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The lack of “gold standards” in Di�usion Weighted Imaging (DWI) makes validation

cumbersome. To tackle this task, studies use translational analysis where results

in humans are benchmarked against findings in other species. Non-Human

Primates (NHP) are particularly interesting for this, as their cytoarchitecture is

closely related to humans. However, tools used for processing and analysis must

be adapted and finely tuned to work well on NHP images. Here, we propose

versaFlow, a modular pipeline implemented in Nextflow, designed for robustness

and scalability. The pipeline is tailored to in vivo NHP DWI at any spatial resolution;

it allows for maintainability and customization. Processes and workflows are

implemented using cutting-edge and state-of-the-art Magnetic Resonance

Imaging (MRI) processing technologies and di�usionmodeling algorithms, namely

Di�usion Tensor Imaging (DTI), Constrained Spherical Deconvolution (CSD),

and DIstribution of Anisotropic MicrOstructural eNvironments in Di�usion-

compartment imaging (DIAMOND). Using versaFlow, we provide an in-depth

study of the variability of di�usion metrics computed on 32 subjects from 3

sites of the Primate Data Exchange (PRIME-DE), which contains anatomical

T1-weighted (T1w) and T2-weighted (T2w) images, functional MRI (fMRI), andDWI

of NHP brains. This dataset includes images acquired over a range of resolutions,

using single and multi-shell gradient samplings, on multiple scanner vendors.

We perform a reproducibility study of the processing of versaFlow using the

Aix-Marseilles site’s data, to ensure that our implementation hasminimal impact on

the variability observed in subsequent analyses. We report very high reproducibility

for the majority of metrics; only gamma distribution parameters of DIAMOND

display less reproducible behaviors, due to the absence of amechanism to enforce

a random number seed in the software we used. This should be taken into

consideration when future applications are performed. We show that the PRIME-

DE di�usion data exhibits a great level of variability, similar or greater than results

obtained in human studies. Its usage should be done carefully to prevent instilling

uncertainty in statistical analyses. This hints at a need for su�cient harmonization

in acquisition protocols and for the development of robust algorithms capable of

managing the variability induced in imaging due to di�erences in scanner models

and/or vendors.
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1. Introduction

Magnetic Resonance Imaging (MRI) is a modality of medical

imaging that has seen an exponential increase in interest in the

past few decades. It is the only non-invasive technology able

to acquire both functional and structural information from soft

tissues, which makes it the preferential choice for the study of brain

functions and connectivity with the aim, notably, of mapping the

human connectome. For that matter, Diffusion Weighted Imaging

(DWI), enabling the introspection of the diffusion process of

water molecules both inside and around the axonal structure,

is the favored MRI modality. However, the study of Diffusion

Weighted (DW) images is riddled with challenges that the scientific

community has yet to overcome (Jones, 2010a; Jones et al., 2013;

O’Donnell and Pasternak, 2015), especially when it comes to

tractography (Maier-Hein et al., 2017; Schilling et al., 2017, 2021b;

Calamante, 2019; Rheault et al., 2020), and even more in ensemble

studies using multiple sites and multiple scanner vendors (De

Santis et al., 2019; Andica et al., 2020; Schilling et al., 2021a).

Furthermore, the current equipment available still fails to provide

gradients and slew rates with performance sufficient for high-

resolution imaging at a decent Signal-to-Noise Ratio (SNR); the

quality is restricted by eddy currents and phase-related distortions,

to name a few. Still, all MRI-related techniques are limited since

the best achievable imaging resolution remains at the macroscopic

millimeter resolution, which is orders of magnitude larger than

the sizes of the structures of interest, in the micrometer to the

nanometer range. This results in partial volume effects (Alexander

et al., 2001) at the interface between tissue structures. Those effects

can be mitigated by the use of pulse sequences specifically tailored

for sub-millimeter imaging (Tounekti et al., 2018; Grier et al., 2020),

at the trade of increasing acquisition time. Nevertheless, lowering

the size of acquired voxels is often not a viable option: it leads to

a decrease in signal contributions induced by shrinking the proton

pool size, which lowers SNR in the acquired images, and the longer

times their acquisition requires results in higher probabilities

of motion-related artifacts. Selecting a good set of acquisition

parameters is thus a multi-objective optimization problem, a trade-

off between the image resolution required for subsequent modeling

and the acceptable level of noise, the duration of the imaging

sequence and the type of subject, and a research setting vs. a clinical

application, among others.

In DWI, this problem cannot be tackled directly, since there

is no proper gold standard upon which to compare and rank

imaging results obtained. Consequently, validation of study design

and methods usually defer to stability or correlation analyses

using multi-subject, longitudinal, or translational approaches.

Comparing MRI acquisitions to tracer studies is known to provide

good benchmarks in white matter, but can lack in specificity

(Heilingoetter and Jensen, 2016), and its application involves the

injection of invasive substances in the tissue of interest, requiring

the subject to be sacrificed thereafter or the procedure to be

performed ex vivo. Recently, multi-resolution frameworks have

gained popularity, combining low-resolution DWI with high-

resolution microscopy to refine the angular representation of

diffusion (Howard et al., 2019). However, this technique is also

limited to ex vivo studies, since microscopy requires slicing and

staining of the brain tissues. Another technique that has made

its mark is comparison to results in small animals. They enable

the use of specialized equipment that operates at higher magnetic

fields, advanced pulse sequences, as well as improved techniques

to monitor the sources of subject’s motion enabling imaging at

finer spatial and angular resolutions while retaining good SNR.

These methods are either inaccessible or ethically unacceptable in

human studies.

Thanks to a few decades of research in human brain

connectomics and large-scale endeavors like the Human

Connectome Project (HCP) (Van Essen et al., 2012), for financing

the collection of thousands of DW images on a large number of

subjects from all around the world (Van Essen et al., 2012; Fan

et al., 2016; Mazoyer et al., 2016; Mansour et al., 2023), efficient

acquisition protocols, practices, and guidelines were created for

human studies (Wedeen et al., 2008; Moeller et al., 2010; Tournier

et al., 2011; Caruyer et al., 2013; Jones et al., 2013; Sotiropoulos

et al., 2013), as well new more sensitive and precise equipment

(Setsompop et al., 2013; Nowogrodzki, 2018; Quettier et al., 2020).

This has allowed the community to generate a corpus of algorithms

and software tailored to efficiently and robustly process DW

images acquired from human brains (Smith et al., 2004; Avants

et al., 2008; Garyfallidis et al., 2014; Tournier et al., 2019), and put

in place automatized processing pipelines (Pierpaoli et al., 2010;

Gorgolewski et al., 2011; Autio et al., 2020; Theaud et al., 2020;

Cieslak et al., 2021). In vivo Non-Human Primate (NHP) studies

have not seen this kind of attention yet; cohorts of subjects are

usually small and the lack of standardized setups across sites makes

it difficult to provide and furthermore homogenize protocols

between them. Nonetheless, it is still required to adequately

preprocess those images before fitting models and carrying out

data analysis. Algorithms used to that extent must be fine-tuned to

NHP-specific requirements. While re-using pipelines developed for

humans on NHP imaging is a possibility, most of them do not offer

the options for extensive re-configuration required for applying

them to NHP high-resolution DWI. Moreover, most of them are

distributed as black-boxes, difficult to customize or extend, which

makes adapting them to different studies time-consuming.

The pipeline we present in this study alleviates most if not all

of those problems. Using Nextflow (Tommaso et al., 2017) and

the latest implementation of its DSL2 framework, we designed a

collection of processing modules consisting of pipeline processes

and workflows, each targeting a specific set of preprocessing,

model reconstruction, quantity measurement, or utility algorithms,

using cutting edge DWI processing technologies such as FSL

(Smith et al., 2004), ANTs (Avants et al., 2008), Dipy (Garyfallidis

et al., 2014), and Mrtrix (Tournier et al., 2019). We then created

versaFlow using those modules, a pipeline that self-adapts given

its input’s spatial and angular resolutions, guaranteeing optimal

algorithm’s configurations at execution. The use of Nextflow

ensures its scalability on a wide range of computing infrastructures,

from a local computer to multiple nodes in a High-Performance

Computing (HPC) facility. Container technologies (Docker and

Singularity; Kurtzer et al., 2017) allow for the encapsulation of

all dependencies and their versioning. This combination makes a

robust and automated execution possible while keeping installation

and maintenance as simple as possible for the end user.
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To test the pipeline efficiency on in vivo NHP DWI data, we

processed 32 datasets from 3 sites of the Primate Data Exchange

(PRIME-DE) database (Milham et al., 2018; Neff, 2019). Together,

they provide diffusion-weighted images acquired in vivo using

human scanners from multiple vendors. They feature multiple

spatial and angular resolutions, single-shell and multi-shell b-

value samplings, and artifacts of different ranges of magnitudes

depending on the site where the acquisition was performed. We

provide a brief reproducibility study of the pipeline results, as

well as an in-depth variability study of diffusion modeling and

measurements. We show that just as reported in similar human

studies, the in vivo NHP DWI data provided in the PRIME-DE

exhibits a high level of variability. The various metrics produced

by versaFlow show a clear increase in the variability when pooling

together data from multiple sites, acquired using equipment

manufactured by different vendors, as well as different models

from the same vendors. To pursue adequate quantitative analysis,

users of the data should take great care and preferably apply a

harmonization technique before carrying out analysis.

