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Introduction: Cerebral microbleeds (CMBs) are associated with white matter

damage, and various neurodegenerative and cerebrovascular diseases. CMBs

occur as small, circular hypointense lesions on T2*-weighted gradient recalled

echo (GRE) and susceptibility-weighted imaging (SWI) images, and hyperintense

on quantitative susceptibility mapping (QSM) images due to their paramagnetic

nature. Accurate automated detection of CMBs would help to determine

quantitative imaging biomarkers (e.g., CMB count) on large datasets. In this work,

we propose a fully automated, deep learning-based, 3-step algorithm, using

structural and anatomical properties of CMBs fromany single input imagemodality

(e.g., GRE/SWI/QSM) for their accurate detections.

Methods: In our method, the first step consists of an initial candidate detection

step that detects CMBs with high sensitivity. In the second step, candidate

discrimination step is performed using a knowledge distillation framework, with

a multi-tasking teacher network that guides the student network to classify CMB

and non-CMB instances in an o	ine manner. Finally, a morphological clean-up

step further reduces false positives using anatomical constraints. We used four

datasets consisting of di�erent modalities specified above, acquired using various

protocols and with a variety of pathological and demographic characteristics.

Results: On cross-validation within datasets, our method achieved a cluster-wise

true positive rate (TPR) of over 90% with an average of <2 false positives per

subject. The knowledge distillation framework improves the cluster-wise TPR of

the student model by 15%. Our method is flexible in terms of the input modality

and provides comparable cluster-wise TPR and better cluster-wise precision

compared to existing state-of-the-art methods. When evaluating across di�erent
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datasets, our method showed good generalizability with a cluster-wise TPR >80

% with di�erent modalities. The python implementation of the proposed method

is openly available.

KEYWORDS

deep learning, knowledge distillation, detection, susceptibility-weighted image (SWI),

quantitative susceptibility mapping (QSM), magnetic resonance imaging, cerebral

microbleed (CMB)

1. Introduction

Cerebral microbleeds (CMBs) are haemosiderin deposits due to

micro-hemorrhages in the brain. CMBs are found in subjects with

cerebrovascular diseases, cognitive impairment and dementia, and

also found in healthy elderly subjects. CMBs have been associated

with white matter damage, and various neurogenerative diseases

including Alzheimer’s disease and cerebral amyloid angiopathy

(CAA). The presence of CMBs has also been shown to increase

the risk of symptomatic intracerebral hemorrhage (ICH) and stroke

(Cordonnier et al., 2007). Identification of CMBs and determining

their distribution could help in obtaining important biomarkers for

various diseases [e.g., lobar CMBs and deep/infratentorial CMBs

might indicate CAA and hypertensive vasculopathy, respectively

(Greenberg et al., 2009)].

CMBs appear as small, circular, well-defined hypointense

lesions ranging from 2 to 10 mm in size on T2*-weighted gradient

recalled echo (GRE) images. Due to the paramagnetic susceptibility

of the iron content in the CMBs, modalities such as susceptibility-

weighted imaging (SWI) (Haacke et al., 2004) and quantitative

susceptibility mapping (QSM) images (Liu et al., 2015) are useful

in the identification of CMBs. While all the above modalities are

derived from the same scan, they use different aspects of data—

T2*-weighted GRE are derived from magnitude only, QSM and

SWI are derived from a combination of phase and magnitude.

When compared to T2*-weighted GRE (T2*-GRE) images, CMBs

appear more prominently on SWI images due to the blooming

effect (Greenberg et al., 2009; Charidimou and Werring, 2011).

Unlike T2*-GRE and SWI modalities, CMBs appear hyperintense

on QSM images.

Automated detection of CMBs is highly challenging due to their

small size, contrast variations, sparse distribution and the presence

of imaging artefacts (e.g., ringing effect, susceptibility artefacts at

tissue interfaces). Additionally, the presence of various “CMB-like"

structures (or mimics) with diamagnetic (e.g., calcifications) and

paramagnetic (e.g., micrometastases and hemorrhages) properties

make the accurate detections of CMBs very difficult (for the list

of mimics and their description, refer to Greenberg et al. (2009)).

While the use of SWI images generally improves the CMB contrast

when compared to GRE magnitude images (Nandigam et al., 2009;

Shams et al., 2015), SWI also enhances mimics with magnetic

susceptibility differences (both diamagnetic and paramagnetic),

making it difficult to identify true CMBs (Greenberg et al., 2009).

QSM could be useful to accurately identify true CMBs since it

allows to separate diamagnetic tissues (with negative susceptibility,

appearing hypointense) from paramagnetic tissues (with positive

susceptibility, appearing hyperintense). On QSM images, CMBs

appear hyperintense while diamagnetic mimics (e.g., calcifications)

will appear hypointense (Rashid et al., 2021).

1.1. Existing literature on CMB detection

Various semi-automated and automated methods have been

proposed for CMB detection. Most of the methods follow a

common pattern with two steps: CMB candidate detection and

post-processing to remove false positives (FPs). The first step

generally achieves high sensitivity, while the second step is more

challenging and leads to improvement in the precision. In the

semi-automated methods, manual intervention has often been

used in the cleaning-up step to remove FPs (Barnes et al., 2011;

Seghier et al., 2011; van den Heuvel et al., 2016; Morrison et al.,

2018). Occasionally, candidate detection (De Bresser et al., 2013;

Lu et al., 2021a) and ground truth verification (Kuijf et al.,

2012, 2013) also involve manual intervention. Manual detection

of CMB candidates is extremely labor-intensive, especially when

done on a large number of subjects (e.g., around 8,000 subjects

from the UK Biobank Lu et al., 2021a), and might increase the

risk of observer error, given the large number of scans and low

prevalence rate. Fully automated methods, with high accuracy,

could therefore be useful. Various fully automated methods have

been proposed, with the candidate detection step often using hand-

crafted shapes (Bian et al., 2013; Fazlollahi et al., 2014), intensity

(Fazlollahi et al., 2015) and geometric features (Fazlollahi et al.,

2014) within supervised classifier frameworks (Pan et al., 2008;

Ghafaryasl et al., 2012; Fazlollahi et al., 2014, 2015; Dou et al.,

2015). The FP reduction stage is typically based on supervised

classifiers (Pan et al., 2008; Dou et al., 2015; Fazlollahi et al.,

2015) using local intensity features and shape descriptors [e.g.,

Hessian-based shape descriptors (Fazlollahi et al., 2015)]. Among

the shape descriptors, the radial symmetry transform has beenmost

commonly used (Bian et al., 2013; Liu et al., 2019b), exploiting the

circular shape of CMBs. Hence, using structural (e.g., intensity and

shape) and anatomical information in combination with the local

characteristics (e.g., local contrast) could aid in the reduction of FPs

and more accurate detections of CMBs (Dou et al., 2015).

Conventional machine learning (ML) methods require the

extraction of meaningful features capable of distinguishing CMBs

from the background and mimics. However, due to the small size

and variation in shape and intensities of CMBs, designing robust,

descriptive and cost-effective features is highly challenging. The use

of deep learning models, especially convolutional neural networks

(CNNs) could overcome this challenge and provide more accurate

CMB detection, since they efficiently extract both local and global
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contextual information. For instance, 3D CNN models have been

used for feature extraction (Chen et al., 2015) and patch-level

CMB detection (Dou et al., 2016). Dou et al. (2016) used a local

region-based approach for the segmentation of CMB candidates

and discrimination of CMB and non-CMB patches. They initially

trained a 3D CNN with true CMB samples and randomly selected

background samples. They then applied the initial model on the

training set and used the false positive patches for enlarging the

training dataset in the discrimination step. Another region-based

CNN method using You Only Look Once (YOLO) (Redmon and

Farhadi, 2017) was proposed by Al-Masni et al. (2020) (using a

3D CNN for FP reduction). In addition to the above methods,

deep ResNets (He et al., 2016) were used for patch-level CMB

classification (Chen et al., 2018; Liu et al., 2019b), along with a

post-processing step using intensity morphological operations (Liu

et al., 2019b). Given the size and sparsity of CMBs, class imbalance

between CMBs and background is one of the major problems. Due

to this, several methods used equal numbers of CMB patches and

non-CMB patches, selected using manually annotated CMB voxels

(and a comparable number of non-CMB voxels) for training and

evaluation purposes (Zhang et al., 2016, 2018; Wang et al., 2019;

Hong et al., 2020; Lu et al., 2021b). Note that patches selected in

these methods may contain multiple CMBs.

