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Background/Aims: Brain functional connectivity networks constructed from

resting-state functional magnetic resonance imaging (rs-fMRI) have been widely

used for classifying Alzheimer’s disease (AD) from normal controls (NC). However,

conventional correlation analysis methods only capture the pairwise information, which

may not be capable of revealing an adequate and accurate functional connectivity

relationship among brain regions in the whole brain. Additionally, the non-sparse

connectivity networks commonly contain a large number of spurious or insignificant

connections, which are inconsistent with the sparse connectivity of actual brain networks

in nature and may deteriorate the classification performance of Alzheimer’s disease.

Methods: To address these problems, in this paper, a new classification framework is

proposed by combining the Group-constrained topology structure detection with sparse

inverse covariance estimation (SICE) method to build the functional brain sub-network for

each brain region. Particularly, to tune the sensitive analysis of the regularized parameters

in the SICE method, a nested leave-one-out cross-validation (LOOCV) method is

adopted. Sparse functional connectivity networks are thus effectively constructed by

using the optimal regularized parameters. Finally, a decision classification tree (DCT)

classifier is trained for classifying AD from NC based on these optimal functional brain

sub-networks. The convergence performance of our proposed method is furthermore

evaluated by the trend of coefficient variation.

Results: Experiment results indicate that a LOOCV classification accuracy of 81.82%

with a sensitivity of 80.00%, and a specificity of 83.33% can be obtained by using

the proposed method for the classification AD from NC, and outperforms the most state-

of-the-art methods in terms of the classification accuracy. Additionally, the experiment

results of the convergence performance further suggest that our proposed scheme

has a high rate of convergence. Particularly, the abnormal brain regions and functional

connections identified by our proposed framework are highly associated with the

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00058
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00058&domain=pdf&date_stamp=2018-09-07
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:p.p.liang@163.com
https://doi.org/10.3389/fninf.2018.00058
https://www.frontiersin.org/articles/10.3389/fninf.2018.00058/full
http://loop.frontiersin.org/people/302021/overview
http://loop.frontiersin.org/people/605474/overview
http://loop.frontiersin.org/people/531895/overview


Li et al. AD Classification via Functional Connectivity

underpinning pathological mechanism of the AD, which are consistent with previous

studies.

Conclusion: These results have demonstrated the effectiveness of the proposed

Group- constrained SICE method, and are capable of clinical value to the diagnosis of

Alzheimer’s disease.

Keywords: Alzheimer’s disease (AD), resting-state fMRI, Group-constrained topology structure detection, sparse

inverse covariance estimation (SICE), functional connectivity network, classification

INTRODUCTION

Alzheimer’s disease (AD) is one of the most
common neurodegenerative diseases and generally causes
impairments in multiple cognitive functions such as memory,
attention, verbal, and visuospatial abilities (Alzheimer’s
Association, 2015). This disease adversely affects the daily

life of AD patients, and eventually results in death. Currently,
there is no clinical cure method for the AD so far (Alzheimer’s

Association, 2015). Considering the high incidence of the
AD, it is highly required for the precise diagnosis of the AD

individually so that some effective behavioral or pharmacological
treatment can be adopted to alleviate the symptoms and delay
the progression of the AD (Brookmeyer et al., 2007).

Recently, functional connectivity networks constructed from
the functional magnetic resonance image (fMRI) hold great
promise for distinguishing AD patients from NC (Rosa et al.,
2015). Numerous functional connectivity modeling methods
have been proposed to investigate brain functional connectivity
activities, including correlation-based and sparse representation-
based methods (Wee et al., 2014; Meszlényi et al., 2017).
For example, Khazaee et al. (2016) constructed the functional
connectivity networks for AD classification by using a Pearson
correlation-based method and the weak connections were
removed by maximizing the global cost efficiency (GCE) in
the networks. Their findings demonstrated that the region
of interests (ROI) of the Thalamus, Paracentral_Lobule, and
Temporal_Pole_Mid are significantly different between the AD
and NC. Furthermore, a high-order functional connectivity
network was discussed based on the sliding window, the Pearson
correlation coefficient and minimum spanning tree method
for AD classification Guo et al. (2017). Their experiment
results indicated that the functional connectivity between
the Precentral and Supp_Motor_Area is the discriminative
feature for identifying individuals with the AD from NC
subjects. Among these methods, the correlation-based methods
generally obtain relatively high sensitivity in detecting network
connections due to the negative connections in the connectivity
networks. However, correlation-based network analysis can
only capture the pairwise information and does not effectively
characterize the functional interactions among many brain
regions working together (Huang et al., 2010; Li et al., 2014). In
addition, correlation-based fully connected functional networks
may contain a large number of spurious or insignificant
connections, and may deteriorate the classification accuracy and
generalization performance of the classifiers. Recent work has

shown that robust connections can be elucidated from a set of
noisy connections when certain sparsity constraints are imposed
on the connectivity networks (Supekar et al., 2008; Zanin et al.,
2012). The sparsity constraint is validly correlated with the small-
world property, where a single brain region usually only interacts
with a small number of other brain regions (Stam et al., 2007;
Supekar et al., 2008; Li et al., 2014).

