16

Median Sensitivity (Q1, Q3)

87.8 (87.6, 88.0) 87.9 (87.1, 88.7)

IS: 184

LOOS: 46

Median FDR (Q1, Q3)

7.44 (7.44, 7.45) 7.33 (7.31, 7.36)

3-fold IS: 54

LOOS: 27

Median Sensitivity (Q1, Q3)

87.8 (85.8, 89.5) 88.1 (84.3, 90.6)

IS: 153

LOOS: 77

Median FDR (Q1, Q3)

7.44 (7.40, 7.45) 7.38 (7.37, 7.46)
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provides evidence of its generalizability: a cross-validation of the 
model’s outputs showed that it gave consistently similar results, even 
when highly subsampled. Despite the high variability of data, the 
average performance remains similar across folds, suggesting that the 
measured performance is not highly dependent on the dataset.

Seizure semiology is often prone to inter-observer discrepancy 
due to qualitative criteria reliance. A system capable of measuring the 
seizure features quantitatively would allow detection changes in 
seizure severity or seizure propagation. With Nelli, quantitative 
analysis of movements is applied to the media data, to develop 
objective summaries of semiological components of identified events. 
This helps in forming the backbone of a correct categorization of 
seizures (Wolf et al., 2020), which was not possible in the self-reported 
paradigm. Furthermore, the presence of a video recording of a seizure 
allows the clinician to review the seizure itself, which is not possible 
with non-video seizure detection systems (Amin et al., 2021). These 
features have practical implications in tasks such as presurgical 
workup and therapy outcome assessment.

Clinical validation becomes paramount to ensure the reliability 
and effectiveness of AI-based systems in real-world scenarios. Despite 
the impact of occlusions in the study, the model showed robust 
performance. While multi-camera systems offer a partial solution to 
occlusion challenges and potential enhancements in tracking 
performance, the practicality of clinical implementation requires 
considerations of cost efficiency and minimal spatial footprint. Clinical 
monitoring rooms, typically designed for maximum patient capacity, 
are congested with various clinical apparatuses, thereby imposing 
constraints on available space and camera mounting positions. These 
factors necessitate the restriction of the camera count, making the 
utilization of a single camera the prevailing solution for monitoring in 
clinical settings (Karácsony et al., 2023). The seizure onset detection 
latency achieved by the model was also in line with (Garção et al., 
2023), that is between 5 and 35 s, although most markerless video-
based methods do not specify latency. Another consideration is the 
inclusion of daytime seizures, showing the model’s capability of 
objectively recording seizure counts and characteristics holds immense 
value, not only for seizures occurring during sleep but also for those 
manifesting while the patient is awake (Ahmedt-Aristizabal et  al., 
2023). The study models do not operate on the video frames directly, 
reducing privacy issues when storing derived signals as opposed to 
video. While the model was not evaluated for real-time usage as it used 
discrete analysis, the use of the 20 s, 50% overlapping sliding windows 
for data processing would allow detection to occur without the 
unrealistic wait till the end of longer seizures (Mehta et al., 2023), 
should a continuous modeling system be  adapted as an area of 
future improvement.

Nelli is non-obtrusive and intended to provide clinicians with 
video data as an adjunct for diagnostic categorization by the reviewing 
physician. While Nelli is not currently designed to operate as an 
alarm, the algorithms can potentially operate continuously due to the 
use of sliding windows. Therefore, future iterations of the product 
might feature real-time notifications for the detected events, provided 
that computational requirements are met for continuous inference. In 
an institutional setting, such as hospitals and residential care facilities, 
it may be possible to implement the real-time seizure alarm using 
Nelli. This could significantly reduce the need for long and continuous 
video surveillance during the night shift, as personnel would 
be present to act in the event of an alarm. Such a system could improve 
the efficiency of the care staff by reducing their workload.

Another interesting issue to note in the devices that detect TCS is 
the use of an oscillation measurement as a biomarker. This corresponds 
to the disadvantage that the seizure is first detected during its clonic 
phase, and this higher latency makes the system less impactful in an 
alarm, despite being highly specific. On the other hand, if a 
multimodal model like Nelli was to be integrated in an alarm system, 
the tonic biomarkers (sudden movement and sound) could potentially 
detect the seizure’s onset earlier.

The study also has several limitations. There is a possible gap in the 
age distribution among the patients included, with only 27% under the 
age of 11 (infants and children) included in the study. This section of 
patients was accountable for 79.7% of the short seizures in the study. A 
subgroup analysis was however not performed to avoid type I and II 
errors due to multiple hypothesis testing and inadequate power. Despite 
the high number of recruited patients, there was a relatively low number 
of patients and seizures under hyperkinetic and PNES groups. The 
authors identify the training coverage in terms of biomarker selection as 
a window of opportunity for further improvement, wherein a more 
comprehensive training set will help in training the algorithm even 
better. With respect to the device mechanism, using video for event 
detection restricts the area of interest, leading to challenging detection in 
case the patient leaves the scene. In such scenarios, the seizure 
recognition would completely be  based on the sound signal. The 
illustration of variability of the model’s performance when subsampled 
was performed on the same, seen test set as there was no further “unseen” 
data to evaluate on, we certainly anticipate future phase 3 studies to 
evaluate this model (or a future revision of the model) on a new dataset.

The challenge to tackle is to improve the specificity of prominent 
seizures within the study by decreasing false detections, which would 
be one of the next steps for development. Furthermore, the dataset 
had many short seizures (176 motor seizures of interest lasting for less 
than 10 s) which were excluded given the inclusion criteria set for the 
study. Should the modeling be adjusted to accommodate these shorter 
seizures, they could be evaluated for their performance.

In conclusion, this study explores the performance of the AI-based 
analysis of audio-video recordings using the Nelli system with respect 
to different seizure types and at different operating points for 
monitoring motor seizures at rest. The findings of this study show that 
Nelli as a seizure monitoring system device can improve the correct 
detection of seizures as well as differentiate between seizures and 
non-seizure events through data-driven analysis. Our results suggest 
that the performance of the Nelli system is clinically applicable for use 
as a seizure screening solution in diagnostic workflows, for both real-
time detection of convulsive seizures, and for improving the efficacy 
of a hybrid (algorithm-human) system for reviewing video recordings 
by significantly decreasing the workload for accurate classification of 
all motor seizures lasting longer than 10 s.
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