1.2. Existing literature on knowledge
distillation

Deep neural networks have been rapidly developing over recent

years for accurate medical image segmentation tasks, including

CMB segmentation, as mentioned above. However, the improved

performance is achieved at the cost of long training times and

using resource-intensive complex models (Lan et al., 2018). Hence,

training small networks that are computationally efficient and

generalizable across datasets is highly desirable. With this aim of

model compression (Buciluçž et al., 2006), knowledge distillation

(KD) (Ba and Caruana, 2013; Hinton et al., 2015) aims to train a

smaller network (usually referred as a student network) with the

supervision (or distillation of knowledge) from a larger network

(referred as a teacher network). In KD, the student network is

typically trained to match the prediction quality of the teacher

network, and has been shown to reduce overfitting (Hinton et al.,

2015; Lan et al., 2018). KD methods have been successfully used

for various object detection tasks (Chen et al., 2017), including

lesion segmentation on brain MR images (Lachinov et al., 2019;

Hu et al., 2020; Vadacchino et al., 2021). The most commonly

used distillation types include response-based (Hinton et al., 2015;

Kim and Kim, 2017; Ding et al., 2019; Müller et al., 2019) and

feature-based distillation (Romero et al., 2014; Zhou et al., 2018;

Jin et al., 2019). In response-based distillation, the output logits

from the softmax layer are softened (also known as soft labels)

using a temperature parameter that acts as a regularization factor

(Hinton et al., 2015). In the feature-based distillation, outputs of

intermediate layers of the teacher model are used to train the

student model (e.g., hint learning using outputs of hidden layers

Romero et al., 2014; Jin et al., 2019 and parameter sharing of

intermediate layers Zhou et al., 2018).

Based on the training methods, offline distillation (using

a pretrained teacher model to train the student models)

(Romero et al., 2014; Hinton et al., 2015), online distillation

(training teacher and student models together) (Zhou et al.,

2018; Guo et al., 2020) and self-distillation (where the student

models from prior epochs become the teacher for the subsequent

epochs) (Yang et al., 2019; Zhang et al., 2019) are most commonly

used. Various techniques have also been proposed to improve

the generalizability and the performance of the student models

including using noisy data (Li et al., 2017; Sarfraz et al., 2019),

adaptive regularization of distillation parameters (Ding et al., 2019)

and adversarial perturbation of data for training (Xie et al., 2020).

Multi-task learning methods have also been shown to provide good

regularization, reducing the risk of over-fitting (Liu et al., 2019a;

Ye et al., 2019). The auxiliary task could be a related task [e.g.,

auxiliary classification network in lesion segmentation (Yang et al.,

2017)] or an adversarial task [e.g., adversarial training of domain

predictor in domain adaptation networks (Ganin et al., 2016)].

So far, KD has never been used for CMB detection to the best of

our knowledge. However, in this context, a teacher-student network

could be highly beneficial. The teacher network is trained to

differentiate CMBs from non-CMBs and then distil this knowledge

for the student model to distinguish CMBs from various mimics.

In this work, we, therefore, used for the first time a knowledge-

distillation framework for accurate and fully automated detection

of CMBs, given a single image modality. We propose a 3-step

approach: in the first two steps we used 3D CNN models for

CMB candidate detection and discrimination. In the third post-

processing step, we used appearance-based attributes to reduce

false positives. We tested our approach in the presence of mimics,

across different datasets with different modalities and pathological

conditions. Our main contributions are as follows:

• In the initial CMB candidate detection step (Section 2.2),

we utilize the radial symmetry property of CMBs for more

efficient candidate detection with high sensitivity.

• In the candidate discrimination step (Section 2.3), we use

a knowledge distillation framework to create a light-weight

student model from a multi-tasking teacher model, which

overcomes the class imbalance between CMBs and the

background, leading to the effective removal of false positives

without reducing sensitivity.

• In the final post-processing step (Section 2.4), we exploit the

structural properties of CMBs to further reduce false positives

and improve precision by rejecting CMB mimics from the

discrimination step.

• We evaluated our method on four different datasets (details

are provided in Section 3). Through the experiments described

in Section 4, we studied the contribution of the individual

steps on the CMB detection performance, and also the effect

of various modalities and different pathological conditions on

the results. We also performed an indirect comparison of our

results with existing methods at various stages of detection.

2. Materials and methods

In the following sections we describe the details of our

method. We initially preprocess the input data and remove

blood vessels in the images as specified in Section 2.1. The

proposed method consists of three steps. (1) 3D CMB initial
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FIGURE 1

Sample images after removal of blood vessels and sulci (regions with major changes indicated by circles in the bottom row) shown for (A) T2*-GRE,

(B) SWI, and (C) QSM modalities.

candidate detection (Section 2.2): this step takes in the preprocessed

input images, performs fast radial symmetry transform (FRST),

and applies a deep learning model on both input image and

FRST output to generate an initial CMB candidate detection

map. (2) CMB candidate discrimination (Section 2.3): the initial

candidate detection map is taken as input and a knowledge

distillation framework, involving multi-tasking teacher and student

networks, is used on this input image as well as the FRST

output, to discriminate between CMBs and non-CMB candidates

(obtained from step 1). (3) Post-processing (Section 2.4): finally,

the CMB discrimination map obtained from step 2 is fed

into a post-processing step, which uses anatomical constraints

to further reduce false positives from the discrimination map.

Sections 2.5 and 2.6 provide information regarding the training and

implementation details of the method.

2.1. Data pre-processing

We reoriented the T2*-GRE, SWI and QSM images to match

the orientation of the standard MNI template, and skull-stripped

the images using FSL BET (Smith, 2002). For T2*-GRE and SWI,

we performed bias field correction using FSL FAST (Zhang et al.,

2001). We also inverted the intensity values of the input volume by

subtracting the intensity-normalized image (obtained by dividing

intensity values by the maximum intensity) from 1, so that CMBs

have higher intensities (a design choice to facilitate our choice of

CNN layers—e.g., max-pooling layers). For QSM images, we only

normalized the intensity values without inverting their intensity

values since CMBs already appear hyperintense with respect to the

background. We cropped the skull-stripped images closer to the

brain edges to make the FOV tighter.

We then removed blood vessels, sulci and other elongated

structures from the input image to reduce the appearances of

CMB mimics using the method described in Sundaresan et al.

(2022). Briefly, the method involves the extraction of edge and

orientation-based features, using Frangi filters (Frangi et al., 1998)

and eigenvalues of the structure tensor (Förstner, 1994), followed

by K-means clustering to obtain the vessel masks. The masked

regions were then inpainted using the mean of intensity values

from the immediate non-masked neighboring voxels (within a 26-

connected neighborhood). Figure 1 shows a few sample images

(from various modalities) after the removal of vessels and sulci.

2.2. 3D CMB initial candidate detection

In the initial candidate detection step, our main aim is to detect

CMB candidates with maximum sensitivity, despite variations

in their intensity characteristics and presence of mimics. The

shape and size of CMBs are the main characteristics that could

help differentiate them from mimics [e.g., flow voids, micro-

hemorrhages, partial volume artefacts Greenberg et al. (2009)].

Since CMBs are circular, for the initial CMB candidate detection,

in addition to the intensity characteristics, we also use the radial

symmetry property of CMBs. We performed a fast radial symmetry

transform (FRST) (Loy and Zelinsky, 2002) which uses a gradient-

based operator to detect voxels with high radial symmetry. We

calculated FRST at four radii (2, 3, 4, and 6 voxels) and then used

their mean as the final FRST output (shown for different modalities

in Figure 2).
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FIGURE 2

Examples of the final fast radial symmetry transform (FRST) outputs

for various image modalities. The FRST outputs shown (in the right

panel) for (A) T2*-GRE, (B) SWI, and (C) QSM images. Inset figures

show the magnified versions of the regions indicated in the boxes.

During the training phase, for both the input modality and the

FRST output, we split the 3D volumes into patches of size 48× 48×

48 voxels and provided them as two input channels to the 3D patch-

based encoder-decoder model for initial candidate detection. We

selected the patch-size of 48 voxels empirically—at this scale, the

patches were large enough to overcome the effect of local noise and

assign higher probabilities to CMB-like regions on experimented

datasets described in Section 3. Note that we use patches only for

training. During testing, we apply the trained model on whole 3D

images.