2. Method

2.1. Processing library

Three core concepts were taken into account for the

development of the processing library:

• Efficiency

High-resolution images (sub-millimeter spatial resolution and

dense gradient sampling at multiple b-value points) are heavy

(hundreds of megabytes to a few gigabytes), in particular for DW

images, where a completeMRI volume is acquired for each gradient

direction. Combining high spatial and angular resolution leads to

image files of multiple gigabytes and a number of voxels on the

order of several hundreds of millions. Processing must thus be

efficient and parallelized as much as possible. To achieve such a

degree of efficiency, we coded the pipeline structure using Nextflow

(Tommaso et al., 2017), a meta-scheduling language enabling

automatic optimization and execution of a processing tree over

multiple datasets andmultiple processing nodes.We also took great

care in selecting optimized and parallelized implementations of the

algorithms we integrated into our processing chain.

• Modularity and morphability

State-of-the-art methods in DWI are still changing rapidly. For

a good pipeline to stay relevant, it needs to have the capacity to

morph to new standards and integrate novel techniques. Using the

DSL2 framework of Nextflow, we created a highly modular library

of processes and workflows, used as building blocks in our pipeline.

This allowed for a high-level architecture in the final coded pipeline,

with a finer description of the dataflows encapsulated in modules

referring to specific processing steps. Using this paradigm makes it

easier for new pipelines to be developed that only change a subset

of processing steps or add new workflows on top of older ones.

• Usability and reproducibility

The libraries used to process DW images are ever-changing. It

is thus impossible to guarantee a robust execution of our pipeline

on versions of its dependencies released in the future. Docker and

Singularity (Kurtzer et al., 2017)—two technologies enabling the

encapsulation of libraries in portable packages—were used to wrap

up the numerous applications called in the different processing

steps of the pipeline. They enable locking the versions of the

dependencies into a pre-packaged image and remove the need for

the end-user to install and manage them. In addition, they allow

for multi-stage building of images, which makes it easy to add new

dependencies and modify a set of versions in the case of an update

of the underlying pipeline or for the needs of a specific study.

To address these concepts, the library was fragmented into 4

nested and interlocked scopes: pipeline scope, input scope, process

scope, and workflow scope, as depicted in Figure 1. Of them, only

the process scope contains the actual calls to algorithms and their

input requirements. It encapsulates the actual workhorse of the

pipeline and forms the processes module.

All other scopes use Nextflow workflow objects and only

specify the flow of data between processes and other workflows

they include. The input scope gathers pieces of code necessary

to translate the internal representation in disk memory of the

input data into a data structure that is digestible by a pipeline.

When included, it enforces the input convention of its pipeline.

It can be changed to fit a specific study or project. The pipeline

scope contains all complete pipelines. A valid pipeline uses one

or more input conventions from the input scope and describes as

minimally as possible the flow of data between processes and sub-

workflows it includes. All data flow descriptions that can potentially

be reused are transferred to the workflow scope. This scope

contains sub-parts of the processing that together form a coherent

ensemble, yet cannot be efficiently specified as a single process.

The workflows in this scope use processes and other workflows

as building blocks and define the passage of data between them to

form a processing sequence. An example of such a workflow would

be the execution of Topup (a light purple workflow in Figure 1),

including data preparation, which executes the following processes

sequentially: selection of b0 volumes from the different phase

encoded DW images, concatenation of b0 volumes, computation

of the susceptibility field, and application of the field to the

DW images.

2.1.1. Code availability
versaFlow and the Nextflow processing library are available

on github at github.com/AlexVCaron/versaFlow. Docker images

containing all dependencies and requirements to run versaFlow

are located at hub.docker.com/r/avcaron/versa. The python code

enabling custom configuration of several algorithms in the pipeline

and supplying the Docker and Singularity build systems is available

at github.com/AlexVCaron/mrHARDI.

2.1.2. Data input
In addition to the DWI volumes and their associated bval/bvec

files describing the gradient sampling, the pipeline requires as input
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FIGURE 1

Four scopes composing the Nextflow library and how they interface with each other. A pipeline definition (Pipeline X for example) is placed at the

root of the library. To load the data, it uses one or more conventions from the input scope (convention 1 and the bids convention). Then, to process

it, it calls utilities in either or both the process scope (ANTs registration, Concatenate images, and others) and the workflow scope (execute Topup,

then register T1w to DWI). A call to a utility in the workflow scope will trigger calls to processes in the process scope they include to process the data

(execute Topup firsts calls a concatenation of two opposite phase encoding DW images and extracts their b0 volumes, to pass the result to Topup for

phase distortions correction). The input, workflow, and process scopes form the core of the Nextflow library. Their content can be used by any

pipeline defined in the pipeline scope, allowing high levels of code reusability.

a T1w anatomical image. The user can also supply masks in either

or both diffusion and anatomical space, as well as partial volume

maps ofWhiteMatter (WM),GrayMatter (GM), andCerebrospinal

Fluid (CSF), in anatomical space. Reverse phase acquired diffusion

images can be provided, as either a single b0 volume, multiple b0

organized as a 4D volume, or a full DWI 4D volume with bval/bvec

files. For some of the processing steps, the pipeline also requires

the input of some metadata associated with the acquisition of the

DWI and reverse-phase encoded volumes. Metadata parameters

that are consistent across all images can be supplied using the

Nextflow configuration file. In case of varying parameters between

the images, a json file must be provided alongside both the forward

and reverse-phase encoded volumes.

2.1.3. Processing steps
The following section presents all steps currently implemented

in versaFlow, which are also available in our processes and

workflows library. Even though we highly recommend using

them all in the order prescribed to process raw anatomical and

diffusion-weighted images, their execution is by default optional

and can be individually turned on and off using the Nextflow

configuration file, for instance, to allow the computation of the

models and measures on already preprocessed data or to shorten

the execution time by turning off steps deemed unnecessary after

input data quality control. Visual descriptions of the processing

workflows included in versaFlow can be found in Figure 2 for

DW images preprocessing, Figure 3 for T1w images preprocessing,

Figure 4 for registration between MRI modalities and Figure 5 for

tissue segmentation.

2.1.3.1. Preprocessing

2.1.3.1.1. Diffusion processes

Background noise: DW images are affected by background

noise following either a rician (Gudbjartsson and Patz, 1995) or

a chi-squared distribution (Luisier et al., 2012) and more often

than not present quite poor signal-to-noise ratio. Some patch-

based algorithms (Manjón et al., 2008) enable the suppression of

such types of noise but require long execution times and vast

amounts of memory space, which can be cumbersome given the

large size of diffusion volumes. A good trade-off is to use a

Principal Component Analysis (PCA) to extract new dimensions

isolating the different sources of noise from the data. This technique

has proven its capability of enhancing the quality of diffusion

data, even if it does not take into account the true nature of

the noise and only corrects for normally distributed distortions.

Thus, we run dwidenoise (Veraart et al., 2016a,b; Cordero-Grande

et al., 2019), a patch-based Marchenko-Pastur PCA (MP-PCA)

denoising algorithm available in Mrtrix3 (Tournier et al., 2019),

at the beginning of the preprocessing tree for diffusion, on the

forward and reverse phase-acquired diffusion volumes, and Non-

Local Means (Manjón et al., 2008) denoising on the reverse

phase acquired b0 volumes. Novel techniques using self-supervised
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FIGURE 2

DWI preprocessing steps. (Background denoising) Input 4D DW images from both phase encoding directions are denoised to remove background

noise. (b0 to b0 normalization) The signal is normalized such that all b0 volumes in both phase encoding directions exhibit the same mean value.

Each 3D di�usion volume is normalized using as a reference either the b0 volume coming before it, after it or a linear interpolation of both. (Topup)

b0 volumes from both phase encoding directions are concatenated and a deformation field is estimated. (Apply Topup) This field is applied on the

forward phase encoded DW image to produce an undistorted 4D DW image. (Extract b0 + BET) A b0 volume is extracted from the undistorted image

and used to compute a brain mask. All voxels outside the brain mask are set to 0 in the mean b0 volume and the undistorted 4D DW image. (PA DWI)

The masked undistorted 4D DW image is used to compute a powder-averaged DWI image and (DTI FA) a fractional anisotropy map. (Register T1w to

DWI) A transformation is computed by registering the T1w volume to both the mean b0 and the FA volumes. The brain mask in the T1w image space

is then transformed into the DW image space using the computed transformation. (Eddy) Motion and eddy currents corrections are computed using

the deformation field from Topup, the brain mask, and the 4D DW image from both phase encoding directions. (N4) The 4D DW image is corrected

for intensity distortions.

