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Medical image segmentation plays a vital role in computer-aided diagnosis procedures.

Recently, U-Net is widely used in medical image segmentation. Many variants of U-

Net have been proposed, which attempt to improve the network performance while

keeping the U-shaped structure unchanged. However, this U-shaped structure is not

necessarily optimal. In this article, the effects of different parts of the U-Net on the

segmentation ability are experimentally analyzed. Then a more efficient architecture, Half-

UNet, is proposed. The proposed architecture is essentially an encoder-decoder network

based on the U-Net structure, in which both the encoder and decoder are simplified. The

re-designed architecture takes advantage of the unification of channel numbers, full-scale

feature fusion, and Ghost modules. We compared Half-UNet with U-Net and its variants

across multiple medical image segmentation tasks: mammography segmentation, lung

nodule segmentation in the CT images, and left ventricular MRI image segmentation.

Experiments demonstrate that Half-UNet has similar segmentation accuracy compared

U-Net and its variants, while the parameters and floating-point operations are reduced

by 98.6 and 81.8%, respectively, compared with U-Net.

Keywords: medical image, segmentation, deep learning, U-Net, Half-UNet

1. INTRODUCTION

Medical image analysis equipment, including magnetic resonance imaging (MRI), computed
tomography (CT), and X-ray imaging have become essential devices for clinical diagnosis.
As an essential method for medical image analysis, medical image segmentation provides a
reliable basis for clinical diagnosis and early diagnosis of diseases by helping doctors make
accurate judgments. Traditional medical image segmentation algorithms mainly include manual
segmentation (Mudigonda et al., 2000), semi-automatic segmentation (Kilday et al., 1993; Vard
et al., 2011), and automatic segmentation (Qi et al., 2012; Lu et al., 2015). These algorithms
rely heavily on human prior knowledge, and have insufficient generalization ability, making it
difficult to achieve satisfactory results. Then, deep learning methods drove progress in the field of
biomedical image segmentation (Zhang et al., 2015). The earliest Convolutional Neural Networks
(CNN) such as LeNet (LeCun et al., 1998), AlexNet (Krizhevsky et al., 2012), VggNet (Simonyan
and Zisserman, 2014), and GoogleNet (Szegedy et al., 2015), were introduced to solve image
recognition problems.
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In recent years, CNN has achieved pixel-level classification
by obtaining the classification information of each pixel to solve
the problem of image segmentation (Wolterink et al., 2017).
Deep convolutional neural networks have a strong ability to
extract a large number of features and are rapidly developing for
applications in computer vision. The state-of-the-art models for
image segmentation utilize distinctive information from different
scales, such as fully convolutional networks (FCN) (Long et al.,
2015), U-Net (Ronneberger et al., 2015), SegNet (Badrinarayanan
et al., 2017), PSPNet (Zhao et al., 2017), and a series of DeepLab
versions (Chen et al., 2017a,b, 2018). Among them, U-Net
is widely used in medical image segmentation. The U-shaped
architecture uses skip connections to combine the high-level
semantic feature maps from the decoder and corresponding
low-level detailed feature maps from the encoder. A common
belief about U-Net is that its success depends on the U-shaped
structure, and many U-Net-based models have been proposed.
Kerfoot et al. (2018) used a U-Net convolutional neural network
architecture built from residual units (He et al., 2016) to segment
the left ventricle. Using dense convolutions (Huang et al., 2017)
in theU-Net architecture, Li et al. (2018) proposedH-DenseUNet
for liver and liver tumor segmentation. UNet++, proposed by
Zhou et al. (2018), introduced nested and dense skip connections
to reduce the semantic gap between the encoder and decoder.
Although reasonable performance can be achieved, the nested
network structure is too complex and cannot examine enough
information from the full scale. Weng et al. (2019) proposed
NAS-UNet, using three types of primitive operation sets and
search space to automatically find two cell architectures, DownSC
and UpSC, for medical image segmentation, which attains better
performance and uses much fewer parameters (about 0.8M) than
standard U-Net. UNet3+, proposed by Huang et al. (2020), uses
comprehensive skip connections to aggregate feature maps of
all scales at each feature fusion, making more complete use of
full-scale feature information. Reasonable results can be obtained
using UNet3+, but with fewer parameters than U-Net. DC-
UNet, proposed by Lou et al. (2021), analyzed the classical U-
Net and the recent MultiResUNet (Ibtehaz and Rahman, 2020)
architecture, and then designed the Dual-Channel CNN block to
provide more effective features with fewer parameters. However,
all these networks follow and rely on the U-shaped structure
of the U-Net. More importantly, there is still room for further
reduction of parameters and floating-point operations (FLOPs).