Figure 3 shows the block diagram of this initial candidate

detection step and the architecture of the 3D encoder-decoder

model. The architecture of the 3D encoder-decoder network at a

scale N is based on a shallow U-Net. We trimmed the U-Net to a

shallow architecture with two pooling layers. Since CMBs are small

and sparse, the model is required to detect low-level features in

limited-size patches, rather than global features generally learnt for

larger lesions (e.g., stroke lesions) at the image-level. The choice of

a shallow architecture is also in line with prior literature supporting

their use when data is scarce (Amiri et al., 2019; Du et al., 2020).

The input channels are converted into three channels by the initial

1 × 1 × 1 projection layer, followed by 3 × 3 × 3 convolution to

get the initial filter channel depth of 64. The architecture consists of

two consecutive 3× 3× 3 convolutional layers followed by the 2×

2× 2 max-pooling layer (in the encoder) or 2× 2× 2 upsampling

layer (in the decoder). We added a 1 × 1 × 1 convolutional layer

before the final softmax layer for predicting the probability maps

PCdet .

We used a combination of cross-entropy (CE) and Dice loss

functions as the total loss function. In the CE loss function, we

upweight the CMB voxels 10 times compared to the non-CMB

voxels during training to compensate for the imbalance in the

classes. Dice loss is based on the voxel-wise Dice similarity measure

and aids in the accurate detection of edges and small CMBs in the

patches.

2.3. CMB candidate discrimination

The candidate discrimination step is more challenging than

the initial candidate detection step, since the discrimination step

needs to learn the subtle features to detect CMBs and discriminate

them from other CMB mimics. To illustrate the complexity of

the problem, Figure 4 shows instances of CMB and non-CMB

patches that were all identified as CMB candidates in the initial

detection step. In this step, we use a student-teacher framework for

classifying true CMB candidates from FPs. We use two networks:

(1) a teacher network that has a multi-tasking architecture and

learns the task-based characteristics (in our case, CMB-related

features) from a larger dataset of patches extracted in a sliding

manner from the image; (2) a student model that has comparatively

simpler architecture and is trained directly on more contextual

patches centered at candidates detected from the initial candidate

detection step (Section 2.2). For training the teacher model (and

candidate detection stage), non-overlapping patches are used. They

provide sufficient sample CMB candidates to achieve the main aim

at this stage, which is to train the model with examples of CMBs

in a more comprehensive manner (especially with a multitasking

teacher model performing both classification and segmentation

tasks). We aim to improve the classification accuracy of the student

model, by guiding its training by using the information from

the teacher model with response-based knowledge distillation.

For both candidate detection and discrimination stages, patches

were extracted only for training, whereas the trained models were

applied on whole 3D images during testing. Figure 5 shows the

proposed overall architecture, while the details of the student-

teacher architecture and training are provided in the sections

below.

2.3.1. Teacher network with multi-task training
The teacher model uses a multi-tasking architecture consisting

of three parts (1) feature extractor (Tf ), (2) voxel-wise CMB

segmentor (Ts) and (3) patch-level CMB classifier (Tc). For the

multi-tasking teacher model, we took the pretrained weights from

the initial CMB candidate detection for Ts and added a patch-

level CMB classifier arm (Tc) using truncated normal variables

for weight initialization (refer to Section 2.6). This helps to train

the teacher model with more relevant initial weights for Ts, since

pretrained weights for Ts were already available from the candidate
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FIGURE 3

CMB initial candidate detection step. Block diagram of the candidate detection step with the architecture of the 3D encoder-decoder network based

on shallow U-Net.

FIGURE 4

Examples of initial candidates detected in the first step. (A) CMB and (B) non-CMB patches are shown separately. Note that in most of the cases,

non-CMB instances are quite similar to CMBs.

detection step. However, note that the teacher model can also be

trained with random initialization for both Ts and Tc. While the

architecture of feature extractor + segmentor is the same as that of

the model used in the initial candidate detection stage, the classifier

arm consists of a projection layer with 1 × 1 × 1 kernel, followed

by two consecutive 3 × 3 × 3 convolutional layers followed by a

pooling layer in each level of abstraction. The output of the third

layer of the encoder is fed into dense fully connected layers (FC).

Three fully connected layers (FC-1024, FC-128, and FC-32) with

1,024, 128, and 32 nodes are then followed by a softmax layer. We

added a dropout layer with a drop probability of 20% before the FC-

128 layer. We extracted 24 × 24 × 24 adjacent patches from the

input modality and FRST images, and provide them as 2-channeled

inputs for training this model. While we used a patch-size of 48

for the detection stage, we used a smaller patch-size of 24 for this

stage. This is because our main aim was to adapt the segmentor arm

Ts, initialized with pretrained weights (trained on patch-size of 48),

to learn the lesion-level characteristics of initial CMB candidates

from the local neighborhood obtained using smaller patches. The

Tf , made of a series of convolutional layers, extracts features that

are helpful for both Ts and Tc. Therefore, both Ts and Tc learn to

improve the CMB segmentation and classification in a progressive

manner since both are trained simultaneously with shared weights

inTf . Thismeans thatTs assigns high probability values to the CMB

voxels in the CMB patches, while reducing the probability values of

CMB-like mimics on the non-CMB patches. At the same time, Tc

detects the patches with more CMB-like features (regions that are

assigned higher probabilities by Ts) as CMB patches with higher

confidence and vice versa. In addition to the loss function to train

Ts (specified in Section 2.2), we used a binary cross-entropy loss

function for Tc.

2.3.2. Knowledge distillation using student
network

The student model consists of a feature extractor and a patch-

level classifier parts (Tf + Tc), as the teacher model. However, while

we provided non-overlapping, adjacent 24 × 24 × 24 patches for

the teacher model, we extracted more meaningful input patches for

the student model, centered at the detected initial CMB candidates

for quicker learning. We trained the student model in an offline

manner using response-based knowledge distillation (KD). For

determining the centroids of the patches, we thresholded PCdet from

the first step at a specific threshold ThCdet based on the performance

values (formore details refer to Section 5.2). During testing, patches

centered at candidates detected from the initial candidate detection

steps are classified as CMB or non-CMB by the student model.

Let the student model and teacher model classifier be S and Tc,
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FIGURE 5

CMB candidate discrimination using knowledge distillation. Top panel shows the multi-tasking teacher model consisting of feature extractor Tf
(orange), voxel-wise 3D CMB segmentor Ts (blue) and patch-level 3D CMB classifier Tc (green). The bottom panel shows the student model S for

classification of CMB and non-CMB patches using the distillation of knowledge from the teacher model using the distillation loss LKD(Tc, S).

respectively. For the distillation of knowledge from the teacher

model for training the student model, the loss function is given by

L = α ∗ LS + β ∗ LKD(Tc, S) (1)

where Ls is the student loss function, LKD(Tc, S) is the KD loss

and α, β are weighing parameters. We used the cross-entropy loss

function as the student loss. For determining the KD loss, the

targets are the class outputs predicted by the classifier of the teacher

model (in the inference mode) on the same input as that of the

student model. A temperature (τ ) parameter is used in the softmax

function to soften the target distribution. While τ = 1 provides

the usual softmax outputs, higher values of τ soften the softmax

outputs (as shown in Equation 2). The softmax function with τ is

given by,

σ (zi, τ ) =
exp(zi/τ )

∑N
j=1 exp(zj/τ )

(2)

where N is the number of classes. Compared to hard target

distributions (closer to 0 or 1 for individual classes), softer target

distributions (between 0 and 1) have been shown to aid in training

a generalizable studentmodel (Hinton et al., 2015), however, having

very high τ might also be counter-productive in some cases.

The optimal value of τ and the level of softness in the target

distribution depends on specific applications, student/teacher

network architectures and dataset characteristics. Temperature τ

values between 2.5 and 4 have been shown to provide better results,

while models with more units in the hidden layers may require

higher τ values (Hinton et al., 2015). Using the temperature τ

parameter, the KD loss is given by,

LKD(Tc, S) = KL(σ (zS, τ ), σ (zTc , τ )) (3)

where KL is the KL-divergence (distance between the class

probability distributions of student and teacher classifier models).