FIGURE 3

T1w preprocessing steps. (Background denoising) The T1w image is denoised to remove background noise. (N4 normalization) The denoised T1w

image is then corrected for intensity non-uniformity.

learning such as Patch2Self (Fadnavis et al., 2020) and deep

convolutional neural networks (Kawamura et al., 2021) could also

be easily integrated into our modular framework, but have been

discarded from the current implementation since their effects have

not been entirely quantified yet.

b0 to b0 normalization:Acquisition of high spatial and angular

resolution diffusion images often results in increased duty-cycle,

especially when performing diffusion sensitization at high b-values.

This can cause heating of the Radio-Frequency (RF) transmit coils

and gradient arrays, which translates into a drift of signal intensities
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FIGURE 4

Registration sequence to align T1w images in the DWI space, using an intermediary high-resolution high-quality T1w template. First (A), the template

mask is dilated and applied to the template to hide most non-brain voxels while still keeping contour voxels between the brain and the skull, which

improves alignment. Then, both the subject’s T1w and DWI are registered to the template (B1, B2). For the DWI (B1), the brain mask in DWI space is

dilated and the PA-DWI is computed inside it, while also eroded to compute the DTI-FA. The latter is done to exclude noisy voxels located around the

brain volume which badly influence the registration. The PA-DWI and FA are used as a proxy to a�nely register the DWI to the template (DWI-A).

Next, the a�ne transformation (DWI-A) is applied to the DWI. Outlier voxels identified based on a DTI fit residuals and its agreement with the acquired

b0 are then removed from the brain mask. This gives us the ability to compute an ”outlier free” PA-DWI and DTI-FA, which are used to non-linearly

register the DWI to the template (DWI-D). For the T1w (B2), the sequence of operations is simpler. After dilating the T1w mask, the T1w is registered

a�nely (T1-A) and non-linearly (T1-D) to the template. Finally (C), from the template-registered DWI and T1w, a final non-linear transformation is

computed to bring the T1w into the DWI space (F–D). The complete transformation from T1w space to DWI space (T) makes it possible to get masks

and tissue maps required for further processing and analysis. Also, intermediary transformations between both modalities and the template (DWI-A +

DWI-D and T1-A + T1-D) can be used to get averaged statistics in the subject space.

over time (Vos et al., 2017). To compensate for this effect, each

pair of forward and reverse acquired images are normalized to

the mean value of the first group of b0 volumes found in the

forward image. To better correct the diffusion-weighted volumes,

a linear combination of the means of the groups of b0 volumes

found before and after each of them is used. This behavior can

be modified to accommodate datasets with different deviations

between b0 volumes and diffusion images, such as taking only the

b0 before or after a group of diffusion directions to compensate for

the signal drift.

Gibbs ringing: Since the spatial MRI images are reconstructed

by inverse Fourier transform from a subset of points sampled

through k-space, images can suffer from ringing artifacts at

the interface between different tissues (Czervionke et al., 1988).

When uncorrected, this effect biases diffusion models and metrics.

We thus include Gibbs ringing correction as a step just after

background denoising, using mrdegibbs (Kellner et al., 2016) from

Mrtrix3 (Tournier et al., 2019).

Susceptibility: Discrepancies in magnetic susceptibility

between brain tissues and neighboring tissues and cavities—

such as the sinuses and the eyes—induce large gradients

in the local magnetic field, which causes distortions in the

B0 field that spatially displaces the acquired signal. In NHP

studies, those artifacts are particularly intense, due in part

to the proportionally bigger sinuses and other fatty tissues

located around the brain. To correct for those, we use Topup

(Andersson et al., 2003) from the FSL (Smith et al., 2004)

library. Topup is run on the extracted b0 of the forward and

reverse phase acquisitions to correct for susceptibility-induced

distortions. The extraction of b0 can be configured to one of the

following options:

• Take the first b0 appearing in the DW images.

• Take all the b0 in the DW images.

• Take the averages of b0 in the DW images.

• Take averages of continuous series of b0 in the DW images.

Since Topup is not parallelized, the pipeline comes initially

configured to extract the average b0 in both phase directions and

hypothesizes the distortions to be static across the duration of the

acquisition. For this study, this configuration has proven to provide

a good approximation of the local magnetic field while substantially

lowering the execution time of the algorithm. However, in the

case of dynamic distortions where the local magnetic field changes

between diffusion volumes, sampling more than one b0 per dataset

is recommended.
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FIGURE 5

Tissues and white matter segmentation steps. (Register template to T1w) A transformation from the template to the preprocessed T1w image is

computed. (Apply transform) The transformation is used to move the segmentation prior into the preprocessed T1w space. (Atropos) ANTs Atropos is

run with the transformed segmentation priors, to compute segmentation masks and partial volume fraction maps of WM, GM, and CSF from the

preprocessed T1w.

Prior to running Topup, all volumes are conjointly registered,

first separately for the forward and reverse acquisitions and then

to an average template using a multivariate template approach

(Avants et al., 2011a). To prevent instilling artificial distortions in

the estimated susceptibility field, registration steps are limited to

rigid transformations.

Powder averaging DWI: It is common in DWI to use a

b0 volume, unweighted by diffusion and independent of the

gradient’s orientation, to perform tasks such as registration between

modalities. While this technique works well on human brains, it

has proven unstable in our study. We found a better target for this

to be a Powder Averaged DWI (PA-DWI) (Kaden et al., 2016). Our

implementation simply averages all gradient orientations given in

the DWI volume to produce a single 3D image, which has proven

sufficient for registration purposes, even on single-shell data with

few directions spread across the sphere.

Brain masking: Most of the subsequent steps in the pipeline

require a mask for better and/or faster computation, thus we

compute a mask using FSL bet (Smith, 2002) on the mean b0

volume, using the Topup corrected b0 if it was run. However,

the execution of bet on monkey images has proven unstable

and often leads to inclusion in the computed mask of skull

and background regions. To circumvent this problem, we highly

recommend passing in as inputs either a mask aligned to the

diffusion data or computed on the T1w anatomical image, that has

been quality checked and manually fixed. In the latter case, the

b0 brain mask will be used only to help register the T1w to the

mean b0 image + PA-DWI (via ANTs; Avants et al., 2008 using a

combination of rigid and affine transformations) to align the mask

in the diffusion space.

Motion and Eddy currents: Eddy currents naturally occur

in tissues at the MRI due to the rapid variations of the

imaging gradients (Ahn and Cho, 1991). They cause local

distortions in the magnetic field perceived by the proton spins,

resulting in biased diffusion-weighted measurements. To correct

for those, we use FSL Eddy (Andersson and Sotiropoulos, 2016;

Andersson et al., 2016, 2017, 2018), which also corrects for subject

motion. This step is parallelized both on the Central Processing

Unit (CPU) (using openMP) and the Graphical Processing Unit

(GPU) (using CUDA on an Nvidia graphics card). When using

the latter, the execution is more efficient and one can also

perform outlier detection and replacement, as well as slice-wise

motion correction.

Intensity non-uniformity: MRI equipment—transmit (B+)

and receive (B−) fields—is not perfectly accurate and images

can suffer from variations in intensities that are not related to

the diffusion process of the acquired tissues. Since the diffusion-

weighted signal is typically normalized by the b0 throughmodeling,

this effect is usually overlooked. However, in the presence of intense

motion, when using a strong B0 field or if subsequent fitting does

not consider a normalized signal, it can be beneficial to correct for

it (Van de Moortele et al., 2005; Ugurbil, 2018; Moeller et al., 2021).

To do so, we run N4 (Tustison et al., 2010) intensity normalization

from ANTs on the mean b0 of each diffusion volume to compute

the intensity bias field and then apply it to each volume in the 4D

DW image. Its usage is optional and turned off by default since

the correction does affect the distribution of noise in the diffusion

volumes and could lead to biases in further modeling (Tax et al.,

2022).

2.1.3.1.2. T1w processing

Background noise: Since the T1w image is composed of a

single 3D volume,Non-LocalMeans denoising (Manjón et al., 2008)
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becomes tractable in a reasonable amount of time. It is run using

a rician noise model and parallelized over multiple CPU cores,

using Dipy’s implementation (Garyfallidis et al., 2014). This step

has proven to improve segmentation and registration (Constanzo

et al., 2018; Theaud et al., 2020) and has thus been integrated as an

optional step in the pipeline.

Intensity non-uniformity: As for diffusion, the T1w image

is corrected for local intensity non-uniformity caused by the

MRI equipment using ANTs N4 (Tustison et al., 2010) intensity

normalization algorithm.

2.1.3.2. Upsampling

Once denoised, both the T1w image and the diffusion volumes

are upsampled to a finer resolution using Dipy (Garyfallidis

et al., 2014). This step enhances anatomical features present

in the diffusion volumes, brings both T1w and diffusion on a

common spatial grid—allowing to use masks and segmentations

estimated on the T1w image to better condition diffusion models

reconstruction and compute tissue-specific metrics—and is also

known to improve the results obtained from tractography (Dyrby

et al., 2014). It uses linear interpolation on DWI, T1w images,

and Partial Volume Fraction (PVF) maps, nearest neighbor

interpolation on masks, and multi-label interpolation on label

maps. The pipeline’s default configuration resamples all images to

half the voxel size of diffusion volumes. The pipeline can also be

configured to resample the data to the resolution of either the

T1w or the DW image and to disable resampling altogether. For

the latter, either the T1w volume or the maps computed upon it

are resampled to DWI resolution for internal usage in subsequent

pipeline steps.