Considering the limitations, this article analyzes the U-
Net architecture. According to our experimental results, the
Half-UNet network model is proposed. In summary, the main
contributions of this article are as follows: (i) Experiments show
that the excellent segmentation performance of U-Net, similar to
the feature pyramid network (FPN), comes from the divide-and-
conquer strategy in the encoder, rather than feature fusion in the
decoder. (ii) A simple and efficient asymmetric architecture, Half-
UNet, is proposed, which uses three strategies to reduce network
complexity, including the unification of channel numbers, full-
scale feature fusion, and a Ghost module. (iii) Three medical
image segmentation datasets are used to compare Half-UNet, U-
Net, and variants of U-Net. Experiments show that Half-UNet
achieves comparable results with U-Net and its variants, with at

least 98.6% fewer parameters and 81.8% fewer FLOPs compared
with U-Net. (iv) We found the abnormal gap in parameters and
FLOPs between U-Net and UNet3+. Through the analysis of the
network structures and formulas, the causes of this abnormal
phenomenon are clarified, which also reveals the reason for
requiring fewer parameters and FLOPs with Half-UNet.

2. EXPERIMENTS AND ANALYSIS OF U-Net

Although U-Net is widely used, the question of whether the U-
shaped symmetric framework is optimal still exists, including
which part of the U-shaped structure dominates the experimental
results. Recently, Chen et al. (2021) conducted comparative
experiments on Multiple-in-Multiple-out (MiMo), Single-in-
Multiple-out (SiMo), Multiple-in-Single-out (MiSo), and Single-
in-Single-out (SiSo) encoders. The experiments show that the
SiMo encoder can almost achieve the same performance as the
MiMo encoder (such as FPN; Lin et al., 2017). This result suggests
that the benefits of using multi-scale feature fusion are far less
than those of the divide-and-conquer strategy. The network of
the U-Net architecture is similar to the FPN. The divide-and-
conquer strategy is embodied in the encoder of U-Net, which
divides the input image into five different scales of feature maps
for output to the decoding layer. On the other hand, the feature
fusion strategy is embodied in the decoder of U-Net, which
transforms five different scales of feature maps from the encoder
into a single-scale feature map after running same-scale feature
fusion four times. It is still unclear whether the benefits of U-
Net mainly come from the divide-and-conquer strategy, similar
to the FPN.

To study the influence of U-Net’s encoder and decoder, shown
in Figure 1, we considered U-Net’s encoder and decoder as
encoders. Then, the features from C1 to C16 are aggregated
by designing a single decoder, where the structure is the same
as full-scale feature aggregation in UNet3+. After that, to
prevent the designed decoder from affecting the experimental
results, we also used the U-Net complete structure as the
encoder in Figure 1C. The experimental results are shown in
Table 1. As expected, the encoder (A) can achieve comparable
performance with the encoder (C), which demonstrates that
the lack of feature fusion in the UNet’s decoder has no
significant effect on the experimental results. On the other hand,
the performance obviously drops in the encoder (B), which
shows that the divide-and-conquer strategy in UNet’s encoder
dominates the experimental results. In summary, the benefits
of feature fusion are less significant than the benefits of divide-
and-conquer. In other words, if the feature fusion part of U-
Net is simplified, then comparable segmentation results can still
be obtained.