From Equation 1, the loss function is,

L = α ∗ CE(yS, σ (zS, τ = 1))+ β ∗ KL(σ (zS, τ ), σ (zTc , τ )) (4)

where yS are the target labels of the student model and zS and zTc
are the logits (inputs to the softmax layer) of the student and teacher

classifier model. respectively.
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FIGURE 6

Density plots of candidate-level attributes. Density plots of (A) distance from the skull (mm), (B) volume (mm3), and (C) ellipticity of true CMB

candidates (orange) and false positive candidates (blue) on an independent dataset (see Section 2.6). The filtering criteria are marked on the density

plots with dotted lines.

2.4. Post-processing

We applied a threshold ThCdisc on the probabilities to

discriminate CMB and non-CMB candidates. We set ThCdisc values

empirically based on the performance metric values (refer to

Section 5.2). Additionally, we removed the noisy stray voxels by

filtering out the candidates with volume < 2.5mm3, removed the

tubular structures (e.g., fragments of sulci near the skull) by filtering

out candidates having higher ellipticity (>0.2) and removed the

CMB candidates that are closer to the skull (<5 mm from the brain

mask boundary) to reject the FPs due to the sulci in the brain.

The density plots for the above attributes for false positive and

true CMB candidates on an independent dataset (that was used for

hyperparameter tuning as specified in Section 2.6) are shown along

with the cut-off criteria values in Figure 6. Note that this dataset was

not later used for training or testing in the evaluation. The cut-off

criteria values were determined empirically based on the attribute

values as shown in density plots.

2.5. Data augmentation

Due to the small size of CMBs, transformations such as

rotation and down-scaling could result in the loss of CMBs in the

augmented data patches. Hence, we chose our data augmentation

carefully, to inject variations in the data with minimal interpolation

of intensity values. For the initial candidate detection step, we

performed augmentation on the patches, increasing the dataset

size by a factor of 10, using random combinations of the

following transformations: translation, random noise injection

and Gaussian filtering (with a small σ value). The parameters

for the above transformations were chosen randomly from the

ranges as specified as follows: (1) Translation: x-offset: [−15,

15], y-offset: [−15, 15] voxels, (2) Random noise injection:

Distribution - Gaussian, µ = 0, σ 2 = [0.01, 0.04], (3) Gaussian

filtering: σ = [0.1, 0.2] voxels. We used similar augmentation

for the discrimination step, increasing training data by a

factor of 5.
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2.6. Implementation details

For both candidate detection and discrimination steps, patches

were extracted only for training. During the testing phase, the

trained models were applied to the whole 3D images. For both

CMB candidate detection and discrimination steps, we trained the

networks using the Adam Optimiser (Kingma and Ba, 2014) with

an epsilon (ǫ) value of 1× 10−4. We used a batch size of 8, with an

initial learning rate of 1× 10−3 and reducing it by a factor 1× 10−1

every 2 epochs, until it reaches 1 × 10−6, after which we maintain

the fixed learning rate value. For both candidate detection and

candidate discrimination training, we also empirically set the total

number of epochs to 100 and used a criterion based on a patience

value (number of epochs to wait for progress on validation set)

of 20 epochs to determine model convergence for early stopping.

We used the truncated normal variable (with σ = 0.05) for weights

initialization and the biases were initialized as constants with a

value of 0.1. For the student model in the discrimination step,

we used a temperature τ = 4, α = 0.4, and β = 0.6, determined

empirically using a trial-and-error method. We used a subset

of a publicly available dataset (https://valdo.grand-challenge.org/

Data/) consisting of a random sample of 20 subjects for hyper-

parameter tuning and the empirical determination of parameter

values in the post-processing step and loss functions. The initial

candidate detectionmodel took∼15min per epoch for training and

converged in around 80 epochs. For the candidate discrimination

step, the teacher model took ∼20 min per epoch for training

and converged in around 80 epochs (this model was trained only

once and was always used in inference mode for training student

model on various datasets during cross-validation). The student

model took only <5 min per epoch and converged in ∼50 epochs,

thereby effectively reducing the training time for various datasets.

We implemented the networks on NVIDIA Tesla V100 GPU, in

Python 3.6 using Pytorch 1.2.0.

3. Datasets used

We used four datasets for the evaluation of our proposed

method. The datasets consist of images from different modalities,

that were acquired using different scanners with variations in

acquisition protocols and from subjects with different pathological

conditions and demographic characteristics. Histograms of subject-

level CMB counts for the individual datasets (along with zoomed-

in histograms for subjects with CMB count <10) are shown in

Supplementary Figure S1.

3.1. The UK Biobank (UKBB) dataset

From 14,521 subjects with usable imaging and non-imaging

variables of interest (out of ∼20,000 subjects from the January

2018 release of UKBB), we preselected 78 CMB candidate subjects

using the method proposed in Sundaresan et al. (2022). Manual

segmentations in the form of coordinates were annotated on SWI

images for these 78 subjects by a trained radiologist (A.G.M). From

those coordinates, the ground truth segmentation for each CMB

was obtained by a region-growing-based method that in addition

to a voxel’s intensity also takes into account its distance from the

seed voxel, and is constrained by a maximum radius of five voxels

in-plane and three voxels through-plane. The age range of subjects

is 50.8–74.8 years, mean age 59.9 ± 7.2 years, median age 57.8

years, female to male ratio F:M = 37:41. For SWI, 3D multi-echo

GRE images were acquired using 3T Siemens Magnetom Skyra

scanner with TR/TE = 27/9.4/20 ms, flip angle 15o, voxel resolution

of 0.8 × 0.8 × 3 mm, with image dimension of 256 × 288 × 48

voxels. The QSM images were generated using a multi-step post-

processing of phase data as described in Wang et al. (2021). Briefly,

the method involved a combination of phase data of individual

channels, phase unwrapping, background field removal, followed

by dipole inversion. Total number of CMBs in this dataset: 186,

mean: 2.4± 7.0 CMBs/subject, median: 1 CMB/subject.

3.2. The Oxford Vascular Study (OXVASC)
dataset

The dataset consists of T2*-GRE images from 74 participants

from the OXVASC study (Rothwell et al., 2004), who had recently

experienced a minor non-disabling stroke or transient ischemic

attack. The 2D single-echo T2*-GRE images were acquired using

3T Siemens Verio scanner with GRAPPA factor = 2, TR/TE =

504/15ms, flip angle 20o, voxel resolution of 0.9× 0.8× 5mm, with

image dimension of 640 × 640 × 25 voxels. Age range 39.6–91.2

years, mean age 69.8± 14.6 years, median age 67.3 years, female to

male ratio F:M = 36:38. Out of 74 subjects, 36 subjects had CMBs,

and manual segmentations, labeled using T2*-GRE images, were

available for all 36 subjects. Total number of CMBs: 366, mean: 10.2

± 33.3 CMBs/subject, median: 3 CMBs/subject.

3.3. The tranexamic acid for intraCerebral
hemorrhage 2 (TICH2) trial MRI sub-study
dataset

The dataset consists of a subset of the MRI data used in

(Pszczolkowski et al., 2022) obtained as part of the TICH2 trial

(Sprigg et al., 2018). The dataset consists of images with variations

in image dimension, spatial resolution and MR acquisition

parameters (details in Dineen et al., 2018). The dataset used in

this work consists of 115 SWI from the subjects with spontaneous

intracerebral hemorrhage (ICH). Age range 29–88 years, mean

age 64.76 ± 15.5 years, median age 66.5 years, female to male

ratio F:M = 24:26. Out of 115 subjects, 71 subjects had CMBs

and manual segmentations for CMBs were available for all 71

subjects. Additionally, microbleed anatomical rating scale (MARS,

Gregoire et al., 2009) values were provided for the CMB subjects.

For evaluation purposes, we included in the manual segmentation

maps used in all our experiments all CMBs that were labeled as

either “definite" or “possible". Total number of CMBs: 849, mean:

11.9± 22.0 CMBs/subject, median: 3 CMBs/subject.
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3.4. The stroke dataset from Hong Kong
(SHK)

Originally, the dataset used in Dou et al. (2016) consisted

of 320 SWI images in total, out of which 126 are subjects with

stroke (mean age: 67.4 ± 11.3) and 194 are from normal aging

subjects (mean age: 71.2 ± 5.0). In this work, we used a subset of

20 subjects that were publicly available from this dataset. Manual

annotations in the form of CMB coordinates were available along

with the dataset. From coordinates, ground truth segmentations

were obtained with the same method used for the UKBB data (refer

to Section 3.1). Another rater independently provided the manual

segmentations on SWI images on the dataset, and we considered

the union of both manual masks as our final ground truth. Total

number of CMBs: 126, mean: 6.3 ± 8.8 CMBs/subject, median: 3

CMBs/subject.