2.1.3.3. Registration of anatomical space to

di�usion space

To bring tissue segmentation maps and anatomical priors into

the diffusion space, the upsampled T1w image is registered to the

upsampled DW image space using a template approach. First, both

images are individually and precisely aligned to the MNI Monkey

Space (Frey et al., 2011) T1w template (resampled to a resolution

close to the T1w and the DW images) using ANTs and a sequence

of rigid, affine, and non-linear transformations. By registering

to an intermediary high SNR target, it is possible to minimize

misalignment between tissues that tend to occur with direct

approaches, at the cost of roughly doubling computation times.

Image similarity is assessed by the Mutual Information metric.

Two proxy images are used to align the DW image to the template:

• The PA-DWI volume (Afzali et al., 2021). In comparison

to the b0 volume (which is often used as proxy in human

studies), given a sufficient number of directions, the PA-DWI

image possesses more contrast between the WM and the

GM, proving a better target for the alignment of the cortical

band. By construction, at low angular resolution, its contrasts

converge to that of the b0. Thus, using it for registration

is hypothesized to give similar or better results than using

the b0 image alone. Since this image contains the principal

anatomical landmarks required for accurate registration over

the whole brain, it is weighted at 70% of the similarity

metric cost.

• The Fractional anisotropy (FA) from a DTI fit. This image

has been proven to improve sub-cortical alignment (Sboto-

Frankenstein et al., 2014) when performing registration to or

from T1w space. Since its purpose is to align WM structure

only, it is weighted at 30%. Moreover, voxels near the brain

boundaries are excluded, where the FA map is under the noise

floor and does not carry information useful for supporting

the registration.

The transformation from anatomical space to diffusion space is

composed following equation 1, where TDWI is the transformation

from diffusion space to the template, TT1w is the transformation

from anatomical space to the template, and Tmid is the final non-

linear registration computed between the template registered T1w

and DW images to align the fine subject specific details.

TT1w→DWI = T−1
DWITmidTT1w (1)

Once computed, it is applied to all segmentation masks using

nearest neighbor interpolation, to label maps resulting from tissue

and white matter segmentation using multi-label interpolation, and

to other scalar maps using linear interpolation.

2.1.3.4. Segmentation

Tissue segmentation: Segmentation is performed on the T1w

image in the anatomical space using ANTs Atropos (Avants et al.,

2011b). The default configuration of the pipeline uses AFNI NMT

V2.0 segmentation (Jung et al., 2021) priors aligned to the MNI

Monkey Space, registered to each subject’s T1w image by applying

their respective transformation computed in the registration step.

Tissue masks are extracted from the PVF maps generated by

Atropos via thresholding. A safe white matter mask, exempt of

partial volume effects with both CSF and gray matter, is computed

for future usage such as limiting the number of possible voxels

used to compute the single fiber response necessary for constrained

spherical deconvolution.

White matter parcellation: The default white matter atlas

available in the pipeline is the UWDTI atlas (Adluru et al., 2012),

aligned to MNI Monkey Space. The transformation computed in

the registration step is used to warp the atlas to subject space and is

applied using MultiLabel interpolation.

2.1.3.5. Reconstruction

The pipeline offers 3 different models for the reconstruction

of the diffusion process. To enable its usage on low angular

resolution data or data sampled across a few shells at low b-values,

the single Diffusion Tensor Imaging (DTI) (LeBihan et al., 2001)

model can be fitted. It requires a minimum of 6 directions, though

a uniform sampling of gradients over the sphere is preferable.

Signal contamination can be caused by non-gaussian processes

occurring at high b-value from exchange and restriction, for

example, resulting in a drop of SNR and a loss of precision in

estimated diffusion properties (Basser and Jones, 2002; Jones and

Basser, 2004; Jensen and Helpern, 2010; Jones, 2010b; Chung

et al., 2013). To limit such contamination, only shells up to

b = 1,300 s/mm2 are used. This can be modified by the user

if need be, but such modification is not recommended when

processing in vivo data acquired from healthy subjects. For data

acquired on a greater number of shells, with higher b-values,
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such as High Angular Resolution Diffusion Imaging (HARDI)

(Tuch et al., 2002; Hosey et al., 2005) and CUbe and SPhere

(CUSP) (Scherrer and Warfield, 2012), two higher-order models

are available: the fiber Orientation Distribution Function (fODF)

through Constrained Spherical Deconvolution (Tournier et al.,

2007) (CSD) and the DIstribution of Anisotropic MicrOstructural

eNvironments in Diffusion-compartment (Scherrer et al., 2016)

(DIAMOND), a multivariate gamma distribution over tensors.

For recommendations on optimized acquisition sequences and

parameters to use with those higher-order models, we refer the

reader to the following publications (Scherrer and Warfield, 2012;

Jones et al., 2013; Genc et al., 2020).

2.1.3.6. Di�usion metrics

DTI fit: Diffusion Tensors (DT) are computed using Dipy and a

Weighted Least Square Fit. In addition to the tensors, eigenvalues,

and eigenvectors, it outputs Axial Diffusivity (AD, λ1) and Radial

Diffusivity (RD,µ(λ2, λ3)), Fractional Anisotropy (FA) andGeodesic

Fractional Anisotropy (GFA), and the mode and norm of diffusion

tensors. Figure 6 presents part of these metrics. It also allows the

output of validation maps, such as the residuals of the fit, the

standard deviation across diffusion volumes displaying pulsation

and misalignment artifacts, and a map of physically implausible

voxels, representing the areas where the diffusion-weighted signal

presents intensities higher than its associated average b0 signal.

CSD fit: The response function and spherical deconvolution

fit are also computed using Dipy. If a tissue segmentation

is available at this step in the pipeline and the input DW

image contains multiple b-value shells, a Multi-Shell Multi-Tissue

(MSMT) approach is used (Jeurissen et al., 2014). Otherwise,

the pipeline reverts to using a Single-Shell Single-Tissue (SSST)

algorithm (Tournier et al., 2007). The WM response function is

computed following an approach similar to the one used in human

studies, with equivalent parametrization. It is estimated from a

subset of single-fiber white matter voxels (200 per default) which

are presenting a sufficiently high FA value (between 0.55 and 0.75

per default) and reside well inside the white matter mask computed

previously. The peaks are then extracted from the fitted fODF,

selecting only the ones presenting an amplitude higher than 1.5

times the maximal amplitude in isotropic voxels (Dell’Acqua et al.,

2012) (Figure 7C). The latter are obtained using thresholds on

the Mean Diffusivity (MD) (≥2.6e−3 mm2/s) and FA (≤0.15).

Those thresholds are also used to compute the Number of Fibers

Orientations (NuFO) and the Apparent Fiber Density (AFD) maps

of voxel-based Total (AFDt, first SH coefficient), Sum (AFDs,

integral on the sphere), and Maximal Apparent Fiber Density

(AFDmax) (Dell’Acqua et al., 2012; Raffelt et al., 2012), as well as

the RGB mapping of orientations on the sphere (Figures 7A, B, D).

Multivariate gamma distribution tensor fit: The Multi-

Tensor fit is acquired using DIAMOND (Scherrer et al., 2016),

configured as described in further sections. Classical tensor

measures (FA, AD, RD, MD, and RGB) are estimated on each

fascicle separately and are used to compute their associated average,

median, and maximum counterparts over fascicles. Maps of the

fraction of each fascicle per voxel and of their main peaks are

generated in addition. Other statistical quantities such as the mean

and standard deviation of isotropic and anisotropic diffusivities

(Reymbaut and Descoteaux, 2019) can also be computed. A subset

of metrics is displayed in Figure 8.

2.2. Configuration automation

To make our pipeline as easy to use as possible, and to

disentangle its input configuration from the data acquisition

specification as much as possible, a great deal of care was given

to automatize algorithm parametrization. Much information about

the spatial positioning and the scale at which the imaging was

performed can be inferred from the image itself, looking at its affine

transformation property. Tools such as dcm2niix (Li et al., 2016)

also allow the generation of a .json metadata file, containing even

more imaging parameters extracted from the DICOM files, such as

phase encoding direction, the order of slice acquisition, echo time,

and repetition time, to name a few. Our implementation takes those

parameters into account to optimally determine configurations

at execution.

2.2.1. Topup, Eddy, and ANTs
The Topup configuration we use is based on the b0b20

macaque.cnf configuration, from the NHP-HCP minimal

processing pipeline (Autio et al., 2020). However, instead of

defining the susceptibility field knot spacing and the blur window

size in millimeters, we use non-dimensionalized ratios that

are multiplied by the input image’s voxel size. This allows the

parameters to adapt themselves to the input spatial resolution.

We also use metadata information to automatically determine the

phase encoding direction and readout time of b0 images input

into Topup.

