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Three-dimensional fetal ultrasound is commonly used to study the volumetric

development of brain structures. To date, only a limited number of

automatic procedures for delineating the intracranial volume exist. Hence,

intracranial volumemeasurements from three-dimensional ultrasound images

are predominantly performed manually. Here, we present and validate an

automated tool to extract the intracranial volume from three-dimensional

fetal ultrasound scans. The procedure is based on the registration of a brain

model to a subject brain. The intracranial volume of the subject is measured

by applying the inverse of the final transformation to an intracranial mask of

the brain model. The automatic measurements showed a high correlation

with manual delineation of the same subjects at two gestational ages, namely,

around 20 and 30 weeks (linear fitting R2(20 weeks) = 0.88, R2(30 weeks) =

0.77; Intraclass Correlation Coe�cients: 20 weeks=0.94, 30 weeks = 0.84).

Overall, the automatic intracranial volumes were larger than the manually

delineated ones (84 ± 16 vs. 76 ± 15 cm3; and 274 ± 35 vs. 237 ± 28

cm3), probably due to di�erences in cerebellum delineation. Notably, the

automated measurements reproduced both the non-linear pattern of fetal

brain growth and the increased inter-subject variability for older fetuses. By

contrast, there was some disagreement between the manual and automatic

delineation concerning the size of sexual dimorphism di�erences. Themethod

presented here provides a relatively e�cient way to delineate volumes of fetal

brain structures like the intracranial volume automatically. It can be used as

a research tool to investigate these structures in large cohorts, which will

ultimately aid in understanding fetal structural human brain development.
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ultrasound, intracranial volume (ICV), automatic analysis, fetal brain development,
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1. Introduction

Fetal brain development is critical for the child’s functioning

during the neonatal period and later in life (Stiles and

Jernigan, 2010). It is characterized by complex molecular and

cellular processes, and a disruption of these processes can

have severe consequences (Raybaud et al., 2013; Teli et al.,

2018). Both genetic and environmental factors that interfere

with normal fetal brain growth are associated with severe

developmental disorders (Sun and Hevner, 2014; Li et al.,

2018). Moreover, some adulthood manifested conditions are

suspected of having a fetal origin, especially among subjects

in a low percentile of birth weight (Lærum et al., 2017).

Consequently, the theory of Development and Origins of Health

and Disease (DOHaD) suggests that processes during fetal

growth can cause physical and mental adversaries in childhood,

adolescence, and even adulthood (Heindel and Vandenberg,

2015).

Whether the relationship between fetal development and

functioning in later life holds over the whole range of fetal

growth values or is restricted to extreme growth abnormalities

is still not fully settled (Schlotz and Phillips, 2009). Some

evidence suggests that it does hold over the whole growth

range (Raznahan et al., 2012), while other evidence suggests an

inverse-U or J-shape relationship between fetal brain growth and

later-life functioning (Schlotz and Phillips, 2009). Therefore, it is

essential to study fetal brain development to further understand

human development. This is one of the aims of the Utrecht

YOUth cohort, a Dutch population cohort in which normal

child development is being assessed from the fetal stage to

adolescence (Onland-Moret et al., 2020).

One brain measure that correlates with several adversarial

conditions in childhood and adulthood is the intracranial

volume (ICV). It can be defined as the volume of the central

nervous system below the cranium without the spinal cord or

as the total volume of brain cellular mass and cerebrospinal

fluid (CSF) together. It is known that the ICV correlates, on the

genetic level, with the diagnosis of several psychiatric conditions

such as schizophrenia (Smeland et al., 2017), bipolar disorder

(Hulshoff Pol et al., 2012), and attention deficit hyperactivity

disorder (ADHD) (Klein et al., 2019). Furthermore, it was also

suggested that extreme environmental conditions during the

prenatal period influence the ICV in adulthood (Hulshoff Pol

et al., 2000).