4. Experiments

4.1. Performance evaluation metrics

We evaluated the CMB detection results at the lesion-level

using the following metrics for a total number of CMBs over the

individual datasets, as done in the existing literature:

• Cluster-level TPR: the number of true positive clusters (i.e.,

CMBs) divided by the total number of true clusters as given

by,

cluster-wise TPR =
TPclus

(TPclus + FNclus)
(5)

where TPclus and FNclus are true positive (overlaps with a

ground truth cluster by at least one voxel) and false negative

clusters, respectively.

• Average number of FPs per subject (FPavg): for a given

dataset D, FPavg is defined as the ratio of the total number of

detected FP clusters (FPclus, has no overlap with a ground truth

cluster) to the number of subjects (or images) in the dataset, as

given by,

FPavg =
Total number of FPclus

Number of subjects in D
(6)

• Cluster-wise precision: the number of true positive clusters

divided by the total number of detected clusters as given by,

cluster-wise precision =
TPclus

(TPclus + FPclus)
(7)

We used 26-connectivity to form the clusters. In general, for

cluster-wise TPR and cluster-wise precision, the higher the values

the better while for FPavg, lower values are better. We used TPR

and FPavg values for plotting a free-response receiver operating

characteristics (FROC) curve, which is a plot of cluster-wise TPR

vs. the average number of false positives per image/subject.

4.2. Ablation study: e�ect of knowledge
distillation on CMB detection within the
UKBB dataset

In this study, we evaluate the effect of individual steps,

including the teacher-student distillation framework and the post-

processing step on the CMB detection performance (using metrics

specified in Section 4.1) on the UKBB dataset (using a training-

validation-test split of 44-10-24 subjects, with 40 CMBs in the

test data). To this aim, we calculated the above performance

evaluation metrics at the following stages: after the initial CMB

candidate detection (i) without using FRST output, (ii) using

FRST output as an additional input channel, after candidate

discrimination (iii) using the teacher model Tc alone, (iv) a

classification network trained without the teacher model (trained

independently using only CE loss function LS), (v) with knowledge

distillation using student-teacher training and (vi) after final post-

processing. For the classification model in (iv), we used only the

student model architecture and provided as inputs the patches

centered at the detected initial CMB candidates. For the student-

teacher architecture used in (v), we provided adjacent patches

sampled in a sliding manner as inputs for the teacher model

and patches centered at initial CMB candidates as inputs for the

student model.

4.3. Cross-validation of CMB detection on
T2*-GRE and SWI images within individual
datasets

We performed 5-fold cross-validation separately on T2*-GRE

images from the OXVASC dataset and SWI images from the

UKBB dataset, and evaluated the cluster-wise performance using

the metrics specified in Section 4.1 for the whole dataset across

subjects. Note that in both cases, for the candidate discrimination

step, we used the teacher model pretrained on the UKBB dataset

(for response-based distillation), while only the student model was

trained on the individual datasets. Also, for this cross-validation, we

used the hyper-parameters that were determined separately using

an independent dataset specified in Section 2.6.

4.4. Evaluation of the generalizability of the
proposed method across di�erent datasets

For this experiment, we trained the proposed method on SWI

images from 78 subjects from the UKBB dataset. We chose UKBB

as training data since it is a large, open-access epidemiological

study. The manually annotated subset of UKBB dataset used in

this work provided larger training data than the other datasets.

Moreover, UKBB dataset consists of both SWI andQSMmodalities,

the former is commonly used for detecting CMBs and the latter is

effective for removing false positives. We used the hyperparameters

mentioned in Section 2.6 and evaluated the trained model on

data from different domains (e.g., variations in intensity profiles,

scanners and acquisition protocols and demographics), using
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performance metrics specified in Section 4.1, under the following

three scenarios:

1. Evaluation on the same dataset with different modalities:

training data—UKBB (SWI), test data: UKBB (QSM)

2. Evaluation on different datasets with the samemodality: training

data—UKBB (SWI), test data: TICH2 (SWI), SHK (SWI)

3. Evaluation on different datasets with different modalities:

training data—UKBB (SWI), test data: OXVASC (T2*-GRE)

1. Evaluation on the same dataset with different modalities:

We evaluated the effect of change in the modality only on CMB

detection by applying the method, that was trained on SWI

images from the UKBB dataset, to the QSM images (intensities

non-inverted for QSM, hence CMBs appear brighter than the

background, similar to the preprocessed SWI) from the same

subjects from the UKBB dataset.

2. Evaluation on different datasets with the same modality:

We evaluated our method on different test datasets to observe

the effect of scanner-related and population-level pathological

variations on the CMB detection. We applied our method trained

on SWI images from the UKBB dataset to SWI images from 115

subjects with intra-cerebral hemorrhages from the TICH2 dataset

and SWI images from 10 healthy controls and 10 subjects with

stroke from the SHK dataset.

3. Evaluation on different datasets with different modality:

We evaluated our method trained on SWI images from the

UKBB dataset on the T2*-GRE images from 74 subjects from the

OXVASC dataset. The OXVASC data is quite different from the

UKBB data not only in terms of modality, but also in terms of

resolution, scanner and demographic/pathological factors. Hence,

this scenario would provide a better indication of the method’s

generalizability in real world clinical applications.

For the above experiments, for the CMB candidate detection

and discrimination steps, we used the threshold values (ThCdet
and ThCdisc) determined during 5-fold cross-validation on the

UKBB dataset.

4.5. Indirect comparison of our results with
the existing literature

Finally, we performed an indirect comparison of our results

from the UKBB and OXVASC datasets with those of existing CMB

detection methods in the literature.

5. Results

5.1. Ablation study: e�ect of knowledge
distillation on CMB detection within the
UKBB dataset

Figure 7 shows the FROC curves for the initial CMB candidate

detection and candidate discrimination steps of our method on

the UKBB dataset. Table 1 reports the best performance points

at the ‘knee-point’ on the FROC curves for the first two steps,

along with the performance metrics after the third step (post-

processing). In the candidate detection step, the aim was to achieve

FIGURE 7

Results of the ablation study. (A) FROC curves at the CMB initial

candidate detection stage using FRST output as an additional input

channel (black solid •) and without using FRST output (green dashed

�), (B) FROC curves comparing the classification performance of

the teacher model Tc (blue dashed �), the student model trained

using KD from a teacher model (black solid •) and the same model

trained independently without KD (green dashed �). The horizontal

and vertical dashed lines on the FROC curves indicate the best

performance points determined at the knee-point of the curve with

higher TPR (reported in Table 1) at ThCdet = 0.5 at the candidate

detection step, ThCdisc = 0.29, 0.3, and 0.35 for the teacher model,

models with and without KD, respectively in the candidate

discrimination step. T-SNE plots showing feature embeddings at the

FC-32 layer for CMB (orange) and non-CMB (dark blue) cases for (C)

the student model trained using KD and (D) the model without using

KD. In (C), the plot shows better separability of features

corresponding to CMB and non-CMB classes, indicating the ability

of the model to discriminate well between these two classes.

higher cluster-wise TPR, to detect as many true CMBs as possible.

Hence, the number of FPs was higher at this step (with the highest

cluster-wise TPR of 0.975 at the ThCdet = 0.5), when compared

to the subsequent steps. Using the FRST output as an additional
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TABLE 1 Ablation study: performance metrics after candidate detection,

discrimination, and post-processing steps.

Steps Cl. TPR FPavg Cl. prec

(i) Cand. det. without FRST 0.86 129.3 0.02

(ii) Cand. det. using FRST 0.975 85.3 0.03

(iii) Cand. disc. using teacher model Tc 0.85 19.6 0.09

(iv) Cand. disc. without KD 0.75 12.8 0.09

(v) Cand. disc. using K 0.9 14.7 0.11

(vi) After postproc. 0.83 0.5 0.74

Cl. TPR and Cl. prec indicate cluster-wise TPR and cluster-wise precision, respectively. FPavg

values at a fixed cluster-wise TPR value of 95% are provided in the Supplementary Table S3.