3. METHODS

Inspired by the above observations, we concluded that the U-
Net’s decoder can be simplified to reduce the complexity of the
model. For example, the four feature fusions in U-Net can be
replaced with the full-scale feature aggregation that is used in
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FIGURE 1 | Illustrations of different types of encoders, the structures of encoders (A–C) are derived from UNet’s encoder, decoder, and full structure, respectively. C1

represents a feature map of the same size as the input map, and C2, C4, C8, and C16 denote output features of the encoder with a downsample rate of {2, 4, 8, 16}.

The yellow down (up) arrow represents downsampling (upsampling), and the right thick (thin) arrow represents convolution (copy).

UNet3+. However, as shown in Figure 2, the additional 3×3
convolutions are added before feature aggregation. Moreover,
concatenate operations require more memory overhead and
computation. To solve these problems, Half-UNet is proposed,
as shown in Figure 3. First, the channel numbers in Half-
UNet are unified. This simplifies the network and contributes
to the feature fusion of the decoder. Then, to avoid extra
parameters and FLOPs required by full-scale feature aggregation,
full-scale feature fusion is proposed to replace the four same-
scale feature fusions in U-Net. Finally, the Ghost module

(Han et al., 2020) is introduced to generate equivalent feature
maps at a lower cost.

3.1. Unify the Channel Numbers
In each downsampling step of U-Net and UNet3+, the number
of feature channels is doubled, which enhances the diversity of
feature expression. However, this increases the complexity of
the model, especially in UNet3+. As shown in Figure 2, due to
the unequal number of channels, 3 × 3 Conv must be added
after max pooling (or bilinear upsample) to unify the channel
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numbers. Furthermore, the added 3 × 3 convolutions increase
the required parameters and FLOPs. In Half-UNet, on the other
hand, the channel numbers of all feature maps are unified, which
reduces the number of filters in the convolution operation and
contributes to the feature fusion of the decoder because the
decoder does not need to add any additional 3×3 convolutions.

3.2. Full-Scale Feature Fusion
Both U-Net and UNet3+ use concatenate operations for feature
fusion. Concatenate operations are an intuitive feature fusion
method, but they also require more memory overhead and
computation. ResNet (He et al., 2016) uses the addition
operation, another feature fusion method, to simply perform
identity mapping and add their outputs to the outputs of the
stacked layer. The addition operation does not increase the
dimension of describing the image but increases the amount
of information under each dimension, which is beneficial
for the final image segmentation. More importantly, the

TABLE 1 | Experimental results of different kinds of encoders.

Network model Mammography Lung nodule Endocardium Epicardium

Encoder (A) 0.8928 0.8867 0.8901 0.9328

Encoder (B) 0.8744 0.8803 0.7696 0.8158

Encoder (C) 0.8923 0.8878 0.8811 0.9280

U-Net 0.8939 0.8842 0.8797 0.9299

The dice coefficient was used as the evaluation metric for each case. Encoder (A), (B),

and (C) are all connected to general decoder. The structures of the encoder (A), (B), and

(C) are shown in Figure 1.

addition operation does not require additional parameters or
computational complexity.

The proposed full-scale feature fusion combines feature maps
from all scales, which can capture fine-grained details and coarse-
grained semantics at full scale. As shown in Figure 3, feature
maps from different scales are first upsampled to the size of the
original image, and then feature fusion is performed through the
addition operation.

3.3. Ghost Module
During the convolution procedure, the required parameters and
FLOPs can be calculated as

Params = (K2 ∗ Cin + 1) ∗ Cout (1)

FLOPs = 2 ∗ K2 ∗ Cin ∗ Cout ∗ Hout ∗Wout (2)

where K is the kernel size, Cin (Cout) is the number of input
(output) channels, and Hout (Wout) is the height (width) of the
output maps. Han et al. (2020) proposed the Ghost module to
generate more feature maps while using cheap operations. An
illustration of the Ghost module is shown in Figure 4. During the
Ghost module (s = 2, s represents the reciprocal of the proportion
of intrinsic feature maps), half of the feature maps are generated
by convolution, and the other half are generated by depthwise
separable convolution. Finally, the two halves of the feature map
are concatenated to form an output of the same dimension as the
input. Thus, the parameters and FLOPs can be calculated as

