
CORRECTION
published: 04 July 2018

doi: 10.3389/fninf.2018.00034

Frontiers in Neuroinformatics | www.frontiersin.org 1 July 2018 | Volume 12 | Article 34

Approved by:

Frontiers in Neuroinformatics Editorial
Office,

Frontiers Media SA, Switzerland

*Correspondence:

Jakob Jordan
j.jordan@fz-juelich.de

Received: 16 May 2018
Accepted: 17 May 2018
Published: 04 July 2018

Citation:

Jordan J, Ippen T, Helias M,
Kitayama I, Sato M, Igarashi J,

Diesmann M and Kunkel S (2018)
Corrigendum: Extremely Scalable

Spiking Neuronal Network Simulation
Code: From Laptops to Exascale

Computers.
Front. Neuroinform. 12:34.

doi: 10.3389/fninf.2018.00034

Corrigendum: Extremely Scalable
Spiking Neuronal Network Simulation
Code: From Laptops to Exascale
Computers
Jakob Jordan 1*, Tammo Ippen 1,2, Moritz Helias 1,3, Itaru Kitayama 4, Mitsuhisa Sato 4,

Jun Igarashi 5, Markus Diesmann 1,3,6 and Susanne Kunkel 7,8

1 Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA Institute
Brain-Structure-Function Relationships (INM-10), Jülich Research Centre, Jülich, Germany, 2 Faculty of Science and
Technology, Norwegian University of Life Sciences, Ås, Norway, 3Department of Physics, Faculty 1, RWTH Aachen University,
Aachen, Germany, 4 Advanced Institute for Computational Science, RIKEN, Kobe, Japan, 5Computational Engineering
Applications Unit, RIKEN, Wako, Japan, 6Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty,
RWTH Aachen University, Aachen, Germany, 7Department of Computational Science and Technology, School of Computer
Science and Communication, KTH Royal Institute of Technology, Stockholm, Sweden, 8 Simulation Laboratory
Neuroscience – Bernstein Facility for Simulation and Database Technology, Jülich Research Centre, Jülich, Germany

Keywords: supercomputer, large-scale simulation, parallel computing, spiking neuronal network, exascale

computing, computational neuroscience

A corrigendum on

Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale

Computers.

by Jordan J., Ippen T., Helias M., Kitayama I., Sato M., Igarashi J., et al. (2018) Front. Neuroinform.
12:2. doi: 10.3389/fninf.2018.00002

Unfortunately there was a production error in three of the illustrations of the published work that
distorted several graphical elements. The correct versions of Figures 3, 5, 6 appear below. The
authors apologize for the mistake. This error does not affect the quantitative displays and scientific
conclusions of the article in any way.

The original article has been updated.

REFERENCES

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018). Extremely scalable spiking neural network

simulation code: from laptops to exascale computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or

financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Jordan, Ippen, Helias, Kitayama, Sato, Igarashi, Diesmann and Kunkel. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other

forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in

this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does

not comply with these terms.

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://www.frontiersin.org/journals/neuroinformatics#editorial-board
https://doi.org/10.3389/fninf.2018.00034
http://crossmark.crossref.org/dialog/?doi=10.3389/fninf.2018.00034&domain=pdf&date_stamp=2018-07-04
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:j.jordan@fz-juelich.de
https://doi.org/10.3389/fninf.2018.00034
https://www.frontiersin.org/articles/10.3389/fninf.2018.00034/full
http://loop.frontiersin.org/people/479695/overview
http://loop.frontiersin.org/people/132473/overview
http://loop.frontiersin.org/people/2031/overview
http://loop.frontiersin.org/people/503742/overview
http://loop.frontiersin.org/people/61259/overview
http://loop.frontiersin.org/people/630/overview
http://loop.frontiersin.org/people/8419/overview
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.3389/fninf.2018.00002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Jordan et al. Scalable Neuronal Network Simulation Code

A B

FIGURE 3 | Communication of receiver-selective data using MPI_Allgather and MPI_Alltoall. The panels illustrate send and receive buffers for the example of

an MPI communication that involves three ranks. Squares represent single buffer entries. Both collective MPI calls require homogeneous data types and equal send

and receive buffer sizes for all ranks, which can entail sending empty buffer entries (unfilled squares). For the data that is sent by rank 0, colors indicate whether the

data is required only by rank 0 (green), rank 1 (yellow), rank 2 (red), or both rank 1 and 2 (orange). For clarity, desired destinations for data that is sent by rank 1 and 2

are not indicated. (A) MPI_Allgather: All ranks receive the complete send buffer from all ranks, which can include unneeded data (e.g., rank 1 and 2 both receive

the required orange entry but they also receive the unnecessary green entry). The receive buffer is a concatenation of all send buffers and the receive buffer size hence

scales with the total number of ranks taking part in the communication. (B) MPI_Alltoall: Send buffers consist of equally sized sections that are destined for

different receiving ranks, which allows each rank to define the data to be transmitted to any particular rank; for example, rank 0 sends the yellow entries only to rank 1.