Recently, the sparse inverse covariance estimation (SICE)
method has been widely applied to constructing brain functional
connectivity and detecting the connectivity difference between
patients with neurological diseases and NC (Huang et al., 2010;
Rosa et al., 2015; Zhang et al., 2015; Qureshi et al., 2017).
For example, Huang et al. (2010) employed the SICE scheme
in the positron emission tomography (PET) data to observe
brain connectivity difference between AD and NC. Rosa et al.
(2015) further combined the SICE with a sparse discriminative
classifier (linear l1-norm support vector machine (SVM)) to
discriminate major depressive disorder (MDD) patients from
NC. However, the SICE is a sparse constraint method applied
at the individual level, inevitably generating different network
topologies for different subjects and causing the inter-subject
variability (Wee et al., 2014). This deficient may degrade the
generalization performance of the classifiers due to the difference
of the different functional connectivity among subjects (Wee
et al., 2014). Additionally, the SICE method commonly may
encounter the overfitting problem due to the limitation of the
small sample size, which is a main challenge in computer-aided
diagnosis of the AD (Zhang et al., 2018).

To overcome these deficiencies, a new classification
framework based the functional brain sub-network is proposed.
The key of the proposed framework is that a Group-constrained
topology structure detection algorithm is first used to select the
most discriminative brain regions, indicating that the connection
topology is identical among subjects. Then the SICE algorithm
is further employed to preserve the individual information via
different connectivity values. Specifically, the Group-constrained
topology structure detection algorithm utilizes a l2,1-norm
penalization term to encourage an identical connection topology
among subjects and minimize the inter-subject variability, and
thus a better classification performance was achieved (Wee et al.,
2014). Furthermore, the sample size requirement of the Group-
constrained topology structure detection is much weaker than
that of traditional l1-norm sparse methods (Mitra and Zhang,
2016). Therefore, the proposed Group-constrained connectivity
structure detection scheme can alleviate the small sample size
problem. Finally, a nested LOOCV scheme is implemented
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to tune the regularization parameter in the functional brain
sub-network construction process and further to evaluate the
effectiveness of the proposed framework. Experimental results
demonstrate that our classification framework achieved a
high cross-validation accuracy of 81.82%, outperforming the
competing methods with a relatively large margin. Furthermore,
the area under ROC curve (AUC), regarded as a metric of
diagnostic power, of 0.9667 demonstrates the efficacy of our
proposed framework in extracting discriminative information
for diagnosing the AD. Particularly, the abnormal functional
connections identified by our proposed framework are highly
associated with the underpinning pathological mechanism of the
AD, which are in line with previous studies.

The remaining sections are organized as follows. An explicit
description is provided for fMRI dataset acquisition and
the process of constructing functional brain sub-networks
in Materials and Method sections. Then, the classification
performances of different brain network construction methods
as well as the most discriminative connections are presented in
Results and Discussion sections. Finally, we conclude this study
in Conclusion section.

MATERIALS

Subjects
Sixty-two right-handed subjects (30 AD and 32 healthy controls)
participated in this study after giving written informed consent.
AD subjects were recruited from patients who had consulted
a memory clinic for memory complaints at Xuanwu Hospital,
Capital Medical University, Beijing, China. The healthy elderly
controls were recruited from the local community through
advertisements. This study was approved by the Medical
Research Ethics Committee of XuanwuHospital, Capital Medical
University.

All AD patients underwent a complete physical and
neurological examination, standard laboratory tests, and an
extensive battery of neuropsychological assessments. The
diagnosis of AD fulfilled the Diagnostic and Statistical Manual
of Mental Disorders 4th Edition criteria for dementia (Frances
et al., 1994), and the National Institute of Neurological and
Communicative Disorders and Stroke/Alzheimer Disease and
Related Disorders Association (NINCDS-ADRDA) criteria for
possible or probable AD (McKhann et al., 1984). The subjects
were assessed with the Clinical Dementia Rating (CDR) score
(Morris, 1993) as (mainly) being in the early-stages of the AD
(2 patients with CDR = 2, 14 patients with CDR = 1 and 14
patients with CDR= 0.5).

The criteria for healthy controls were as follows: (1) no
neurological or psychiatric disorders such as stroke, depression,
epilepsy; (2) no neurological deficiencies such as visual or hearing
loss; (3) no abnormal findings such as infarction or focal lesion in
conventional brain MR imaging; (4) no cognitive complaints; (5)
MMSE score of 28 or higher; (6) CDR score of 0.