Params = [K2 ∗ (Cin + 1)+ 2] ∗ Cout/2 (3)

FLOPs = 2 ∗ K2 ∗ (Cin + 1) ∗ Cout/2 ∗Hout ∗Wout (4)

For example, take a 3×3 convolution with an image size of 128
× 128, and both input and output channels are 64 an example. In

FIGURE 2 | Illustration of how to construct the full-scale aggregated feature map in the third decoder layer of UNet3+. X1
En(X

1
De) to X

5
En(X

5
De) represent the feature maps

of the first to fifth layer encoders (decoders), respectively.
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FIGURE 3 | The architecture of Half-UNet. The input image size is detailed in Table 2. The numbers above the rectangles represent the number of feature map

channels.

FIGURE 4 | An illustration of the convolutional layer and the introduced Ghost module for outputting the same number of feature maps. 8 represents the cheap

operation.
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this case, the required parameters and FLOPs are 36.92 K and
12.08 G. While using the Ghost module, the required params
and FLOPs are only 18.78 K and 0.61 G. Therefore, the Ghost
module is used in Half-UNet to reduce the required parameters
and FLOPs.

4. EXPERIMENTS AND RESULTS

4.1. Datasets and Data Augmentation
We validate our network model based on three public data sets,
as shown in Table 2. There are relatively few images available in
mammography and left ventricular MRI data sets. Therefore, we
carry out data augmentation on the images of these two training
sets: rotate clockwise every 45◦ for a total of seven times, one
horizontal flip and one vertical flip, so that the number of images
in the training set is increased by 10 times.

The mammography data set comes from The Digital Database
for ScreeningMammography (DDSM) database of the University
of South Florida in the United States. The 483 mammography
regions of interest containing masses are sorted and selected, of
which 400 images are used as the training set and 83 images are
used as the test set.

The lung nodule data set is from the LIDC-IDRI (Armato
et al., 2011) public database of lung nodules, which contains
1,018 cases (4,104 images). Because LIDC-IDRI only has detailed
contour coordinate information for lung nodules with a diameter
≥3 mm, we select CT images with lung nodules ≥3 mm in
diameter. Then, the ground-truth of lung nodules is generated
according to the 50% agreement principle. The 50% agreement
principle states that two or more out of four doctors consider the
pixel area to be a lung nodule and is considered the gold standard
for determining lung nodules. Finally, the data are divided into
training sets and test sets using a 7:3 ratio.

The left ventricular MRI data set is provided by MICCAI
2009 and contains short-axis images of cardiac MRI scans from
multiple cases. There are 45 cases in MICCAI 2009, divided into
three groups, and each group contains 15 cases, including 4 with
ischemic heart failure, 4 with non-ischemic heart failure, 4 with
myocardial hypertrophy, and 3 that are normal. Among them, 30
cases (542 images) are used as the training set and 15 cases (265
images) are used as the test set. All of the left ventricular MRI
cases have endocardium, and some of them have epicardium.

4.2. Implementation Details
To make a fair comparison, all networks are trained with
Adaptive Moment Estimation (Adam) for 60 epochs with an
initial learning rate of 0.001. The learning rate is reduced by 2 and
10 at epochs 30 and 50, respectively. Mini-batch of 14 images in
mammography and lung nodule datasets. Since the left ventricle
MRI images are very large, themini-batch is only set to 2. The loss
function used in each method is Dice loss. The validation ratio is
0.2. Kaiming initialization (He et al., 2015) and L2 regularization
are used inHalf-UNet by default. All experiments are repeated six
times, and the average value is taken as the experimental result.

TABLE 2 | The medical image segmentation datasets used in our experiments.