A primary tool for assessing the fetal brain is ultrasound

imaging (Monteagudo and Timor-Tritsch, 2009, 2012).

Ultrasound has few safety concerns (O’Brien, 1998; Hata et al.,

2010; Abramowicz, 2013), is relatively cheap, and its usage is

easy for both the pregnant woman and the operator. Therefore,

ultrasound is routinely used to assess almost every pregnancy

in developed countries (Caradeux et al., 2019). One of the

inherent challenges of ultrasound is its relatively low resolution

and contrast created, for example, by fetal movements, amount

of amniotic fluid, and shadowing by the ultrasound’s beam

interaction with the skull.

Today, the standard way of assessing brain developmental

measures is still two-dimensional (2D) ultrasound imaging (Lin

et al., 2019). However, since its introduction, three-dimensional

(3D) or even 4D ultrasound imaging has attracted growing

interest in diagnostics (Hata et al., 2010; Salman et al., 2011;

Tonni et al., 2015). For example, 3D ultrasound can help locate

the mid-sagittal plane and measure auxiliary brain structures

(Dückelmann and Kalache, 2010). Beyond its diagnostic value,

there is also a growing interest in 3D ultrasound for research

purposes (Gonçalves, 2016).

One way to measure brain characteristics such as the ICV in

3D ultrasound imaging is through manual tracing (Albers et al.,

2018). Indeed, many studies used the Virtual Organ Computer-

Aided-Analysis (VOCAL) method to measure the volume of

various brain structures (Rutten et al., 2009; Rizzo et al., 2012;

Caetano et al., 2015; Babucci et al., 2019), even during the first

trimester (Tonni et al., 2015). For large structures, like the ICV,

VOCAL was proven to be a reliable method (Martins and Nastri,

2014). However, VOCAL is labor-intensive, time-consuming,

and requires extensive training. Moreover, there might be some

systematic bias even in cases where the inter and intra-observer

intraclass correlation coefficient is high. Hence, for large cohorts

like the one we are aiming to measure, VOCAL is not a feasible

research solution. Instead, one would like to have an automatic

computational-based method. Here, we compare an automatic

method of ICVmeasurement to themanual tracing of ICV based

on the VOCAL method. Later, we plan to use the automatic

method in the context of the Utrecht YOUth cohort for assessing

relationship between fetal growth and child development.

When developing and validating an automatic

computationally-based algorithm for extracting or measuring

a specific brain structure from ultrasound scans, one has

to choose between traditional computational methods and

the more modern machine-learning algorithms. It is pretty

clear that the current emphasis among neuroimaging and

computer scientists in the ultrasound field tends toward the

machine-learning side (see for example, Namburete et al.,

2018; Moser et al., 2022). Nevertheless, despite the current

focus in ultrasound research on machine-learning algorithms,

which hold great promise for image segmentation in clinical

and research settings, the question remains whether more

traditional computational methods should also find their place

in the Swiss knife toolbox available for the research community.

Why? On the one hand, in the field of magnetic resonance

imaging (MRI), registration and segmentation tools are still

widely used in clinical and research contexts (Nerland et al.,

2022). On the other hand, as noted above, ultrasound imaging

analysis confronts fundamental challenges associated with

image quality.

Recently, we have developed a registration-based pipeline

to measure longitudinal ICV changes during aging using MRI
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(Caspi et al., 2020). This pipeline was especially good at

identifying minimal ICV changes during aging, which probed us

to ask whether it can also be utilized for ICV extraction during

development. Note that applying such anMRI-tested tool to fetal

ultrasoundmodality is not necessarily straightforward due to the

differences in image quality between these two modalities. The

pipeline registers the brain of a participant to an average brain

model and calculates the ICV of the subject from the inverse of

the final transformation and an ICV mask of the average brain

model. We anticipated that the same procedure would enable us

to measure the ICV in 3D fetal ultrasound images.