Data from seven subjects (five AD patients and two healthy
controls) were excluded due to excessive motion. Thus, the
remaining 55 participants were included in the following data
analysis. There were no significant differences between the two

groups in gender, age, and years of education, but the MMSE
scores were significantly different (p < 0.001) between two
groups.

Data Acquisition and Pre-processing
MRI data acquisition was performed on a SIEMENS Trio 3T
scanner (Siemens, Erlangen, Germany). Foam padding and
headphones were used to limit head motion and reduce scanner
noise. The subjects were instructed to hold still, keep their eyes
closed and think nothing in particular. Functional images were
collected axially by using an echo-planar imaging (EPI) sequence
[repetition time (TR)/echo time (TE)/flip angle (FA)/field of
view (FOV) = 2,000 ms/40 ms/90◦/24 cm, resolution = 64
× 64 matrix, slices = 28, thickness = 4mm, gap = 1mm,
bandwidth = 2232 Hz/pixel]. The scan lasted for 478 s.
3D T1-weighted magnetization- prepared rapid gradient echo
(MPRAGE) sagittal images were collected by using the following
parameters: TR/TE/inversion time (TI)/FA = 1900 ms/2.2
ms/900 ms/9◦, resolution = 256 × 256 matrix, slices = 176,
thickness=1mm.

Unless otherwise stated, all preprocessing procedures were
conducted using the toolbox of Data Processing Assistant for
Resting-State fMRI (DPARSF) (Chao-Gan and Yu-Feng, 2010).
Particularly, the first 10 volumes of the functional images were
discarded for the signal equilibrium and participants’ adaptation
to the scanning noise. The remaining 229 fMRI images were first
corrected for within-scan acquisition time differences between
slices and then realigned to the first volume to correct for inter-
scan head motions. No participant had a head motion of more
than 1.5mm maximum displacement in any of the x, y, or z
directions and 1.5◦ of any angular motion throughout the course
of the scan. The individual structural image was co-registered
to the mean functional image after motion correction using a
linear transformation. The transformed structural images were
then segmented into gray matter (GM), white matter (WM),
and cerebrospinal fluid (CSF) by using a unified segmentation
algorithm (Ashburner and Friston, 2005). The motion corrected
functional volumes were spatially normalized to the Montreal
Neurological Institute (MNI) space and re-sampled to 3mm
isotropic voxels using the normalization parameters estimated
during unified segmentation.

Subsequently, the functional images were spatially smoothed
with a Gaussian kernel of 6 × 6 × 6 mm3 full width at half
maximum (FWHM) to decrease spatial noise. Following this,
temporal filtering (0.01–0.08Hz) was applied to the time series of
each voxel to reduce the effect of low-frequency drifts and high-
frequency noise. To further reduce the effects of confounding
factors, we also used a linear regression process to further remove
the effects of head motion and other possible sources of artifacts
(Fox et al., 2005): (1) six motion parameters; (2) whole-brain
signal averaged over the entire brain; 3) linear drift.

METHODOLOGY

Overview
Figure 1 illustrates the flowchart of our proposed classification
framework, which includes the image preprocessing, sparse
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FIGURE 1 | The flowchart of the proposed classification framework. (A) fMRI image preprocessing. (B) Sparse functional connectivity network construction.

(C) Classification and decision.

network construction and the evaluation of the classification
performance. Specifically, fMRI images are first parceled into 90
regions-of-interest (ROIs) based on the Automated Anatomical
Labeling (AAL) template (Tzourio-Mazoyer et al., 2002), and
thus regional mean time series are acquired for each ROI. Second,
the most discriminative brain regions subset for each ROI is
detected by using the proposed Group-constrained topology
structure detection algorithm, where ROIs subset with the
smallest Bayesian information criterion (BIC) score is finally
selected as the most discriminative brain regions. Furthermore,
a functional connectivity network for each subject is constructed
by using the SICE method. Finally, a LOOCV framework,
together with an optimal DCT classifier, is implemented to
evaluate the generalization performance of classification tasks.

Construction of Sparse Functional
Network and Feature Extraction
The Group-constrained topology structure detection algorithm
is first used to detect the most discriminative ROIs subset for
each brain region. Then, a detailed description of the SICE
method is presented to construct the functional connectivity

network for each subject and a feature matrix is further built
for the classification. Particularly, a non-sparse brain network
construction method is also given as a comparison with the
proposed method.