FIGURE 8

Convergence of teacher and student models. Student model trained

with KD converges quicker and to lower loss values when compared

to the teacher model.

input channel improved the sensitivity with slightly lower FPavg

(Figure 7A). For the candidate discrimination step (Figure 7B), the

FROC curves are shown for the comparison of the teacher model

classification arm Tc, student network trained with KD framework

from the teacher model and classification network (with the same

architecture as that of the student network) trained independently

without KD from the teacher model. The performance at the

candidate discrimination step is better with KD (cluster-wise TPR

of 0.9 at ThCdisc = 0.3) than the model trained without KD (cluster-

wise TPR of 0.75 at ThCdisc = 0.35), with the former showing an

improvement of 0.02 in the cluster-wise precision (see Table 1).

Also, the student model trained with KD performs better than the

teacher model Tc, with the improvement of 0.02 in cluster-wise

precision. Moreover, the student model trained with KD converges

quicker and to a much lower loss value when compared to the

teacher model as shown in Figure 8.

The t-stochastic neighbor embedding (t-SNE) plots show the

separability between the features of the CMB and non-CMB classes

as a measure of the model’s ability to discriminate the classes from

the learnt feature embeddings. For instance, the more separable

the two classes are, the better the ability of the student model

FIGURE 9

Results of the 5-fold cross-validation. FROC curves at (A) the CMB

initial candidate detection stage and (B) the candidate discrimination

stage on the UKBB (blue) and OXVASC (orange) datasets. The

dashed lines on the FROC curves indicate the best performance

points (reported in Table 2) at specific threshold points (threshold =

0.3 and 0.2 for the UKBB and OXVASC datasets, respectively for both

candidate detection and candidate discrimination steps).

to discriminate between CMB class and mimics. Figures 7C, D

show the feature embeddings of the last fully connected layer

(FC-32) in the classification network (in the CMB discrimination

step) for the CMB and non-CMB cases, trained with and without

KD. The feature embeddings for the student model using KD

were quite separable between the CMB and non-CMB cases,

indicating the capability of the student model to learn the subtle

differences in the features between CMB and non-CMB classes,

using the information from the multi-tasking teacher model. The

classification model without KD, on the other hand, showed

substantially more overlap between the feature embeddings. The

post-processing step improves the cluster-wise precision. Upon

visual inspection, the main reductions in FPs were near the skull

(e.g., sulci), penetrating blood vessels and stray noisy voxels.

Regarding the contribution of individual attributes (e.g., shape, area

and proximity to the skull) in FP reduction, we observed around

65, 25, and 15% of FP reduction after applying thresholds on

distance of candidates from the skull, area and shape of candidates

successively. Since the individual thresholds were determined as

a part of hyper-parameter tuning on an independent dataset

(Section 2.4) and the interaction between the three attributes’

thresholds on FPavg is difficult to visualize, a separate FROC curve

for the post-processing step is not shown. The majority of FPs

rejected at this stage consists of candidates closer to the skull -
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TABLE 2 Cross-validation on the UKBB and OXVASC datasets:

performance metrics at candidate detection, discrimination, and

post-processing steps.

Datasets Steps Cl. TPR FPavg Cl. prec

UKBB (SWI) C. det. 0.97 175.4 0.01

C. disc. 0.95 24.2 0.09

Postproc. 0.93 1.5 0.59

OXVASC (T2*-GRE) C. det. 0.93 195.7 0.02

C. disc. 0.91 10.1 0.29

Postproc. 0.90 0.9 0.84

Cl. TPR and Cl. prec indicate cluster-wise TPR and cluster-wise precision, respectively. C. det

- candidate detection, C. disc - candidate discrimination. FPavg values at a fixed cluster-wise

TPR value of 95% are provided in the Supplementary Table S4.

these candidates passed the discrimination step since most of the

CMBs in the training data (for the student model) were lobar CMBs

and were closer to the skull. Hence the discrimination step (despite

removing a large number of FPs near sulci) allows false predictions

in this region. Having said that, it is worth noting that, in the

post-processing step, a few true CMBs closer to the skull were also

rejected as FPs, hence leading to a slight decrease in the cluster-wise

TPR values.

5.2. Cross-validation of CMB detection on
T2*-GRE and SWI images within individual
datasets

Figure 9 shows the FROC curves for CMB candidate detection

and candidate discrimination steps of 5-fold cross-validation on

whole images across all subjects on the UKBB and OXVASC

datasets. Table 2 reports the best performance metrics at different

steps of the cross-validation on the UKBB and OXVASC datasets.

The proposed method achieved cluster-wise TPR values of 0.93

and 0.90 with FPavg of 1.5 and 0.9 at ThCdet , ThCdisc = 0.3 and

0.2 on the UKBB and OXVASC datasets, respectively. The method

provides higher cluster-wise TPR and FPavg values on SWI images

(from the UKBB dataset) when compared to the T2*-GRE images

from the OXVASC dataset. Even though the FPavg values were

comparable at the candidate detection step for both datasets, the

student model at the candidate discrimination step provided much

lower FPavg on T2*-GRE images from the OXVASC dataset, thus

providing a higher cluster-wise precision value. The FPavg values

reduced substantially after the post-processing step with only a

slight reduction in the cluster-wise TPR values.

Figure 10 shows sample results of the cross-validation at

various steps of CMB detection on the UKBB and the OXVASC

datasets. In both UKBB and OXVASC datasets, the main sources

of FPs in the initial candidate detection step are sulci, minor

intensity/contrast variations in the brain tissue and small vessel

fragments. While most of the penetrating blood vessels are

segmented correctly as part of the background even at the candidate

detection step (due to the vessel removal step, especially in the

OXVASC dataset), the remaining FPs on/near the vessels are

removed at the discrimination step. The post-processing step

further reduced the stray noisy voxels and sulci regions closer to

the skull, resulting in very few FPs on both datasets.

5.3. Evaluation of the generalizability of the
proposed method across di�erent datasets

Table 3 reports the performance metrics of the proposed

method, when trained on the UKBB dataset and applied on the

same dataset but different modality (UKBB QSM data), different

datasets but the same modality (SWI from the TICH2 and SHK

datasets) and different datasets and modality (T2*-GRE from the

OXVASC dataset). We used ThCdet and ThCdisc values of 0.3

(determined from the cross-validation on the UKBB dataset) on

the probability maps at the candidate detection step and on the

patch-level probabilities at the discrimination step. Figure 11 shows

sample results of the method, when applied on various datasets at

various steps of CMB detection.

Out of all datasets, themethod achieved the highest cluster-wise

TPR on the QSM dataset. On this dataset, the results were on par

with the cross-validation results on the UKBB SWI data (with a

slight decrease in the cluster-wise TPR and precision onQSMdata).

We obtained FPavg values of 1.8 FPs/subject—the FPs candidates

were mainly due to minor susceptibility changes in the tissue and

penetrating small blood vessels.

The method gave a cluster-wise TPR of 0.82 on the TICH2

dataset, despite the presence of ICH lesions (third row in Figure 11)

in all subjects. The method provided the highest FPavg values in

the initial candidate detection step (FPavg = 289.3 FPs/subject),

possibly due to ICH edges and texture. However, the candidate

discrimination step reduced the number of FPs and lowered the

FPavg value to 42.8 FP/subject, which is comparable with other

datasets. Even then, we obtained the highest FPavg after post-

processing on this dataset with a cluster-wise precision of 0.62.

Susceptibility artefacts at tissue interfaces and sulci were mainly

detected as FPs in this dataset.

On the SHK dataset, while the first two steps (CMB detection

and discrimination) provided consistently good cluster-wise TPR

values (>0.90), the TPR value decreased at the post-processing step.

Even then, on this dataset our method provided the lowest FPavg

(0.5 FPs/subject) and the highest cluster-wise precision among all

the datasets. The FPs in the candidate detection step were mostly

regions of intersections of blood vessels closer to the sulci, especially

the central sulcus.

On the OXVASC dataset, the method achieved the lowest

cluster-wise TPR of 0.81. The high number of false negatives in

this dataset, as suggested by the lower cluster-wise TPR, could

be due to the reduced contrast between CMBs and normal brain

tissue, unlike the SWI data used for training. Also, occasionally

true CMB candidates quite close to the skull were removed in the

post-processing step, having been mistaken as sulci.