By comparing the results of the automatic ICV

measurements to those of a manual ICV tracing on fetuses

at gestational ages (GA) of 20 and 30 weeks, we show that

the automatic intensity-based registration procedure for ICV

measurements was highly consistent with the results of manual

ICV measurements using the VOCAL method. Moreover, our

approach reproduced both the non-linear pattern of fetal brain

growth and the increased inter-subject variability in ICV values

in later stages of fetal development. However, unlike the manual

measurements, the automatic method did not provide sufficient

statistical evidence for ICV sexual dimorphism at a GA of

30 weeks.

2. Methods

2.1. Cohort description and scan
acquisition

The 3D ultrasound scans were acquired within the YOUth

Baby and Child cohort (Onland-Moret et al., 2020). In this

cohort, up to 3,000 individuals are being followed from the

fetal stage to childhood, including using fetal ultrasound around

a gestational age (GA) of 20 weeks and again around 30

weeks. From this dataset, we chose at random a subset for

the validation of our automatic measurements (approximately

100 subjects in each age group). The scans for this subset

were randomly selected by the data manager of YOUth cohort.

Regular quality checks are performed to ensure the overall high-

quality standards of the ongoing YOUth cohort study and are

available for usage by researchers associated with the cohort.

The total number of scans was selected based on the work time

available to the human rater that measured the ICV manually as

part of her research activities (see below). We analyzed 92 3D

ultrasound scans (42 females) at GA of 140–170 days (mean GA

152.9 days). For the older age group, we analyzed 90 ultrasound

scans (39 females) with GA of 203–230 days (mean GA of

213.6 days). Below, we refer to these two groups as 20- and 30-

weeks groups. Thus, altogether our dataset included 98 unique

fetuses (43 females). For 84 cases (38 females), we had the

measurements of the same fetus at two different GA. The full

statistical description is shown in Supplementary Table S1.

For a complete description of the ultrasound scan

acquisition, (see Albers et al., 2018). In short, 3D ultrasound

images were acquired transabdominal using a Voluson E10 (GE

Healthcare, Zipf, Austria) ultrasound machine with a 2–6 MHz

convex probe (RM6C). Overall, ten experienced sonographers

participated in data collection as part of the YOUth cohort. To

acquire 3D-ultrasound images, a sweep angle of 65◦ was used,

which covers the entire fetal skull. After the acquisition, the

images were transferred to an offline cluster that contained the

GE Healthcare 4DView program.

For each fetus in each age group, several ultrasound images

were available from the YOUth cohort as were collected for

the cohort purposes independent of this research. For the

automatic and manual measurements of the ICV, the highest

quality ultrasound image for each subject was chosen for further

analysis by two authors (RL and IJI). This procedure was carried

out separately for the automatic and manual measurements. In

both cases, the researchers selected the scans blind to sex, any

other identification information, or any information concerning

functioning in later life.

2.2. Manual segmentation

All manual segmentations were done by one of the authors

(RL), see further details in the Supplementary material.

We compared the manual ICV traced mask results to the

automatic ones (see below) by calculating the linear fit R2 of the

two implementations of our method (see the Results Section).

Unfortunately, we could not calculate other standard measures

of comparison between two binary masks, such as the Dice

Similarity Coefficient and the Centroid Distance. The reason is

related to the way the VOCAL program exports the manually

traced ICV masks. 4DView exports the ICV masks in the form

of an stl mesh file. However, this mesh does not align with the

original ultrasound scan after conversion to a Neuroimaging

Informatics Technology Initiative (nifti) format, for example,

using the program 3D Slicer. Aligning the manually-traced

nifti converted ICV mask to the original brain necessitates a

tedious manual procedure and is never perfect (see Section 2.3.5

below for an example where such a procedure was followed).

Hence, we could not compare the manual and automatic ICV

masks in terms of the measures mentioned above. Note that this

deficiency of calculated comparison measures lays fully outside

our automatic developed method and our control.