Group-Constrained Topology Structure Detection
Suppose that there are M subjects (M = 55), each subject
includes the total of P ROIs (P = 90), and each ROI time
series includes nt time points (nt = 229), the Group-constrained
topology structure detection algorithm is first used to select the
most discriminative ROIs by solving the following optimization
rule (Wee et al., 2014):

β̂p = argmin

(

∑M

m=1

∥

∥

∥
xmp − Xm

p βm
p

∥

∥

∥

2

2
+ ϕ

∥

∥

∥
βp

∥
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2,1

)

, (1)

where xmp =
[

xmp (1) , xmp (2) , . . . , xmp (nt)
]T

(p = 1, 2, . . . , P)

denotes the fMRI time series for the pth ROI of the mth
subject, Xm

p = [xm1 , x
m
2 , . . . , x

m
p−1, xmp+1, . . . , xmP ] is a matrix

including all ROIs time series of the mth subject except the pth
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ROI, βm
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M
p ] is the coefficient matrix for the pth ROI of

all subject, ‖•‖22 means the square of the l2-norm of a vector,
i.e., the quadratic sum of all the elements in the vector, and
‖•‖2,1 is the summation of the l2-norm of each row in the

matrix. The nonzero elements in the coefficient matrix β̂p are
corresponding to the most discriminative ROIs for the pth ROI.
The l2,1-norm in Equation (1) encourages an identical optimal
ROIs subset for the pth ROI among subjects. The regularization
parameter ϕ ∈ (0, 1) controls the trade-off between fidelity

term
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Specifically, the Bayesian Information Criterion (BIC) (Schwarz,
1978) is used to optimize the regularization parameter ϕ:

BIC (ϕ) = −2L (β (ϕ)) + d (ϕ) log nt (2)

where L (β (ϕ)) is the log-likelihood function and d(ϕ) was the
degree of freedom. The BIC score is defined by:

BIC =

M
∑

m=1

lnESS(m)+
d ln nt

nt
(3)

where ESS(m) is the residual sum of squares for the mth subject
and d denotes the number of nonzero coefficients in the matrix
β̂p. For each ϕ, a BIC score is calculated by using Equation (3) and
the subset of ROIs with smallest BIC score are finally determined
as the most discriminative brain regions for the pth ROI. Thus,
an optimal ROI subset Ep for the pth ROI is obtained. Repeat the
same steps for all ROIs, the most discriminative ROIs subset for
each ROI can be obtained.

Sparse Network Construction
Manymethods have been proposed to construct the human brain
connectivity networks, among which the sparse representation-
based method (Tibshirani et al., 2005; Wright et al., 2009; Wee
et al., 2016) and the correlation-based method (Wee et al.,
2012; Jie et al., 2014) are two popular approaches. Compared
with the correlation-based method, the sparse representation-
based method usually has much better discriminability due to
the small-world properties and scale-free attributes of human
brain connectivity networks. Therefore, a sparse representation-
based method (SICE) in this study was adopted to construct
the human brain networks. In addition, a non-sparse network
was also used for a comparison to show the advantages of our
proposed method.

Non-sparse network construction
Partial correlation matrix 5 was used as the comparison in this
study, which measures the relationship between two time series
after excluding the effects of all other time series. Specifically,
if the correlation matrix 6 is positively defined and therefore
invertible, then partial correlationmatrix5 can be acquired from

the full inverse covariance matrix 6−1 by using the following
formula:

5ij =
−

(

6−1
)

ij
√

(

6−1
)

ii

(

6−1
)

jj

(i 6= j), (4)

Considering the fact that the length of the regional mean time
series (229 points in this study) is larger than the number of
brain regions (i.e., 90 ROIs), it is capable of calculating the full
inverse covariance matrix 6−1 from the time series data directly.
Firstly, we computed the covariance matrix 6 for each pair of
brain regions using the following formula:

6m
pq =

∑nt
i=1 (x

m
p (i) − xmp )(x

m
q (i) − xmq )

nt − 1
, (5)

where 6m
pq is the covariance between the time series for the pth

ROI xmp and the qth ROI xmq from the mth subject, xmp and xmq
denote the mean of the xmp and xmq , respectively. Then, the full

inverse covariance matrix 6−1 is directly computed from the
covariance matrix 6.

Sparse network construction
The SICEmethod, which finds a sparse inverse covariance matrix
by imposing a “sparsity” constraint on the maximum likelihood
estimation of the inverse matrix, is used to construct the sparse
functional brain sub-network.