Dataset Images Input size Provider

Mammography 4,083 128 × 128 DDSM

Lung nodule 4,104 64 × 64 LIDC-IDRI

Left ventricular MRI 5,685 256 × 256 MICCAI 2009

The “Images” column in the table indicates the number of images after data augmentation.

4.3. Evaluation Indicators
In this article, the segmentation performance is evaluated from
the Dice coefficient, sensitivity, and specificity. The calculation
method of the Dice coefficient is twice the area of the overlapping
area between the model prediction result area and the ground-
truth, divided by the sum of the two areas. If the Dice coefficient
is higher, then the prediction results of the model are more
similar to the ground-truth, and the image segmentation results
are relatively improved. Let the model prediction result area be P
and the ground-truth of breast lumps be M, then the calculation
for the Dice coefficient is

Dice =
2|P ∩M|

|P| + |M|
(5)

Sensitivity represents the proportion of all positive examples that
are correctly predicted andmeasures the ability of the classifier to
identify positive examples. The calculation for sensitivity is

Sensitivity =
TP

P
(6)

Specificity represents the proportion of all negative examples that
are predicted to be correct and measures the classifier’s ability to
identify negative examples. The calculation for specificity is

Specificity =
TN

N
(7)

4.4. Experimental Results
We compare the proposed Half-UNet with U-Net and variants of
U-Net in the task of image segmentation formammography, lung
nodule, endocardium, and epicardium identification. Parameters
and FLOPs are used as indicators of the network requirements.
The Dice coefficient is used as a measure of network
segmentation performance. Table 3 summarizes the quantitative
comparison results. For segmentation of mammography and
lung nodule images, U-Net and its variants have advantages over
Half-UNet. On the other hand, the segmentation by Half-UNet
of left ventricular MRI images is improved. Furthermore, we also
remove the Ghost modules in Half-UNet, denoted Half-UNet†.
As shown in Table 3, Half-UNet† outperforms U-Net and its
variants in regard to mammography images and is closer to them
than Half-UNet in terms of lung nodule images. However, Half-
UNet† performed less well than Half-UNet for left ventricular
MRI images. For Half-UNet, the results show that the Ghost
module performs well for left ventricular MRI images, and it
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TABLE 3 | Comparison of U-Net and its variants and the proposed Half-UNet on three datasets.

Architecture Params FLOPs
Mammography Lung nodule Endocardium Epicardium

Dice Dice Dice Dice

U-Net 31.04 M 11× 0.8939 0.8842 0.8797 0.9299

UNet3+ 26.97 M 43× 0.8920 0.8864 0.8633 0.9316

DC-UNet 10.07 M 6× 0.8940 0.8855 0.9059 0.9503

Half-UNet*†_u 20.03 M 20× 0.8911 0.8873 0.8691 0.8976

Half-UNet*†_d 38.09 M 7× 0.8922 0.8853 0.8926 0.9107

Half-UNet† 0.41 M 2× 0.8944 0.8858 0.8794 0.9281

Half-UNet 0.21 M 1× 0.8892 0.8821 0.9122 0.9555

Sensitivity Sensitivity Sensitivity Sensitivity

U-Net 31.04 M 11× 0.8745 0.9037 0.8475 0.9097

UNet3+ 26.97 M 43× 0.8738 0.9033 0.8345 0.9134

DC-UNet 10.07 M 6× 0.8804 0.9046 0.8906 0.9310

Half-UNet*†_u 20.03 M 20× 0.8725 0.8971 0.8547 0.8877

Half-UNet*†_d 38.09 M 7× 0.8763 0.8916 0.8914 0.9027

Half-UNet† 0.41 M 2× 0.8875 0.9131 0.8773 0.9209

Half-UNet 0.21 M 1× 0.8821 0.9208 0.9029 0.9488

Specificity Specificity Specificity Specificity

U-Net 31.04 M 11× 0.9942 0.9941 0.9995 0.9991

UNet3+ 26.97 M 43× 0.9939 0.9939 0.9995 0.9991

DC-UNet 10.07 M 6× 0.9934 0.9945 0.9995 0.9994

Half-UNet*†_u 20.03 M 20× 0.9938 0.9946 0.9994 0.9989

Half-UNet*†_d 38.09 M 7× 0.9933 0.9949 0.9993 0.9989

Half-UNet† 0.41 M 2× 0.9926 0.9931 0.9992 0.9989

Half-UNet 0.21 M 1× 0.9923 0.9925 0.9994 0.9990

The symbol
†
means that the Ghost module is not used, and * indicates that the numbers of channels are not unified. The best results are highlighted in bold. “_u” represents feature