As for Topup, we non-dimensionalize millimetric input

parameters for Eddy, as well as for calls to various algorithms

within the ANTs toolkit. For Eddy, we also use information from

the metadata to specify the slice ordering of the DW volumes

when using the outlier replacement option or the slice-to-volume

registration corrections.

2.2.2. Di�usion models
The complexity of diffusion models is determined at execution

from the diffusion sampling strategy used when acquiring the DW

images. For spherical harmonics models, the parameter to optimize

is the reconstruction order. Its dependence on the number of

independent gradient directions Ni is given by Equation 2 for a

symmetric real harmonics basis (Descoteaux et al., 2006) and by

Equation 3 for a full real harmonics basis (Bastiani et al., 2017).

Osym =
⌊

−3 + 0.5 (1 + 8Ni)
1
2

⌋

(2)

Ofull =

⌊

N
1
2
i − 1

⌋

(3)

For multi-shell samplings, the order is determined individually

per shell and the minimum is selected to configure the algorithm.

Compartment-based models such as DIAMOND are optimized

on two fronts: the number of compartments to estimate and the

complexity of the microstructural model. In our implementation,

we consider the optimal starting model as:
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FIGURE 6

DTI measurements on a subject selected from the Aix-Marseille site. (A) RGB map, (B) fractional anisotropy (FA), (C) mean di�usivity (MD), (F) radial

di�usivity (RD), (E) axial di�usivity (AD), and (D) the principal direction of the estimated tensor in the centrum semiovale [region circled in blue in (A)].

• Three WM fascicles compartments at most in each voxel, to

capture crossings.

• Non-constrained cylinder as the single fascicle model

(6 diffusion tensor parameters + 1 fraction, per

fascicle compartment).

• One free water compartment in each voxel, to reduce

partial volume effects in estimated fascicle compartments

(2 parameters).

This model requires at least 23 gradient directions to be

correctly fitted. Given Nf , the number of independent gradient

directions in all shells of the input image, two cases are possible.

First, Nf can be under 23 directions, in which case the complexity

is reduced according to the following order of priority:

• Lowering the single fascicle model complexity.

• Lowering the number of fascicle compartments (up to 2).

• Removing the free water compartment.

• Lowering the number of fascicle compartments (up to 1).

Instead, if Nf is over 23 directions, the model’s complexity is

iteratively increased according to the following order of priority:

• Increasing the single fascicle model complexity.

• Adding restriction and hindrance estimation.

• Increasing the number of fascicle compartments.

This whole optimization process is optional, so users can force

a particular configuration for their models and the pipeline will try

to fit them even if the number of available directions is under the

requirements. Note, however, that in this case, the uniqueness of the

fitted model cannot be ensured; future usage of the reconstruction

results must be done with care.

2.3. Study design and data selection

This study evaluates variability in diffusion-weighted

measurements across sites available in the PRIME-DE project, as

well as between human MRI scanner models and vendors used to

acquire the images. From the 25 sites in the database, 8 gathered

diffusion data, and only 4 have a fair number of subjects (N ≥

4): Aix-Marseille University (Aix-Marseille, 4 subjects, Siemens

Prisma scanner), University of California, Davis (UC-Davis,

19 subjects, Siemens Skyra scanner), Mount Sinai School of

Medicine—Philips (Sinai-Philips, 9 subjects, Philips Achieva

scanner), and Siemens (Sinai-Siemens, 6 subjects, Siemens Skyra

scanner). All subjects are Macaca Mulatta primates, anesthetized

before acquisition. The scan sequence parameters can be found

in Table 1. All datasets were acquired using 3T systems, with

DWI at spatial resolutions from 0.7 to 1.4 mm3–isotropic or

rectangular voxels—and anatomical images from 0.3 to 0.8 mm3

isotropic voxels.
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FIGURE 7

fODF measurements computed using data from a subject from the Aix-Marseille site. (A) RGB map, (B) total apparent fiber density (AFDt), (D) number

of fiber orientations (NuFO), and (C) fODF peaks in the centrum semiovale [region circled in blue in (A)].

2.4. Quality control

All input data including both DW and anatomical images

went through quality control. Images were controlled for a

variety of possible artifacts, including motion, ghosting, aliasing,

Gibbs ringing, B0 and B1 field inhomogeneities, and magnetic

susceptibility. After evaluation, images from Sinai-Siemens were

excluded due to non-uniformity of contrasts across both DW

and anatomical images from hyper-intensities caused by restraints

positioned around the subject’s head. The images from the 3 other

sites had sufficient quality and were judged good for the study.

2.5. Brain masking

Before processing, brain masks were computed using the

anatomical T1w images and DeepBet v1.0 (Wang et al., 2021),

a U-Net trained on macaque data from the PRIME-DE. All masks

were quality controlled and manually fixed to prevent the exclusion

of brain voxels and the inclusion of skull or eye voxels. The

inclusion of this technology in the pipeline was considered but was

ultimately rejected due to the required memory of its dependencies,

practically doubling the size of the container required to run

the pipeline.

Moreover, its usage was not proven to generalize to datasets

other than the ones contained in the PRIME-DE, upon which it

was trained, which could impede the pipeline’s effectiveness. Also,

its insertion near the beginning of the processing chain was deemed

too risky, since its failure at providing a good brain mask would

interfere with most of the subsequent steps.

2.6. Processing hardware

The processing was done separately for all 3 selected

databases to evaluate the effectiveness of execution. We used

3 computing nodes of the Compute Canada Beluga cluster,

each equipped with 2 Intel Gold 6148 Skylake CPU at 2.4

GHz clock speed, 186 Gb of Random Access Memory (RAM),

and 4 NVidia V100SXM2 graphics cards with 16 Gb Video

RAM (VRAM).

2.7. Pipeline configuration

The data from all 3 sites was processed using a common

configuration. All sites acquired reverse phase encoded DWI

volumes (same gradient sampling as the forward phase acquired

volume), thus we ran Eddy using the whole reverse set of
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FIGURE 8

Multi-tensor measurements on a subject selected from the Aix-Marseille site. (A) RGB map, (B) maximum fascicle FA (max fFA), (C) mean di�usivity

(MD), (F) axial di�usivity (AD) on the left, radial di�usivity (RD) on the right, (E) free water fraction (fFW), and (D) principal direction of the estimated

mean tensor of each fascicle in the centrum semiovale [region circled in blue in (A)].

gradient directions and Least-Square Resampling (LSR) that

preserves edges better in the resulting DWI. Images were

resampled to a common isotropic spatial voxel size of 0.7

mm3. Most of the DW data available in the PRIME-DE

was acquired on a single shell, thus CSD was run using

an SSST approach. Similarly, DIAMOND was configured

to estimate atmost 2 tensor populations per voxel, each

parametrized by a non-central gamma distribution over constrained

cylinders (second-order tensor with eigenvalues λ1 = λ‖

and λ2 = λ3 = λ⊥). Minor modifications were made to

Topup’s configuration for UC-Davis, due to the magnitude of

susceptibility-induced distortions: 3 intermediary resolutions

were added to the subsampling pyramid, and the number of

iterations at each level was increased. The configuration file

(“aka: b0b20_versa_primede_uc_davis.cnf”) is available in

Supplementary material.

2.8. Pipeline reproducibility

To evaluate correctly the potential variations in metrics

between the several subjects of the PRIME-DE database, it is

required that the processing carried on the data be as reproducible

as possible. To this end, all algorithms that require the execution of

a random process have seen their seed enforced to the same number

across all subjects and sites. To evaluate the reproducibility, we did

a test-retest analysis using the 4 subjects from the Aix-Marseille

database, on which the pipeline was run 3 separate times using

the same configuration and Singularity image. The Image Intraclass

Correlation Coefficient (I2C2) (Shou et al., 2013) was computed

using Equation 4 on relevant DTI, fODF, and multi-tensor metrics.

I2C2 = 1−

∑

s∈S Ns − 1
∑

s∈S (Ns − 1)

∑

s∈S

∑

ss∈s

∑

v∈Iss

(Iss(v)− Îs(v))
2

(Iss(v)− Î(v))
2 (4)

Here, Iss refers to a modality, mask, or measurement of a

specific subject s and session ss to evaluate, Îs is the mean image

for a specific subject s taken over all its sessions, and Î is the mean

image taken over all sessions and all subjects.

2.9. Data quality evaluation

To quantify the increase in quality of the processed data, two

measures, Signal-to-Noise Ratio (SNR) and Contrast-to-Noise Ratio

(CNR), were computed inside each region of the registered tissue
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TABLE 1 Acquisition parameters for the sites of the PRIME-DE database containing di�usion data.