Each rank has to send identically-sized buffer sections to each rank, which can entail sending empty buffer entries or even entirely empty buffer sections. Rank 2, for

example, sends an empty buffer section to rank 1. To send specific data to multiple ranks, the sending rank needs to copy the data to the send-buffer sections of all

intended receiving ranks, which leads to redundancy in the send buffer; rank 0, for example, sends the orange entry “x” to both, rank 1 and 2. The size of the receive

buffers is identical to the size of the send buffers and independent of the number of ranks participating in the communication.

A

BC

D

FIGURE 5 | Communication of connectivity data from postsynaptic to presynaptic side for the two-tier connection infrastructure. Example network of 5 neurons (A)

with global identifiers (GIDs) 1 to 5 (blue filled circles with white numbers) that are connected via two different types of synapses (pink arrows); for simplicity, the two

types have synapse-type index 0 and 1 (solid and dashed arrows, respectively). Neurons are distributed across 2 MPI processes (outer rectangles) and 2 threads per

process (inner rectangles); 4 threads in total. Synapses are hosted by the threads of their postsynaptic neurons. (B) From top to bottom: Connection table, source

table, and target table of the example network in (A) on rank 0 (left) and rank 1 (right). Color code as in Figure 4A in Jordan et al. (2018): Synapses, sources, and

targets shown as pink, red, and green filled squares, respectively, where white numbers indicate target GIDs, source GIDs, and target GIDs again, respectively. The

pink star indicates redundant connection information that is absent in the optimization for small-scale simulations (cf. section 3.3 in Jordan et al., 2018). All tables are

three-dimensional resizable arrays: Outermost resizable arrays for threads (vertical axes), middle resizable arrays for synapse types or local neurons (horizontal axes),

innermost resizable arrays that hold the individual objects indicated by chevrons. When two neurons are connected, the thread of the postsynaptic neuron adds the

new synapse to the connection table and a corresponding Source entry to the source table. Connectivity data needs to be communicated to the presynaptic side at

the beginning of the simulation in order to construct the target table. (C,D) MPI send buffer (top) and receive buffer (bottom) that contain the TargetData of the

example network, for rank 0 and rank 1, respectively; TargetData bit field shown in dashed line rectangle. Top rows (dark gray): Each field contains zero or two

entries, which indicate the (source GID, target GID)-tuple. Bottom rows (light gray): Flags in each TargetData used for communication of status values among all

processes (0: default, 1: no more data to send, 2: end of valid data in section, 3: skip this section).

Frontiers in Neuroinformatics | www.frontiersin.org 2 July 2018 | Volume 12 | Article 34

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

Jordan et al. Scalable Neuronal Network Simulation Code

A

C

B

FIGURE 6 | Communication of spike data using MPI_Alltoall for the example network in Figure 5A and an example activity (A), where a communication step

consists of four neuronal update steps (h-steps); spikes are shown as blue bars. (B) Spike register, which temporarily buffers spikes before they are collocated in the

communication buffers on rank 0 (left) and rank 1 (right). Numbers indicate target GIDs. Pink stars indicate redundant information, absent in the optimization for

small-scale simulations (cf. section 3.3 in Jordan et al., 2018). (C) MPI send buffers (top) and receive buffers (bottom) for rank 0 (left) and rank 1 (right) that contain

SpikeData for the example activity. SpikeData bit fields shown in dashed rectangle. Top rows: Each field contains zero or two entries, which indicate the (target

GID, lag)-tuple. Bottom rows: Flags in each SpikeData used for communication of status values among all processes (0: default, 1: no more data to send, 2: end of

valid data in section, 3: skip this section).

Frontiers in Neuroinformatics | www.frontiersin.org 3 July 2018 | Volume 12 | Article 34

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles

	Corrigendum: Extremely Scalable Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers
	References