Suppose the optimal ROIs time-series subset for the pth
ROI selected in section Group-Constrained Topology Structure

Detection is Ep =
[

y
p
1, y

p
2, . . . , y

p
R

]

(nt time-points ×R regions),

where yr denotes the fMRI time series for the rth selected ROI.
The expanded-Ep containing the target brain region (pth ROI)

can be expressed as Ẽp =
[

y
p
0,Ep

]

= [y
p
0, y

p
1, y

p
2, . . . , y

p
R], where

y
p
0 is the time series for the pth ROI.
The SICE method tries to find an estimate for the

inverse covariance matrix Θ̂ for Ẽp by solving the following
optimization:

Θ̂ = argminΘ>0(− log
(

det (Θ)
)

+ tr (SΘ) + λ ‖Θ‖1), (6)

where det (•) and tr (•) denote the determinant and trace of a
matrix, S is the sample-based covariance matrix for Ẽp, ‖•‖1 is
the sum of absolute values of all the entries in a matrix, and λ is
the regularization parameter, respectively. Considering a trade-
off between the likelihood estimation and the regularization term
‖Θ‖1, the Equation (6) can also be written as follows:

Θ̂ = argminΘ>0(− log
(

det (Θ)
)

+ tr (SΘ)),

subject to ‖Θ‖1 ≤ ε, (7)

where ε(ε > 0) is reversely related to λ. When ε is large enough
(i.e., small λ), the constraint ‖Θ‖1 ≤ ε has little effect and the
SICE is just a usual Maximum likelihood estimation. Conversely,
when ε is small enough (i.e., large λ), the SICE can produce a
shrunken estimate for Θ , and effectively set certain coefficients
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in Θ̂ exactly to zero. For example, if the ijth element in the

connection matrix Θ̂ is zero, the region i and j are conditionally

non-connection. Conversely, the nonzero elements in Θ̂ indicate
the connection between two regions of ROI. Specifically, due to
the time series for the target brain region is the first column

of Ẽp. Thus, the first column/row of Θ̂ denotes the connection
between the target brain region and its most discriminative ROIs
subset. Therefore, the functional connectivity network can be

constructed by using the sparse inverse covariance matrix Θ̂ .

Feature Extraction
For the pth ROI, the Group-constrained topology structure
detection algorithm is performed on all the other ROIs’ time
series to select the ROIs set Ep that included the most
discriminative brain regions. Then, these ROIs time series
together with the target ROI time series are used to construct
the functional connectivity networks based on the SICE method.
Specifically, the constructed functional connectivity networks
Θ

p
m, where m = 1, 2, . . . , M, with the total number of subjects

M, can be regarded as sub-networks of the whole brain from
the pth ROI, since all brain regions used in ROIs set Ep are
connected with the pth ROI. Additionally, we can take the first
column of 2

p
m as the weight vector, v

p
m, that quantifies the degree

of the influence of other ROIs to the pth ROI. Considering that
the dimensions of the connection matrix Θm is P × P, with
the total number of ROIs P, we put the elements of v

p
m in the

corresponding positions of the pth column of Θm according to
the ROI indexes.

Repeating the above processes M times, we can obtain a
connection matrix Θ for each subject, with the pth column
denoting the connections between the pth ROI and the other
ROIs. Then, the connection matrix Θ is converted into a feature
vector with 8,100 features (90 × 90 ROIs), where the element
represented the connectivity strength between two ROIs for the
given subject. Finally, a Nsubjects × Nedges feature matrix was
obtained, where Nsubjects is the number of subjects, and Nedges

denotes the number of the features. A detailed procedure of the
feature extraction is given in part B of Figure 1.

Classification and Validation
Considering the limited sample size, the following nested
LOOCV scheme (Figure 2) is adopted to evaluate the
classification performance of our proposed method. The
LOOCV is reported as an effective method to obtain a reliable
accuracy estimate for the small sample size classification (Wong,
2015). In the outer LOOCV loop, suppose the whole dataset
consists ofM subjects (M = 55 in this study), one subject is first
left out for testing and the remainingM − 1 subjects are used for
training the classifier. The above procedures will be repeated M
times and each time a different subject will be left out for testing
the performance of the classifier, which is trained based on the
remaining M − 1 subjects. In this way, each subject is used as
the test subject for one time and M classification results will
be obtained. Finally, the average cross-validation classification
accuracy is achieved.

In each repeat of the outer loop, we further performed an
inner LOOCV loop on the M − 1 training data to optimize the
hyper-parameter λ which is used for the network construction.

Specifically, theM − 1 training subjects will be further separated
into M − 2 training subjects and one testing subject. Repeating
the inner loop procedure M − 1 times and each time a different
subject will be left out for testing. Finally, the parameter λ

with the maximum classification accuracy in the inner loop is
transmitted to the outer loop for classifying the AD from NC.