5.4. Indirect comparison with existing
methods

Table 4 provides a comparison of the proposed CMB detection

method with existing fully automated methods. From the

Frontiers inNeuroinformatics 13 frontiersin.org

https://doi.org/10.3389/fninf.2023.1204186
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Sundaresan et al. 10.3389/fninf.2023.1204186

FIGURE 10

Sample cross-validation results on the UKBB (top panel) and the OXVASC (bottom panel) datasets. (A) Input image and (B) manual segmentations

shown along with results at (C) CMB initial candidate detection, (D) candidate discrimination, and (E) after post-processing steps. True positive and

false positive candidates are shown in yellow and red boxes, respectively for each step. Note that the displayed samples also include mimics (e.g.,

penetrating vessels and sulci) that appear similar to manually marked CMBs (in green boxes).

TABLE 3 Evaluation of the generalizability of the proposed method -

trained on the UKBB SWI data and evaluated on the UKBB QSM, TICH2,

SHK, and OXVASC datasets: performance metrics at candidate detection,

discrimination and post-processing steps.

Datasets Steps Cl. TPR FPavg Cl. prec

UKBB (QSM) C. det. 0.99 138.0 0.02

C. disc. 0.91 40.3 0.04

Postproc. 0.90 1.8 0.44

TICH2 (SWI) C. det. 0.88 289.3 0.02

C. disc. 0.83 42.8 0.10

Postproc. 0.82 3.1 0.62

SHK (SWI) C. det. 0.98 254.7 0.01

C. disc. 0.94 43.6 0.09

Postproc. 0.87 0.5 0.89

OXVASC (T2*-GRE) C. det. 0.88 147.1 0.03

C. disc. 0.85 53.7 0.07

Postproc. 0.81 2.0 0.71

Cl. TPR and Cl. prec indicate cluster-wise TPR and cluster-wise precision, respectively. C.

det, candidate detection; C. disc, candidate discrimination. FPavg at cluster-wise TPR value of

95% could not be provided since specific values of thresholds were applied.

table, generally deep-learning-based methods performed better

compared to conventional machine learning methods. Also, the

methods using multiple modalities or using phase information in

addition to SWI (Ghafaryasl et al., 2012; Liu et al., 2019b; Al-

Masni et al., 2020; Rashid et al., 2021) showed better results. In

fact, Al-Masni et al. (2020) showed that using phase in addition

to SWI images improves the cluster-wise TPR by 5.6% (with only

SWI: 91.6% and with SWI and phase: 97.2%) and Rashid et al.

(2021) achieved the best CMB detection performance by using

T2-weighted, SWI and QSM modalities. However, our proposed

method uses a single modality (SWI or T2*-GRE), along with

the FRST images (obtained from the input modality itself) and

gives comparable results to state-of-the-art methods such as Liu

et al. (2019b) and Al-Masni et al. (2020), and with lower FPavg

compared to Dou et al. (2016). Also, our precision values on both

UKBB and OXVASC datasets are better than existing methods

including Bian et al. (2013); Fazlollahi et al. (2014, 2015); Dou

et al. (2016). Even though not directly relevant to our work (since

we performed all our evaluations at the image-level rather than at

patch-level), we have reported an additional comparison of patch-

level methods in Supplementary Table S5. While the methods

using patch-wise evaluation (Chen et al., 2018; Lu et al., 2021b)

provided good patch-level sensitivity and accuracies (shown in

the Supplementary material), we cannot compare the performance

of our method with those, since they used preselected CMB

patches (from manually annotated CMB voxels) and comparable

numbers of non-CMB patches as inputs. Also, the input CMB

patches occasionally contained multiple CMBs, which makes the

fair comparison with cluster-wise metrics highly difficult.

6. Discussion and conclusions

In this work, we proposed a fully automated, deep-learning-

based, 3-step method for accurate lesion-level detection of CMBs
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FIGURE 11

Sample results of the UKBB-trained method on the UKBB QSM, TICH2 (without and with ICH), SHK, and OXVASC datasets (from top to bottom

panels). (A) Input image and (B) manual segmentations shown along with results at (C) CMB initial candidate detection, (D) candidate discrimination

and (E) after post-processing steps. True positive, false positive and false negative candidates are shown in yellow, red, and blue boxes, respectively

for each step. Note that the displayed samples also include mimics (e.g., penetrating vessels and sulci) that appear similar to manually marked CMBs

(in green boxes).

on various datasets, irrespective of variations in population-level,

scanner and acquisition characteristics. Our method uses a single

input modality and the radial symmetry property of CMBs for the

detection of CMB candidates with high sensitivity in the initial

candidate detection step. For the candidate discrimination step,

we trained a student classification network with the knowledge

distilled from a multi-tasking teacher network for accurate

classification of CMB candidates from non-CMB candidates. Our

ablation study results show that the candidate discrimination and

post-processing steps drastically reduce the number of FPs, and

the use of the KD framework improves cluster-wise TPR values

at the discrimination step. Our method achieved cluster-wise TPR
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TABLE 4 Comparison of the performance of the proposed CMB detection method with existing conventional machine learning (ML) and deep learning

(DL) methods.

Methods Datasets Performance

Sequence(s) (# test subjects) Total # CMBs Cl. TPR FPavg Cl. Prec

ML methods

Bian et al. (2013) SWI (10) 304 86.5% 44.9

Fazlollahi et al. (2014) SWI (41) 103 92% FPavgCMB - 6.7

FPavgnCMB - 16.8

Fazlollahi et al. (2015) SWI (66) 231 87% FPavgD - 10.28,

FPavgP+D - 27.8

Ghafaryasl et al. (2012) T2*-GRE + PD (81) 183 91% 4.1

Dou et al. (2015) SWI (19) 161 80% 7.7 49%

Chesebro et al. (2021) T2*-GRE, SWI (78) 64 95% 9.7 (SWI), 17.1

(T2*-GRE)

11% (SWI),7%

(T2*-GRE)

DL methods

Chen et al. (2015) SWI (5) 55 89% 6.4 56%

Dou et al. (2016) SWI (50) 117 93% 2.74 44%

Liu et al. (2019b) Phase + SWI (41) 168 96% 1.8 (5-fold CV)

Al-Masni et al. (2020) Phase + SWI (72) 188 94.3% 1.4 61.9%

Rashid et al. (2021)

(Leave-one-out validation)

QSM + SWI + T2w (24) ∼172 89% 49%

Proposed method UKBB - SWI (78) 186 93% 1.5 59%

OXVASC - T2*-GRE (74) 366 90% 0.9 84%

Cl.TPR, cluster-wise TPR; FPavg, average false positives per image/subject; Cl.Prec, cluster-wise precision; FPavgCMB , FPavg for CMB subjects; FPavgnCMB , FPavg for non-CMB subjects; FPavgD

- FPavg for “definite" CMB subjects; FPavgP+D , FPavg for “definite and possible" CMB subjects.

values >90% with FPavg of <1.6 FPs/subject during initial cross-

validation on the UKBB and OXVASC datasets consisting of SWI

and T2*-GRE images, respectively. On training the models on

the UKBB dataset and applying them on different datasets with

different demographic and scanner-related variations, the method

showed a good generalizability across datasets, providing cluster-

wise TPR values >80% on all datasets.

The initial vessel removal pre-processing step helped in

reducing the number of FPs since blood vessels (especially the

small ones closer to sulci) are one of the common mimics of

CMBs. One of the main challenges in the vessel removal step is

the potential removal of true CMBs that are very close to vessels.

Hence, we removed only linear segments with low uniform width

in this step. Therefore, this step removed the vessels and sulci that

were more prominent and could lead to obvious FPs. This was

especially effective for the SHK dataset, where the blood vessels

and sulci had higher contrast and were distinctly different from

CMBs (Figure 1B). While removing the linear, elongated structures

from the images, we also aimed to leverage the radial symmetry

property of CMBs. Toward that aim, using FRST maps, obtained

from the input modality, as an additional input channel helped the

candidate detection model in learning contextual features, leading

to the detection of more true positive CMBs as shown in Figure 7A

in the ablation study.