Site Scanner # subjects T1w DWI

Voxel size Voxel size b-values #
directions

# b0

Aix-marseille Siemens Prisma
3T

1 0.8mm 1.25mm 250 6 5

0.8mm 1.25mm 1,000 64

0.8mm 1.25mm

1 0.8mm 1mm 250 6 5

0.8mm 1mm 1,000 64

0.8mm 1mm

1 0.8mm 1.25mm 300 6 7

0.8mm 1.25mm 1,000 32

0.8mm 1.25mm 2,000 64

1 0.8mm 1mm 500 6 5

0.8mm 1mm 1,000 30

0.8mm 1mm 2,000 30

UC-Davis Siemens Skyra 3T 19 0.3mma 0.7mm 1,600 60 6

0.3mma 0.7mm

0.3mma 1.4mm

Sinai-Philips Philips Achieva
3T

9 0.3mm 1mm 1,000 120 2

0.3mm 1mm

0.3mm 1mm

Sinai-Siemens Siemens Skyra 3T 6 0.5mm 1mm 1,000 80 10

0.5mm 1mm

0.5mm 1mm

The subject from Aix-Marseille in the red box was used to create snapshots presented in Figures 6–8.
aT1w anatomical images were acquired at 0.6mm isotropic with zero padding, for a final spatial resolution of 0.3mm isotropic.

maps on the mean b0 volume of the diffusion-weighted images.

Topup correction and upsampling were performed on the raw data,

to allow for the use of the tissue maps when computing their SNR

and CNR. Thus, our method does not quantify the effect of those

steps on the amelioration of the data quality.

To calculate SNR, two different approaches were used to

quantify the noise standard deviation using the b0 data. For

DW images containing multiple b0 volumes, intermediate noise

maps were extracted by subtracting each possible permutation

of two b0 volumes. Those maps were then averaged to obtain a

mean noise map, which was used to compute the noise standard

deviation in each region. SNR was then calculated using equation

5 (Narasimhan and Jacobs, 2002). For DW images with a single

b0 volume, a background mask was extracted using the technique

presented in Balan et al. (2012) and the noise standard deviation

was calculated from the b0 voxels that overlapped the mask. SNR

was calculated using Equation 6. In both Equations 5 and 6,

b0 refers to the b0 image, N to the extracted mean noise map,

Tmask to the mask of the tissue of interest, and Bmask to the

image background mask. µM(I) and σ 2
M(I) respectively refer to the

mean and variance of all voxels of an image I which overlapped

a maskM.

SNR
(

b0, N,Tmask

)

=
µTmask

(b0)

σ 2
Tmask

(N)
(5)

SNR
(

b0, Tmask,Bmask

)

=
µTmask

(b0)

σ 2
Bmask

(b0)
(6)

CNR was computed using the b0 by comparing white matter

with gray matter regions using Equation 7.

CNR (I, WMmask,GMmask) =

∣

∣µWMmask
(I) − µGMmask

(I)
∣

∣

σ 2
WMmask

(I) + σ 2
GMmask

(I)
(7)

We also performed a variability study in tissue maps (WM

and GM) of several metrics extracted from the diffusion models

available in the pipeline. Using the average over sessions of subjects,

we analyzed inter-subject variability separately for each database

(Equation 8), intra-vendor variability for Siemens scanners
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(UC-Davis and Aix-Marseille) (Equation 11), and inter-vendor

variability using all sites (Equation 10). Since UC-Davis and Sinai-

Philips presented multiple time points per subject, intra-subject

variability was also computed (Equation 9).

BS-CV(
{

Ŝ1, . . . , Ŝn
}

∈ Di,M) =
σM(Di)

µM(Di)
(8)

IS-CV (
{

Sj,1, . . . , Sj,k
}

∈ Sj,M) =
σM(Sj)

µM(Sj)
(9)

BV-CV (
{

ŜD1 ,1, . . . , ŜD1 ,n1 , . . . , ŜDv ,nv

}

∈ V ,M) =
σM(V)

µM(V)
(10)

IV-CV (
{

ŜD1 ,1, . . . , ŜD1 ,n1 , . . . , ŜDv ,nv

}

∈ Vi,M) =
σM(Vi)

µM(Vi)
(11)

Here, Sj denotes a set of all repetitions of an image (T1w,

DWI, masks, and measures) for a single subject, Sj,k a repetition

in that set, and Ŝ the set averaged over repetitions. Di is a set

of images associated with a single acquisition site (Aix-Marseille,

Sinai-Philips, or UC-Davis), Vi is a set of images associated with a

vendor (Philips, Siemens), andV is the set of all repetitions from all

subjects across all vendors.M is a mask defining a region of interest

in which the variation measure is evaluated.

3. Results

3.1. Processing time

Per-processing execution time is displayed in Figure 9

separately for each site. Most of the processing time was taken

by 4 algorithms, namely Topup (∼66min avg), Eddy (∼36min

avg), DIAMOND (∼31min avg), and fODF metrics computation

(∼15min avg); those times are tightly related to the diffusion

image resolution, here ranging from isotropic 1mm3 to isotropic

1.25mm3. Every other major step of the pipeline was executed in

approximately 5min or less. It took approximately 6 h to process

the 4 datasets of the Aix-Marseille site, 25 h for the 27 (9 subjects,

3 sessions) of Sinai-Philips, and 34 h for the 38 (19 subjects,

2 sessions) of UC-Davis. Note that for UC-Davis, the number

of iterations for Topup had to be increased, due to the intense

susceptibility artifacts present in the images, thus drastically

increasing the execution time.

3.2. Image quality

SNR and CNR are presented in Figure 10, on the average

b0 volume extracted from both the raw and preprocessed DW

images. Except for UC-Davis, the SNR measure suggests an

increase in image quality resulting from the different denoising

algorithms used in the preprocessing part of the pipeline.

For Sinai-Philips and UC-Davis, the SNR distribution displays

less variance after preprocessing, with a substantial increase in

mean SNR for Sinai-Philips. Similarly, distributions of CNR

display less variance after preprocessing for Sinai-Philips and

UC-Davis. Mean CNR is also increased for Aix-Marseille

and Sinai-Philips.

3.3. Reproducibility

Table 2 shows reproducibility scores on relevant output images

of the pipeline. For classical diffusion models (DTI and fODF),

as well as for the anatomical mask computing and registration

processes, reproducibility is high, with I2C2 scores of 98% or

higher. Scores for the DIAMOND model averaged around 97% for

metrics computed over the fascicles (MD, AD, RD, FA, max fFA,

and free-water fraction) and 91% for model selection, indicating

that the outcomes of this algorithm are less reproducible. Gamma

distribution parameters (kappa, kappaAD, hei, and heiAD) did not

perform as well, with kappa and hei scoring 83% and heiAD and

kappaAD scoring 52 and 63%.

3.4. Variation of measurements

Figures 11, 12 display the coefficients of variation—Mean

Intra-Subject (MIS), Inter-Subject (BS), Intra-Vendor (IV),

and Inter-Vendor (BV)—of several metrics computed by

the pipeline; Figure 12 also displays the coefficients for the

gamma distribution parameters estimated by the DIAMOND

model, calculated in both white matter (WM) and gray matter

(GM) masks.

The Sinai-Philips site presents the least mean intra-

subject variability overall at ≤2%, except for NuFO,

AFD, and free-water fraction (fFW), but the worst

inter-subject variability in almost all metrics and

parameters evaluated.

For DTI metrics, Aix-Marseille displays lower inter-subject

variability in both white matter (≤4% in MD and RD and

≤7% in RD and FA) and gray matter (∼3%) than Sinai-

Philips. The portrait is reversed for fODF measurements,

with the exception of AFDt where the variability observed

is greater (more than twice for NuFO in WM). For metrics

computed on the DIAMOND model, the variability is lower,

with the exception of MD in WM and of all measures

excluding fFW in GM. The variability is also higher for

gamma distribution parameters, except for kappaAD and heiAD

in WM.

UC-Davis exhibits low inter-subject variability in DTI

measurements at <4% for MD, AD, and RD and approximately 6%

in WM and 8% in GM for FA. In WM, fODF metrics such as AFDt

and AFD have a similar behavior, with CV at 4 and 9%, respectively,

while NuFO presents as the least reliable at 14%. Oddly, mean

intra-subject variability is greater than inter-subject variability for

this site for almost all quantities observed, except for fractional

anisotropy (with the exception of the mean FA on DIAMOND

fascicles), AFDt (in WM only) and free-water measurements, as

well as for gamma distribution parameters excluding heiAD in

WM and kappa in GM. With further inspections, we noticed that

for all measurements exhibiting this trend, two clusters of similar

measurements could be formed, corresponding each to one of the

sessions at which the subjects’ images were acquired, as presented

in Figure 13.

Intra-vendor variability of Siemens scanners is computed on

subjects from both Aix-Marseille and UC-Davis. For DTI metrics,
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FIGURE 9

Execution time of processes run on datasets from the (A) Aix-Marseille, (B) Sinai-Philips, and (C) UC-Davis sites. (D) Presents the global duration per

process over all sites. Most algorithms took less than a few minutes to execute, with the exception of Topup (single threaded), Eddy (parallelized on

the GPU using CUDA 9.1), DIAMOND (parallelized on the CPU), and the computation of fODF metrics (single threaded).

variability in WM ranges from 12 to 14% for diffusivity measures

and at around 8% for FA and is slightly lower in GM. For fODF,

NuFO displays the highest variability (21% in WM and 32% in

GM), followed by AFD (10% in WM and 22% in GM). Variability

for AFDt is substantially lower at 4% in WM and 7% in GM.