RESULTS

Comparison of Classification Performance
In this work, using the same dataset, the proposed Group-
constrained topology structure detection + SICE (Group-
constrained SICE) method is compared with other related
works including the Partial method, the Group-constrained
topology structure detection + Partial (Group-constrained
Partial) method, and the SICE method. We further compare
the performance of our proposed framework with the recent
existing methods for AD classification, including the threshold
correlation method (Khazaee et al., 2016) and the minimum
spanning tree (MST) high-order method (Guo et al., 2017). In the
threshold correlation approach (Khazaee et al., 2016), the brain
network is constructed using the Pearson correlation coefficient
to calculate the functional connectivity of all pairs of brain
regions. Then, the weak connections are removed by maximizing
the global cost efficiency (GCE) of the network. In the MST
high-order approach (Guo et al., 2017), a high-order network is
first constructed based on the sliding window and the Pearson
correlation coefficient. Then, the high-order network is pruned
by the MST method to construct the MST high-order network.
The classification accuracy (ACC), sensitivity (SEN) (Wang et al.,
2017), specificity (SPE), and AUC (Li et al., 2018) are used to
measure the classification performance of different classification
methods. The classification results are summarized in Table 1.
Figure 3 presents the ROC (Li et al., 2017) curves of different
classification methods.

As shown in Table 1, our proposed classification method
yielded a classification accuracy of 81.82% with a sensitivity
of 80.0% and a specificity of 83.33%, while the best accuracy
was only reached to 74.55% by the direct SICE method. The
cross-validation estimation of the generalization performance
showed 0.9667 of AUC with the proposed method, indicating the
classification power of our proposed scheme.

The Optimal Lambda
In order to hunt for the optimal parameter λ, an inner LOOCV
framework is exploited to determine λ in each leave-one-out
fold. Therefore, different λ will be selected from the λ pool each
time. The optimal λ in each fold is given in Figure 4. We can
see that λ = 0.55 and λ = 0.57 are selected the 22 frequency
times and 28 frequency times from the total number of 55
subjects, respectively. These results indicates that the functional
connectivity networks based on λ = 0.55 and λ = 0.57
constructed have better discriminability between AD and NC.

Computational Complexity and
Convergence
The computational complexity of the proposed method is
evaluated by the computation time. All timings are carried out on
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FIGURE 2 | The nested LOOCV classification framework.

FIGURE 3 | ROC curves of different classification methods.

an Intel Core i7-4790 3.60GHz processor. Each subsection of the
methods has been run 10 times and the mean of the computation
time is shown in Table 2.

It is obvious that the computation time of Partial method
is significantly shorter than other methods. However, with a
classification accuracy of 58.18%, the Partial correlation is not

TABLE 1 | The classification performance of different classification methods.

Method ACC (%) SEN (%) SPE (%) AUC

Partial 58.18 64.00 53.33 0.7960

Group-constrained Partial 63.64 80.00 50.00 0.9000

SICE 74.55 80.00 70.00 0.9400

Threshold correlation 69.09 60.00 76.67 0.7200

MST High-order 74.55 76.00 73.33 0.7067

Group-constrained SICE 81.82 80.00 83.33 0.9667

Where bold values indicate the best results.

considered to be an effective method for AD classification. The
computation times of the Group-constrained Partial method
and Group-constrained SICE method (the proposed method)
are similar, where the main computation time comes from
the Group-constrained topology structure detection algorithm.
Although the computation load of the proposed method is
heavier than the SICE method, there is no significant of
magnitude difference between them, and the computational issue
becomes less critical when the performance of PC develops
rapidly. Furthermore, applying the SICE at an individual level
will inevitably cause the inter-subject variability, thus reducing
the generalization performance. Therefore, it is crucial to adopt
the Group-constrained method, which encourages an identical
network topology across subjects, to overcome the limitation of
SCIE. Interestingly, the computation time of the SICE in the

Frontiers in Neuroinformatics | www.frontiersin.org 7 September 2018 | Volume 12 | Article 58

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Li et al. AD Classification via Functional Connectivity

FIGURE 4 | The optimal λ in each LOO-fold.

TABLE 2 | The computation times (seconds) of all compared frameworks.

Method Group Partial SICE Other Total

Partial – 2.307 – – 2.307

Group-constrained Partial 1,115.674 2.274 – – 1,117.948

SICE – – 244.738 – 244.738

Threshold correlation – – – 1,156.468 1,156.468

MST High-order – – – 7,415.385 7,415.385

Group-constrained SICE 1,115.674 – 16.907 – 1,132.581

Where each column represents the computation time of the subsection of the method.

proposed method is shorter than that of using SICE alone. This
phenomenon can be interpreted as that the Group-constrained
topology structure detection algorithm is adopted to select the
most relevant brain regions, reducing the number of brain
regions calculated in the SICE. The computation time of the
threshold correlation method (Khazaee et al., 2016) is slightly
longer than that of our proposedmethod. Due to the large scale of
the high-order network, the computation complexity of the MST
high-order method (Guo et al., 2017) is significantly higher than
other methods.