2.3. Automatic segmentation

The procedure for obtaining an automatically segmented

ICV mask is described below. In several steps related to the

development of the pipelines, we had to make some practical

choices concerning the parameters to use or the preparatory
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steps to apply. In these cases, the choices were based on either

pre-acquaintanceship with the behavior of the algorithm (see

Caspi et al., 2020; Buimer et al., 2021) or rational choice followed

by an empirical test based on general principles of image analysis

(e.g., steps taken during the ultrasound scans export).

2.3.1. Ultrasound scans export

Ultrasound scans were exported from the manufacturer

format (.vol) to Digital Imaging and Communications in

Medicine (Dicom) using the 4DView program. Next, the

Dicom images were converted to nifti format using the

command dcm2niix from MRIcron (https://www.nitrc.org/

projects/mricron/). Given that we used an intensity-based

algorithm, which is sensitive to sharp edges, we decided to

reduce the sharpness of the sweep boundary between the sweep

field of view and its borders in standard ultrasound imaging.

In particular, this was done by a self-written Python script

that replaces all the voxels with a value of zero by the average

grayscale in the scan. The effect of this procedure is that black

voxels are replaced by gray ones.

After exporting the .vol files to Dicom, we noticed that two

head orientations appear in each age group. Moreover, in some

cases, the conversion to Dicom did not work correctly in the

sense that the converted scans were mirrored in various planes

to the orientation at which they should have been. In those cases,

we used a self-written script in Python to rotate the images back

to one of the two primary head orientations.

2.3.2. Automatic ICV measurements

To measure fetal ICV automatically, we used a monomodal

ultrasound registration algorithm between the fetal brain and

a brain model (see below). Our method is an extension of

the method published in Caspi et al. (2020) and further

used in Buimer et al. (2021) for magnetic resonance images.

In previous versions of this algorithm, we have used a

pipeline that is based on the Minc-toolkit (Medical Imaging

NetCDF Toolkit) (Vincent et al., 2016). Here, we used

version 1.9.16 of the Minc-toolkit. The Minc registration

was controlled by standard parameters of the Minc-toolkit

(see Supplementary material). In addition, we extended the

algorithm by implementing it in a separate pipeline based on

the more modern registration package of Elastix (Klein et al.,

2010; Shamonin, 2013). The Elastix registration steps were

controlled by standard parameters of the Elastix package (see

Supplementary material). Elastix version 5.0 was used for the

majority of this work. However, for an unknown reason, the

scaling plugin of Elastix (SimilarityTransform) that includes

translation, rotation, and constant scaling did not compile on

our machine. Therefore, Elastix version 4.8 was used when

global scaling was needed during the pipeline run. In principle,

we used the SimilarityTransform only for cases where the default

algorithm during the rigid registration step that was based on

the EulerTransform (translation and rotation) did not show

sufficiently good results based on the quality control criteria

discussed below. These cases mainly include subjects with a

relatively significant total ICV difference from the model one.

The rationale for using two different implementations, i.e.,

Minc and Elastix, is to achieve two independent automatic

measurements. Registration procedures are based on specific

registration metrics, registration optimizers, and steps such

as blurring or down-sampling (Che et al., 2017). By using

two different implementations with different optimizers

and optimization metrics, we increased the probability of

independence. Note that the two pipelines were not combined

during the computational steps. Only the final ICV value was

calculated from the average value of the two pipelines.

The Minc-Toolkit pipeline was implemented in C++ and

then warped in a python script written within the fastr

environment for pipeline development (Achterberg et al., 2016).

By contrast, the Elastix-based pipeline was implemented directly

in the fastr environment. All computations were carried out on

the Utrecht High-Performance Cluster (HPC).