For measurements on the DIAMOND model in WM, MD is the

least variable at 6% and fractional anisotropy scores 10%, 2%

below the fascicle-based measure (max fFA). Results show that

performance from those measurements is approximately two times

more variable in GM. Free-water fraction is the most variable

measure estimated at 28% in WM and 21% in GM. For gamma

distribution parameters, the values ranged widely depending on

the parameter and the tissue. WM kappa and kappaAD are the

less variable at 7 and 10%, and hei and heiAD score 33 and 18%,

respectively. For GM, the parameter with the highest variability is

kappaAD at 32%, followed by kappa and hei at around 17% and

heiAD at 13%.

Inter-vendor variability was consistently higher than intra-

vendor on all DTI measurements, with an increase of 2% in

the variability of FA and from 4 to 10% in diffusivity measures

in both WM and GM. The same trend is observed for fODF

metrics, AFDt displaying the less increase (2%) and NuFO the

most (5%) in WM. For measures on the DIAMOND model,

MD showed the highest increase (6% in WM and 3% in

GM). FA and maxfFA variability remained stable, with a slight

increase of 2% for the former and ∼1% for the latter. Free-

water fraction variability increase was substantial—approximately

5%. For gamma distribution parameters, a slight decrease of

variability was observed for all parameters, except for hei

which remained stable in WM and increased in about 3%

in GM.

4. Discussion

4.1. Sources of variability in DWI

The greatest confounding factors in current DWI studies

are acquisition harmonization and processing reproducibility.

Acquisition harmonization refers to the capacity of data collection
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FIGURE 10

SNR and CNR distributions of b0 images. SNR is presented separately for (WM) white matter, (GM) gray matter, and (CSF) cerebrospinal fluid. CNR is

only presented for the white matter, since the measure results from a comparison to gray matter image intensities.

equipment and facilities to provide standard measurements

independent of location, time, climate, equipment vendor, and

model. These measurements need to be stable given a specific

tissue or effect to probe. We know, from a plethora of multi-site,

multi-vendor studies (Grech-Sollars et al., 2015; Fortin et al., 2017;

Mirzaalian et al., 2017; Duchesne et al., 2019; Prohl et al., 2019;

Tax et al., 2019), that using non-harmonized data can increase

the variability of the measurements acquired at the scanner and

potentially interfere with the statistical significance of analyses.

One of the popular datasets, the SIMON dataset (Duchesne et al.,

2019), has even shown that images from the same subject acquired

at separate sites may lead to drastically different interpretations,

even if the equipment manufacturer and MRI model are the same

(in the case of differences in models and vendors, the results are

even worse).

We see this effect clearly in our variability analysis of the data

from the 3 sites of the PRIME-DE. To better identify its sources,

we evaluated the coefficient of variability on 4 levels: mean intra-

subject (MIS) on the Sinai-Philips and UC-Davis sites, inter-subject

(BS) on all 3 sites, and intra-vendor (IV) on sites using Siemens

scanners (Aix-Marseille and UC-Davis) and inter-vendor (BV) on

all 3 sites. Looking at MIS-CV measurements for the Mount-Sinai

(P) site only, we can expect that the effects of a subjects intrinsic

variability and variability due to the environment should be weak—

with CV reported in the range of a few percent for most metrics.

This is in line with results previously reported in human studies

(Grech-Sollars et al., 2015; Prohl et al., 2019). Variations between

subjects (BS-CV) are significantly higher and should potentially

be detected by the analyses using this cohort. However, those

variations are masked by effects caused by differences in vendors

(BV-CV) or in equipment provided by the same vendor (IV-CV). In

the majority of metrics we studied, we can see 2 to 6 fold increases

in variability when pooling data across scanners and vendors,

suggesting that little to no sensitivity to differences between subjects

should be expected if harmonization is not carried out. This is

a typical trend in DWI and all multi-site and/or multi-vendor

databases suffer from such variability to some extent (Grech-Sollars

et al., 2015; Fortin et al., 2017).

Lowering intrinsic, environmental, site, and vendor variability

can be done in a few ways. At the MRI, the adoption of

standard acquisition sequences and the standardization of MRI

equipment can be effective solutions, though the task to tackle

is monumental. On one hand, MRI vendors are reluctant to

standardize because novel proprietary techniques give them a

commercial advantage. On the other hand, it has been difficult to

gather consensus on acquisition protocols from the community—

though international consortiums are converging to guidelines and

good practices (Jelescu et al., 2023; Schilling et al., 2023)—partly

because specific sequences serve particular research questions

better, but also because the lack of gold standards in DWI

makes it difficult to compare sets of good acquisition parameters.

However, without some standardization, group efforts such as the

PRIME-DE project—that pools data frommultiple sites, often with

reduced cohort sizes—cannot become fully relevant. As can be

seen in Table 1, acquisition parameters vary widely from one site

to another, especially when it comes to the sampling of diffusion

gradients’ directions. This has a direct impact on the validity of the

reconstruction of diffusion models, since different b-values encode

different processes in the imaged tissues (McKinnon et al., 2017;

Veraart et al., 2019).
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TABLE 2 Reproducibility measures computed on images generated by the

pipeline.

Modality Measure I2C2

Anatomy T1w WM PVF 0.997

T1w GM PVF 0.995

T1w CSF PVF 0.990

T1w Registration 1.000

Diffusion DTI MD 0.991

DTI AD 0.990

DTI RD 0.991

DTI FA 0.999

CSD (fODF) AFD 0.981

CSD (fODF) AFD total 0.997

CSD (fODF) NuFO 0.986

DIAMOND MD 0.962

DIAMOND AD 0.975

DIAMOND RD 0.956

DIAMOND FA 0.990

DIAMOND Max fFA 0.979

DIAMOND hei 0.831

DIAMOND heiAD 0.523

DIAMOND kappa 0.831

DIAMOND kappaAD 0.630

DIAMOND Fascicle fractions 0.968

DIAMOND Free-water fraction 0.981

DIAMOND Model selection 0.903

In our study, gradient sampling seems to have a limited impact

on DTI measurements for Aix-Marseille, since shells with b-

values higher than 1,300 s/mm2 are omitted. This, however, has

a greater effect when comparing UC-Davis’ data to data from

other sites, since DTI data from UC-Davis was reconstructed

from the only available shell at 1,600 s/mm2. This explains the

3 to 4 fold increase in Siemens intra-vendor and global inter-

vendor variability relative to the average inter-subject variability

of associated sites. The impact becomes greater when looking at

fODF and multi-tensor reconstruction (DIAMOND), since those

models make use of all b-values. This increases Aix-Marseille’s

MIS-CV since the analysis becomes a comparison between 2

subjects acquired with single-shell sampling and 2 others with

multi-shell, the latter presenting a richer portrait of the diffusion

process by the usage of higher gradient weighting. Both fODF

and multi-tensor reconstruction are known to benefit from the

higher b-values (Scherrer and Warfield, 2010, 2012; Taquet et al.,

2015; Yang et al., 2015); the quantities estimated from those

models are expected to vary in the case of a low b-value single-

shell acquisition.

Another trend observed in our study indicating the need for

guidelines and protocols is the high mean intra-subject variability

observed for UC-Davis. While analyzing the data from this site, we

noticed a strong discrepancy in diffusion measurements between

the two sessions at which the images were acquired. This behavior

could be the result of software or hardware upgrades, resulting

in a suboptimal acquisition of the diffusion profile. The only

quantities where this was not observed are fractional anisotropies

(FA and max fFA) and total apparent fiber density (AFDt).

Nevertheless, this makes the usage of separate sessions from UC-

Davis impossible in a study of diffusion measurements as the

variability would diminish any statistical power. We hope that in

future, good quality control could be integrated into the scanners

to prevent or correct the acquisition of images presenting this kind

of behavior.

For now, DWI data harmonization at the scanner is not

always possible, but it can be obtained to a certain degree with

the use of software to normalize the statistical distribution of

subjects in a given database. This usually requires hypotheses on

how those distributions should behave given a set of metrics and

try to compensate for the sources of site-dependent or scanner-

dependent variability, while conserving each subject’s intrinsic

variability and the variability between them. Good solutions are

available today, capable of reducing the effects induced by the

acquisition software and technology (Vollmar et al., 2010; Grech-

Sollars et al., 2015; Fortin et al., 2017; Tax et al., 2019), as

well as signal deviation occurring from environmental differences

(temperature, humidity, time of day, etc.) (Meyer et al., 2016;

Book et al., 2021). However, a lot of work still needs to be

done to improve their implementation and to properly quantify
their effectiveness. Databases such as the PRIME-DE are prime

candidates for this kind of studies since NHP data are acquired

using standard human scanners and sequences, as well as similar
head coils, but their environment and vitals can be more

easily controlled and monitored. Repetition of measurements
should present lower variability and thus environment, scanner,
and vendor-dependent effects could potentially be quantified

more precisely.