In this work, we further evaluate the proposed method
convergence based on the trend of coefficients variation with
the number of iterations. On the one hand, the iteration of the
Group-constrained topology structure detection algorithm will
be repeated until n = 100, where n is the number of iterations.

1β̂p = Frobenius norm of (β̂p)n −
(

β̂p

)

n−1
describes how

much the coefficient matrix changes in the nth iteration. In the

100th iterations, max
(

1β̂p

)

= 1.17×10−6 andmean
(

1β̂p

)

=

5.25× 10−9. Figure 5A shows the 1β̂p trend with the number of
iterations n using five examples. On the other hand, the iteration

of the SICE will stop when 1Θ̂n < 10−6, where 1Θ̂n is the
sum of absolute values of Θ̂n − Θ̂n−1. The average number of
iterations is 5.57 and the maximum number is 13. Figure 5B
shows the 1Θ̂n trend with the number of iterations n using
five examples. It is obvious that as the number of iterations n

increases, the variation of coefficients (1β̂p and 1Θ̂n) decreases
rapidly. The experimental results suggest that the proposed
method is convergent and has a high rate of convergence.

Brain Regions Involved in Classification
Since the nested LOOCV is used to evaluate the performance of
the proposed framework, different optimal feature (connection
between two ROIs) subsets are selected for AD classification.
Thus, those connections with the highest selected frequency
times in the nested LOOCV are regarded as the most
discriminative features for AD classification. Figures 6A,B

show the selected connections among all LOO folds. A
detailed feature index and its frequency times selected are
summarized in Table 3. For example, the interconnection
between Temporal_Pole_Sup_R and Temporal_ Pole_Mid_R
is selected 55 frequency times among all LOO folds, and
showed very strong discriminative strength in AD diagnosis.
In addition, the following four interconnections including
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FIGURE 5 | (A) 1β̂p trend with the number of iterations n. (B) 1Θ̂n trend with the number of iterations n.

ParaHippocampal L-Temporal_ Pole_Sup_L, Cingulum_Post_L-
Angular_L, Supp_Motor_ Area_L-Frontal_Med_Orb_R, and
Frontal_ Sup_R-Cingulum_Ant_R are all selected with over 50
frequency times. These connections have much higher selected
frequency times than others, thus can be regarded as effective
biomarkers for identifying AD from healthy elderly.

It should be noted that the brain regions involved in the
significant abnormal connectivity pathways (with over 50
selected frequency times) are located mainly within the default
mode network (DMN), including Temporal_Pole_Sup_R,
Temporal_Pole_Sup_L, Temporal_Pole_ Mid_R,
ParaHippocampal_L, Cingulum_Post_L, Angular_L,
Supp_Motor_Area_L, Frontal_ Med_Orb_R, Frontal_Sup_R,
Cingulum_Ant_R. These brain regions, listed in Table 4 and
displayed in Figure 6C, are reported as highly associated with
AD pathology (Rose et al., 2006; Matsuda, 2013; Salvatore et al.,
2015; Scheff et al., 2015; Xu et al., 2016; Loewenstein et al.,
2018).

DISCUSSION

Classification Performance
This paper proposed a new classification framework based on
fMRI time series for diagnosing AD patients. The combination
of the Group-constrained topology structure detection algorithm
with the SICE, where a nested LOOCV method is employed to
optimize the regularization parameter, are designed to construct
the efficient functional brain sub-networks. Then, an optimal
DCT classifier is trained for classifying AD fromNC based on the
optimal brain sub-networks. Experimental results demonstrate
the effectiveness of the proposed method.

Specifically, in contrast to the other methods, experimental
results show that the proposed classification method has
at least 7.27% improvement of the diagnosis accuracy. The
classification result indicates that the sparse-based method is
more appropriate for brain network construction than the

traditional fully-connected correlation-based networks, which
may contain a large number of spurious or insignificant
connections among ROIs. It was also found that both the SICE
and Partial method aided by the Group-constrained topology
structure detection method can improve the classification
performance. This may be due to the group-constrained topology
structure detection algorithm encourages an identical network
topology across subjects, minimizing the inter-subject variability
problem which degrades generalization performance of trained
classifiers.