fusion using the Upsampling2D + 3×3 convolution strategy. “_d” represents feature fusion using the deconvolution strategy.

is less effective for mammography and lung nodule images. In
conclusion, Half-UNet (with and without Ghost modules) has
similar segmentation accuracy compared with U-Net and its
variants, while the parameters and FLOPs are reduced by 98.6
and 81.8%.

To continue investigating the impact of uniform channel
numbers and full-scale feature fusion on experimental results,
Half-UNet∗†_u and Half-UNet∗†_d are designed. Similar to U-
Net and its variants, the channel numbers of Half-UNet∗†_u
and Half-UNet∗†_d are doubled after downsampling. Because
the channel numbers are different, there are two strategies
for feature fusion in the decoder: (1) Upsampling2D + 3×3
convolution, which is what Half-UNet∗†_u and UNet3+ do;
(2) Deconvolution, which is what Half-UNet∗†_d and U-Net
do. As shown in Table 3, Half-UNet∗†_u and Half-UNet∗†_d
increase the required FLOPs and parameters, respectively,
compared with Half-UNet†, but the segmentation abilities have
not been significantly improved. The strategy of doubling the
number of channels after downsampling increases the channel
numbers for high-level semantic features. However, for medical
image segmentation, high-level semantics and low-level semantic
features are both important. This unfair way of adding features
will not bring significant performance improvement to the

network, but it will significantly increase the complexity of the
model, which is not cost-effective.

Compared with U-Net, Half-UNet∗†_u and Half-UNet∗†_d
only simplify the feature fusion part, while there is no
obvious difference in their segmentation ability. This once again
shows that U-Net’s effective segmentation ability mainly comes
from the divide-and-conquer strategy, rather than the feature
fusion. The divide-and-conquer strategy divides the complex
segmentation problem into multiple sub-problems at the image
scale. Ultimately, a more efficient strategy for dividing sub-
problems will provide improved segmentation results.

4.5. Qualitative Comparison
Figure 5 shows a qualitative comparison of the segmentation
ability of Half-UNet, U-Net, and UNet3+ for left ventricular
MRI images. The structure of the three networks is different in
their feature fusion part, so feature maps of the convolutional
layer after their last feature fusion are used as endocardium
and epicardium columns. In the endocardium column, the
ground-truth regions of the feature map of Half-UNet are more
prominent, which is completely covered by the black area. In
the epicardium column, the feature maps of U-Net and UNet3+
are more prominent in the ground-truth center area but are
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FIGURE 5 | Qualitative comparison between Half-UNet, U-Net, and UNet3+ in left ventricular MRI. Endocardium and Epicardium columns show feature maps. Result

columns show final segmentation results, in which the yellow hollow area represents the ground-truth, and the blue solid area represents the automatic segmentation

result.

FIGURE 6 | The architecture of the same part of UNet3+ and U-Net. The thick yellow arrows represent 3×3 convolutions and the thick blue arrows represent Ghost

modules. The three sub-networks are divided into left and right parts by black dashed lines. (A) A part of UNet3+, (B) A part of U-Net, and (C) A part of-Half-UNet.
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TABLE 4 | In the analysis table of the three sub-networks in Figure 6.