In addition to effects from the acquisition procedure, the
low reproducibility of processing tools can also be a source of
variability. Reproducibility quantifies how stable the results of

a processing task or a sequence of tasks are when those are

independently repeated across different computing platforms and

at different times, a measure that a good processing pipeline

should always maximize. Tractoflow (Theaud et al., 2020), a novel

pipeline for DWI analysis of human subjects, was designed with this

requirement in mind. Results displayed in Table 2 confirm good

reproducibility of the computed DTI and fODF models, as well

as of the T1w registration processes (using ANTs registration) and

tissues partial volume fractions computation (using ANTsAtropos).

Scores are slightly lower for metrics estimated on the DIAMOND

model, and significantly lower for gamma distribution parameters

(kappa, kappaAD, hei, and heiAD). This behavior is expected since

the DIAMOND implementation included in the pipeline does not

allow fixing the random number seed, which introduces variability

in the outcomes of the algorithm. We would nonetheless advise

against their usage in a statistical study since they are bound

to introduce a level of variability in the analysis. Note that this

does not affect the metrics calculated (MD, FA, max fFA, and

fFW), since their computation in the current implementation
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FIGURE 11

Coe�cient of variation (CV)—mean intra-subject (MIS), inter-subject (BS), intra-vendor (IV), and inter-vendor (BV)—for DTI and fODF measurements:

MD, mean di�usivity; AD, axial di�usivity; RD, radial di�usivity; FA, fractional anisotropy; AFD, max apparent fiber density; AFDt, total apparent fiber

density; NuFO, the number of fiber orientations.

FIGURE 12

Coe�cient of variation (CV)—mean intra-subject (MIS), inter-subject (BS), intra-vendor (IV), and inter-vendor (BV)—for diamond measurements and

gamma distribution parameters: MD, mean di�usivity among fascicles; FA, mean fractional anisotropy among fascicles; max fFa, maximum fascicle

FA; fFW, fraction of free-water; hei, heterogeneity index; heiAD, axial heterogeneity index; kappa, kappa parameter of tensor distribution; kappaAD,

axial kappa parameter of tensor distribution.

of the pipeline only relies on the mean tensor estimated on

each fascicle.

4.2. Pipeline implementation

While providing a highly reproducible processing chain, our

pipeline implementation also offers a high level of adaptability

to the parametrization of its input’s acquisition sequences. While

designing the collection of processing modules, we took great

care to make their configuration resilient to different spatial

(voxel size, number of slices, orientation of slice, and/or phase

encoding) and orientational (number of b-values and/or gradient

directions) configurations. This proved critical to adequately scale

the parameter space of algorithms used by the pipeline, such as

Topup, which rely on a definition of its deformation field given in

millimeters in voxel space, and to allow disabling their execution

when input requirements were unmet.

Nevertheless, we are aware that the default values we offer

could vary as algorithms are updated and that some use-

case could benefit from changing them. To that extent, we

provided for most of them an additional configuration layer,

presenting all possible parameters, to allow the end-user to finely

adapt the pipeline to the specific study. We also allowed the

user to disable all steps included in the pipeline, in case one

desires only to compute models and measures and has already

preprocessed the data, or to speed up computation time by

disabling steps deemed unnecessary after thorough quality control.

Still, for processing raw data, we do not recommend skipping any

preprocessing steps.

Furthermore, our implementation is ready for new use-cases

for which our pipeline does not provide adequate preprocessing

and modeling steps. Using our modular design, a pipeline can

easily be derived from ours, using new algorithms, workflows,

and/or input conventions, by adding the necessary objects in their

respective module and binding their dataflow correctly.
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FIGURE 13

Clustering behavior of the acquisition sessions of the subjects from the UC-Davis site.

5. Limitations and future work

In the current version of versaFlow, we implemented a robust

and efficient preprocessing chain of state-of-the-art algorithms

to correct for well know artifacts affecting the MRI signal, such

as background noise, Gibbs ringing, susceptibility distortions,

motion, signal dropout, and intensity disparities within tissues.

We are well aware that our pipeline is not universal and that

some use-cases may require the execution of different algorithms

than the one we considered. MRI preprocessing still needs to be

thoroughly validated; the effect of applying specific techniques and

algorithms, as well as their ordering relative to one another, requires

quantification to attain an adequate level of consensus in the

community. We designed our pipeline and its modular framework

taking those considerations into account, to ease the process of

swapping and upgrading its different steps, and to fit specific study

cases. We also plan to release in the near future a version of

the pipeline integrating alternative denoising techniques that are

popular in the diffusionMRI research community. These denoising

techniques will be selected according to recommendations from the

International Society for Magnetic Resonance in Medicine (ISMRM)

Diffusion Study Group (DSG) consensus effort. Inasmuch, we

intend to include brain extraction workflows, for both anatomical

and diffusion-weighted images, adapted to the morphology of

input subjects. Good solutions have been developed that display

good performance on human subjects. However, their extension

to other primates and small animals is yet to be done; using

them in the current version could lead to poor segmentation.

As the field continues to evolve and those issues are addressed,

we will consider the addition of those solutions in our pipeline.

The same goes for harmonization techniques, which we consider

adding to the pipeline in the near future, once their capabilities

in reducing variability in DWI data while preserving intra-

subject intrinsic variability and inter-subject variability have been

thoroughly quantified.

Moreover, for our implementation, we chose a limited subset

of 3 local models to represent the diffusion process in DW

images. More algorithms, especially in the category of multi-tensor

models, could be considered in the future, such as ball and stick

(Behrens et al., 2003, 2007; Jbabdi et al., 2012), ball and zeppelin

(Sotiropoulos et al., 2016), bedpostx (Jbabdi et al., 2012), and

NODDI (Zhang et al., 2012). The inclusion of Diffusion Kurtosis

Imaging (DKI) (Jensen et al., 2005) could also be considered. More

general models of the Ensemble Averaged Propagator (EAP) could

also be added, using, for example, the Simple Harmonic Oscillator

Based Reconstruction and Estimation (3D-SHORE) or the Mean

Apparent Propagator (MAP) (Özarslan et al., 2013), along with

relevant measurements computed on them. Furthermore, we plan

to release supplemental modules to compute tractograms upon the

computed models the pipeline offers.

We also plan to extend our pipeline to support the processing

of DWI data acquired ex vivo (Dyrby et al., 2011, 2018; Maffei

et al., 2022; Yendiki et al., 2022; Schilling et al., 2023). Doing

so requires solving a new set of challenges—response functions

need to be recalibrated to account for changes in diffusivity

incurred by tissue fixation and algorithms employing approaches

based on templates acquired in vivo to be thoroughly tested and

validated, to name a few. However, this would mean in vivo and

ex vivo data from a given subject could potentially be processed

using a common toolchain, guaranteeing minimal effects from the

processing pipeline on further comparative analyses between the

images—albeit configuration would differ slightly. Furthermore, we
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intend to add support for other species. The pipeline proposed

was heavily inspired by similar processing chains implemented for

human DW images and we think it would be a simple task to make

it capable of processing human data. Support for other primates

species, such as the marmoset, and for rodents is also in the works.

We also intend to address better computing resources

management. The Nextflow scripting language offers extensive

capabilities to define per-process resource prerequisites. Using

them, we were able to define clearly the number of CPU cores and

the need for hardware accelerators (GPU). However, we do not

yet control for requirements for RAM of each individual process.

The lack of specification for memory usage of multiple algorithms

we used, combined with the difficulty of obtaining the actual

memory space of compressed NIFTI images using the Nextflow

language makes it difficult to define a clear requirement to respect

at execution time. Specifying an overestimated precondition on

memory needs could lead to a fewer number of processes

executed at the same time, which would impede the parallelization

capabilities of the pipeline and result in a waste of computing

resources. We are aware that this behavior could lead to execution

problems, more so when processing high-resolution images that

span multiple gigabytes on disk. To mitigate the effects of this

limitation, we opted for a retry strategy for processes failing for

that reason, combined with a restriction on the number of parallel

executions of memory-hungry processes.

6. Conclusion

In this study, we created a reliable and reproducible pipeline,

versaFlow, capable of tackling the task of preprocessing and

computing diffusion models on multi-resolution diffusion MRI

data. We also presented our modular library of Nextflow processes

and workflows using state-of-the-art and cutting-edge DW image

processing technologies, designed to be easily upgradable and

adaptable. We used our pipeline to analyze the variability of data

from 3 sites (32 subjects) included in the PRIME-DE database

presenting good quality DWI data. We showed that even if

promising, that data exhibited a great level of variability and its

usage should be done with care to prevent instilling uncertainty in

statistical analyses. This is a good example of the effects of the lack

of consensus in the diffusion MRI field when it comes to specifying

guidelines for acquisition procedures. The hurdle of defining a

gold standard in DWI makes this problem even more difficult to

overpass, but a level of standardization and harmonization must be

attained to reduce variability in imaging among subjects, scanners,

and sites as much as possible. Without it, combined efforts like

the PRIME-DE become less relevant for the study of the brain

and its properties. It is through conjoint endeavors such as the

consensus effort from the ISMRMdiffusion study group and others,

and by the development of reproducible, robust, and maintainable

software, that we as a community will make diffusion MRI a

reliable modality.
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