The Most Discriminative Brain Regions and
Connections
The top 5 brain connections listed in Table 3 have much
higher selected frequency times than others, which may serve
as the more promising connectivity-based biomarker for AD
diagnosis. These results are totally consistent with previous
findings, and added new findings to the disconnection hypothesis
of the AD (Delbeuck et al., 2003; Lacalle-Aurioles et al.,
2016). The brain regions identified in the top 5 connections
are frequently reported as highly associated with the AD
pathology. For example, Scheff et al. (2015) reported that the AD
patients showed a significant decline in synaptic numbers in the
Cingulum_Post (posterior cingulate gyrus) compared to healthy
elderly. Furthermore, these brain regions mainly belong to DMN
(Raichle et al., 2001), which is one of the earliest pathological
sites of the AD (Greicius et al., 2004). The current findings are
in line with the results reported in the related literature that both
the impairment and compensation coexist in DMN of AD (Sorg
et al., 2007; Liang et al., 2014). Given the disconnection within
DMN can also be detected in the mild cognitive impairment
(MCI) stage of the AD (Qi et al., 2010; Wang et al., 2012), it is
expected that the proposed method may also be applied to the
diagnosis of MCI patients. This will be discussed in our future
studies.
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FIGURE 6 | (A,B) Selected connections in the LOOCV folds. The width of edges connecting two ROIs corresponds to the degree of discrimination. (C) The

discriminative brain regions selected by our proposed method for AD classification. The corresponding ROI names of the abbreviations are as follows: TPOsup.R,

Temporal_Pole_Sup_R; TPOmid.R, Temporal_Pole_Mid_R; PHG.L, ParaHippocampal_L; TPOsup.L, Temporal_Pole_Sup_L; CG.L, Cingulum_Post_L; ANG.L,

Angular_L; SMA.L, Supp_Motor_Area_L; ORBsupmed.R, Frontal_Med_Orb_R; SFGdor.R, Frontal_Sup_R; ACG.R, Cingulum_Ant_R; PreCG.L, Precentral_L;

PreCG.R, Precentral_R; PoCG.R, Postcentral_R; REC.L, Rectus_L; ORBsupmed.L, Frontal_Mid_Orb_L; IPL.R, Parietal_Inf_R; ANG.R, Angular_R; THA.R,

Thalamus_R; SFGdor.L, Frontal_Sup_L; PCL.L, Paracentral_Lobule_L.

Methodological Limitations
There are still two limitations in this study. One limitation is
that we set the tuning parameter λ of the SICE for identifying
for different subjects, which may affect the classification

performance, since the optimal parameter may vary across
subjects due to individual differences. To overcome this issue,
one possible solution is to optimize the parameter λ for each
subject using the BIC method. In this way, we can construct
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TABLE 3 | Selected connections by the proposed classification framework.

No. Functional connectivity No. of frequency

1 Temporal_Pole_Sup_R----Temporal_Pole_Mid_R 55

2 ParaHippocampal_L---- Temporal_Pole_Sup_L 53

3 Cingulum_Post_L----Angular_L 51

4 Supp_Motor_Area_L----Frontal_Med_Orb_R 51

5 Frontal_Sup_R----Cingulum_Ant_R 51

6 Precentral_L----Supp_Motor_Area_L 2

7 Precentral_R----Postcentral_R 1

8 Frontal_Sup_L----Rectus_L 1

9 Frontal_Med_Orb_L----Frontal_Med_Orb_R 1

10 Parietal_Inf_R----Angular_R 1

11 Angular_R----Cingulum_Post_L 1

12 Thalamus_R ----Paracentral_Lobule_L 1

TABLE 4 | The discriminative brain regions.

No. ROI index ROI abbr. ROI name References

1 84 TPOsup.R Temporal_Pole_Sup_R Salvatore et al., 2015

2 83 TPOsup.L Temporal_Pole_Sup_L Salvatore et al., 2015

3 88 TPOmid.R Temporal_Pole_Mid_R Salvatore et al., 2015

4 39 PHG.L ParaHippocampal_L Matsuda, 2013

5 35 PCG.L Cingulum_Post_L Scheff et al., 2015

6 65 ANG.L Angular_L Xu et al., 2016

7 19 SMA.L Supp_Motor_Area_L Rose et al., 2006

8 26 ORBsupmed.R Frontal_Med_Orb_R Loewenstein et al.,

2018

9 4 SFGdor.R Frontal_Sup_R Salvatore et al., 2015

10 32 ACG.R Cingulum_Ant_R Salvatore et al., 2015

optimal connectivity networks for each subject and this will
be investigated in our future works. Another limitation lies
in the brain atlas used in the MRI data analysis. Given the
participants in this study are from Chinese populations as well
as the significant morphological difference between Chinese and
Caucasian population (Tang et al., 2010), the statistical Chinese
brain atlas (Liang et al., 2015) rather than the Caucasian brain
atlas (as implemented in SPM8) should be used during the image
segmentation and registration. This may be helpful for extracting
the more exact MRI features of the two groups of participants,
which thus may improve the diagnostic accuracy of AD
patients.

CONCLUSION

In this paper, we have proposed a novel sub-network based
classification framework to construct brain functional sub-
connectivity and explore its diagnostic power in distinguishing
AD patients from NC. Different from the method based
on the whole-brain level, we constructed brain sub-networks
with the most discriminative brain regions. Experimental
results have verified the validity of the proposed classification
framework.
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