Sub-network Params FLOPs Sub-network Params FLOPs

UNet3+_left 1.18 M 38.66 G UNet3+_right 0.92 M 30.20 G

U-Net_left 0.03 M 0.27 G U-Net_right 0.07 M 2.42 G

Half-UNet_left 0.00 M 0.00 G Half-UNet_right 0.02 M 0.61 G

“_left” and “_right” represent the left and right parts of the black dotted line in Figure 6,

respectively.

not complete enough, and the contours are not obvious. In
contrast, the ground-truth contour of the Half-UNet’s feature
map is more obvious and complete. Accordingly, Half-UNet can
segment endocardial and epicardial boundaries more completely.

5. DISCUSSION

Our results show that the segmentation efficiency of
Half-UNet is higher than that of U-Net and its variants.
Compared with the U-shaped structural model, the
Half-U-shaped model has higher efficiency and similar
segmentation ability. Another notable result is that U-
Net involves more parameters than UNet3+ but requires
fewer FLOPs.

To further analyze the high segmentation efficiency of Half-
UNet, we intercept the last feature fusion structure of UNet3+,
U-Net, and Half-UNet as sub-networks. As shown in Figure 6,
each sub-network is divided into the feature fusion part (left
part) and convolution part (right part). We use 128×128 images
as an example, and the parameters and FLOPs of the sub-
networks are shown in Table 4. In the left part of the Half-
UNet sub-network, since bilinear upsampling and addition are
both linear operations, almost no parameters and computation
are generated. Half-UNet fuses the feature maps of C1–C16
with the lowest cost and simplifies the feature fusion part. In
the right part of the Half-UNet sub-network, due to the lower
number of input channels (only 64) and the use of the Ghost
module, the cost of convolution is significantly smaller than in
other structures.

As reported in Table 3, U-Net uses more parameters than
UNet3+ but uses fewer FLOPs. The first reason is that U-
Net has more channels than UNet3+. More channels require
more parameters, which can be concluded from Equation (1).
The second reason is that U-Net has fewer large-size feature
maps than UNet3+. As shown in Figure 6, in UNet3+, C2–
C16 is first upsampled to 128×128 for a total of 1,984 large-
size input feature maps. Moreover, the subsequent channel
numbers are more than in U-Net. It can be inferred from
Equation (2) that these convolutions in large-size feature maps
also require large FLOPs. Similar to U-Net and UNet3+,
Half-UNet∗†_d has more parameters than Half-UNet∗†_u
while having fewer FLOPs. The difference is that Half-
UNet∗†_d has more parameters due to the large size of the
deconvolution kernel. Since the deconvolution input images
are small, the combined equation with the deconvolution

FLOPs is

FLOPs = 2 ∗ K2 ∗ Cin ∗ Cout ∗ Hin ∗Win (8)

such that Half-UNet∗†_d has fewer FLOPs than Half-UNet∗†_u.
In contrast, Half-UNet does not have an excessive number
of channels or large size feature maps or uses deconvolution
for upsampling. Half-UNet avoids the problems of the above
three networks, significantly reducing the required parameters
and FLOPs.

For small targets, such as those found in mammography and
lung images, the strategy of obtaining more feature maps by
cheap operation does not work well. The result is significantly
improved after adding the number of convolution channels,
like in Half-UNet∗†_u. This suggests that such targets need
more spatial features to be effectively segmented. Improving the
feature diversity of convolution at a low cost may be a promising
direction for future research.

6. CONCLUSION

In this study, we show that the success of U-Net in medical
image segmentation is mainly due to its divide-and-conquer
solution, rather than feature fusion. Based on this conclusion,
Half-UNet is proposed, which mainly simplifies the feature
fusion part. Half-UNet simplifies the network complexity by
unifying the channel numbers, using full-scale feature fusion,
and utilizing Ghost modules. The usefulness of Half-UNet is
demonstrated by making fair comparisons with U-Net and its
variants. Experimental results show that the proposed Half-UNet
obtained results comparable with U-Net and its variants in terms
of segmentation performance, while the network complexity is
reduced. Finally, by analyzing the gap between parameters and
FLOPs in U-Net andUNet3+, the reasons for reduced parameters
and FLOPs in Half-UNet are clarified.
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