The main objective of the candidate detection step is to detect

as many true positive candidates as possible, with a trade-off of high

FPavg, because any of the CMB candidates missed in this stage

cannot be recovered in the subsequent steps. From the ablation

study, given high FPavg in the candidate detection step, the student

model trained using KD reduced FPavg approximately by a factor

of 4 with a smaller decrease in cluster-wise TPR, when compared

to the classification model trained without KD. The advantage of

the teacher model in the proposed discrimination step was 2-fold:

(1) its ability to learn the contextual features that are salient for

both voxel-wise CMB detection and patch-level CMB/non-CMB

classification and (2) the use of a multi-tasking framework with

Ts providing high cluster-wise TPR, while Tc providing a patch-

level regularization by penalizing false positive detection, reducing

the chance of over-fitting and false classifications. We observed

that the multi-tasking framework, together with the upweighting

of the CMB classes in the loss function, reduced the effect of

class imbalance between CMB and non-CMB patches (note that

the model trained without KD is slightly biased toward the non-

CMB class, evident from the lower cluster-wise TPR and FPavg

values in Table 1). The Tc component of the teacher model classifies

CMB from non-CMBmimics, which enhances the capability of the

student networks to differentiate CMBs from non-CMBs, evident

from better cluster-wise TPR and precision for the student model

with KD. This is also shown in t-SNE plots in Figures 7C, D, where

the classes are more separable for the KD case. Additionally, we also

provided the input patches centered on the detected initial CMB

candidates to the student model. This, in addition to the distilled

knowledge from the teacher, enabled the model to focus on the

pattern at the center of the patches for accurate classification of
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CMB patches. This was especially useful to remove the fragments

of blood vessels (e.g., intersections and branching points) missed

in the vessel removal step as seen in Figures 10D, 11D. Regarding

the parameters used in KD, using a higher temperature (τ ) results

in softened softmax values between classes and has been shown to

typically provide the knowledge (also known as dark knowledge)

for training a generalizable student network (Hinton et al., 2015).

However, given the similarities in the characteristics of CMBs and

mimics, having very high τ values could lead to misclassifications.

Ourmain aimwas to achieve a good hard prediction to differentiate

the CMB class from the non-CMB class, while at the same time

to transfer the knowledge from the teacher model to the student

model. Hence we empirically chose an optimal τ value of 4 (that

provided smoother softmax values without affecting the CMB/non-

CMB prediction) based on manual tuning. Further removal of FPs

in the post-processing resulted in the drastic improvement in the

cluster-wise precision. The use of a post-processing step based

on shape and spatial criteria has been shown to be beneficial in

other studies (see Supplementary Table S2 for an overview). Given

the big performance improvement after this step, we also tested

the effect of applying post-processing at different stages of our

proposed method. We found that, despite improving cluster-wise

precision in all cases, the most beneficial effect was to use it as

the final step of our 3-stage method (see Supplementary Table S1).

Noise reduction or smoothing during pre-processing might lead

to a loss of CMBs (even for data augmentation, very small

σ values were chosen carefully). Therefore, small intensity and

texture variations (mainly in the sub-cortical and lobar regions)

led to the detection of FPs, which were removed in the

post-processing step.

As for the cross-validation results within individual datasets,

the method achieved the highest cluster-wise TPR values on SWI

images (from the UKBB dataset), while providing the lowest FPavg

and the highest cluster-wise precision on T2*-GRE images (from

the OXVASC dataset). This could be due to the fact that CMBs

appear with a higher contrast on SWI compared to T2*-GRE

images due to the blooming effect. This also affects most of the

CMB mimics as well, increasing their contrast on SWI, leading

to high cluster-wise TPR but also high FPavg. Also, T2*-GRE

images had a smoother texture when compared to SWI (Figure 10),

resulting in less noisy FRST maps, hence leading to the improved

performance metrics at the candidate discrimination step in the

OXVASC dataset. However, the FPavg value at the initial candidate

detection step was higher for the OXVASC dataset due to the

lower voxel resolution in the z-direction (5 mm), leading to partial

volume artefacts and making it highly difficult to differentiate

between small sulci closer to the skull and CMBs.

On evaluating the generalizability of our method across various

datasets, our method trained on the SWI data from the UKBB

dataset showed good generalizability on QSM images from the

same dataset, with comparable performance to the cross-validation

results on the SWI data. Regarding the performance after individual

steps, in the initial candidate detection step, the method provided

the highest cluster-wise TPR values with the lowest FPavg values

on the QSM data (even lower than with UKBB SWI data) since

QSM shows a better separation of diamagnetic mimics from CMBs.

However, due to local tissue susceptibility variations (which is

quite different from the SWI training data), the FPavg in the

candidate discrimination step was higher that it was when using

the SWI data. Finally, the post-processing step effectively removed

the stray voxels due to noisy susceptibility variations (that were

extremely small and hence were below the 2.5 mm3 threshold)

and reduced the FPavg value to 1.8 FPs/subject. It is worth noting

that, since the same subjects were used for training (SWI data for

training and QSM data for testing), the results are likely to be

biased. That is, the model could have learnt the overall locations of

CMBs for the training subjects, rather than the modality-invariant

features. However, we believe that the use of patches, rather than

whole slices or volumes, at both steps would reduce the chance of

biased assessment.

For the datasets consisting of the same modality as that of the

training data (SWI) but from different populations, the method was

affected by the presence of additional pathological signs (e.g., ICH

in the TICH2 dataset). In the TICH2 dataset, the noisy texture of

the hemorrhage regions and their edges led to the highest FPavg

value in the initial candidate detection step. In terms of FPs, we

found that additional pathological signs, that were not the part

of training, affected the method more than the modalities. For

instance, among the OXVASC (different modality from the training

SWI data) and TICH2 datasets (same modality), even though both

are pathological datasets, the greater prevalence of confounding

“CMB-like" signs in TICH2 resulted in higher FPavg in the TICH2

dataset. Among all the datasets we used, the SHK dataset had high

contrast, low noise and a better than average resolution making

vessels and sulci easy to remove in this dataset. Moreover, this

dataset has the same modality as that of the training data, and

hence both candidate detection and discrimination step models

performed well (and cluster-wise TPR values comparable even

with that on the UKBB SWI data). However, during the post-

processing step, a few CMBs near the sulci, closer to the skull

were misclassified as FPs resulting in lower cluster-wise TPR. The

OXVASC dataset was quite different from the training SWI data

and from other datasets, since it shows lower contrast between

CMB and background as shown in Figure 11. Hence, providing

FRST as the second input channel was particularly useful for this

dataset, since the FRST relies more on the radial symmetry nature

of CMBs at different radii (we used 2, 3, 4, and 6 as specified in

Section 2.2) rather than its intensity contrast with respect to the

background. Hence, on the OXVASC dataset the FRST maps had

the same contrast as that of other modalities (as seen in Figure 2A)

aiding in the detection of subtle CMBs. Since the estimation of

FRST maps does not require any additional modality other than

the input modality, our method effectively uses a single image

modality and provided results comparable to existing methods that

use multiple modalities (Ghafaryasl et al., 2012; Al-Masni et al.,

2020).

Concluding, we proposed a fully automated method using

deep learning for CMB candidate detection, and candidate

discrimination with a knowledge distillation framework, followed

by post-processing filtering using structural and anatomical

properties. Our method achieved cluster-wise TPR values of >90%

with FPavg <1.6 FPs/subject on T2*-GRE and SWI modalities, on

par with the state-of-the-art, and gave better precision than existing

methods. When the models were trained on SWI data and applied

on QSM images from the same dataset, the method achieved

a cluster-wise TPR ∼90%. On applying the trained method to
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other datasets consisting of data from different populations and

acquired using different scanners and protocols, our method

gave a cluster-wise TPR > 81%, despite the presence of other

major pathologies. The Python implementation of the proposed

method is currently available in https://github.com/v-sundaresan/

microbleed-detection. The user guide (readme.md) provided via

the above link provides more information regarding the scripts,

input file formats and prediction times of the implementation.

The tool yields high predictive performance on various modalities

used in clinical settings. Also, given its short prediction time

(<5 min/scan), it has the potential to be used to assist clinicians

by reducing the time taken for assessing individual scans, which

would also benefit patients in the long run. Also, the CMB

segmentation maps obtained from the tool could be used for

obtaining an automated rating of CMBs (i.e., total CMB count,

spatial distribution and size). One of the future directions of

this research would be to improve the generalizability of the

proposed method using various domain adaptation techniques, to

overcome the effect of scanner- and population-related variations.

Another clinically focused avenue of this research could be to

develop automated algorithms to rate the CMBs based on their

size and distribution, which would be useful in studying their

clinical impact.
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