In both cases, the pipelines use several consecutive intensity-

based registration steps to obtain a good registration match

between two scans. In particular, it registers a brain model

and a subject’s ultrasound scan together. The brain model is

accompanied by an ICV mask, which was drawn manually (see

below). The two pipelines measure the ICV of the subject by

calculating the reversed transformation of the final registration

step, applying it to the brain model ICV mask, and counting the

number of voxels in the newly formed ICV mask of the subject.

A recap of the two algorithms used by these two pipelines is

shown in Figure 1.

All codes are freely available from the authors upon request.

2.3.3. Registration algorithm

The registration algorithm is based on a series of rigid, affine,

and B-spline refined registrations between a fetal brain scan and

a brain model. After each of the registration steps, an average

image is calculated between the registration results of the two

scans. This average image is used as the registration template

at the following stage. For the Minc-Toolkit pipeline. the first

affine registration used the brain model both as the registration

template as well as one of the scans that are registered. Note

that although many registration procedures recommend down-

sampling to obtain better registration results of ultrasound

images (Pratikakis et al., 2003), we did not use down-sampling

in our pipelines. For specific parameters used for the application

of the two pipelines, see Supplementary material.

After the last registration steps, the pipelines calculated the

inverse transformation from the brain model to the subject’s

scan and applied it to the ICV mask of the brain model. Finally,

the total ICV of each subject was calculated based on the total
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FIGURE 1

Description of the algorithm. The algorithm is based on several consecutive registration steps between a brain model and a subject brain. We

used both Minc-based registration (left) and Elastix-based registration (right). For the Minc-based case, a sequence of four “a�ne”

transformations followed each other. The “a�ne” registration steps include, in addition to standard a�ne transformation, both translation and

rotation. At each stage, both the brain model and the subject scan are registered to an averaged image created in the previous step. In the first

step, the brain model serves both as the registration target and one of the scans that are being registered. Moreover, an initial blurring step can

be included. In that case, for all the “a�ne” registrations, the images are blurred. Subsequently, three B-spline registrations are applied using the

same rationale. For the Elastix-based case, the subject scan is first registered to the brain model using a translation-based step. Next, a rotation

(or rotation+ global scaling) is applied. Subsequently, the same algorithm as in the Minc-based case is applied. However, in that case, four

B-spline registrations were used. For a complete description of the pipelines, see the Methods Section.

number of voxels in the newly formed subject’s ICV mask

multiplied by the volume of one voxel.

Note that we needed to change some registration parameters

to achieve a successful registration in some cases. For the Minc-

based registration package, this included adding the pre-blurring

before the affine registrations. The Elastix registration package

has many control parameters. Most of the time, the parameters

that had to be tweaked were (i) changes in the optimizer between

the automatic optimizer AdaptiveStochasticGradientDescent

and the standard one (StandardGradientDescent); (ii) for the

standard one, the value of parameter SP_a had also sometimes to

be adjusted; and (iii) the ImagePyramidSchedule, which controls

blurring (pyramids) during registration, was also sometimes

adjusted. In general, only the parameters for the translation,

rigid, and first and second affine transformations were tweaked.

2.3.4. Brain models

We included a subset of the ultrasound scans from the

validation cohort used in this work to construct the brain

models. The criterion for inclusion of a subject in the calculation

of the average brain model was that its ultrasound scan had

a relatively high quality compared to the rest of the subjects

as it was judged based on personal impression (judged by IJI).

These ultrasound scans were used to calculate a brain model

using the Minc-based pipeline. The algorithm for constructing

the brain model is almost identical to the one for calculating

the ICV masks. The primary differences are: (i) at the first

stage, one of the subjects used for constructing the brain model

is used as a template for registration; (ii) at each step of the

algorithm, all subjects included in the brain model construction

were registered to the average registration result of the previous

step; (iii) four B-spline steps were used instead of three; and

(iv) instead of calculating the inverse transformation, the brain

model output was the average of all registered subjects after the

fourth B-spline registration step.

Using the intensity-based registration algorithm to calculate

the ICV worked best when there were no significant size

differences between the subject brain and the brain model. Since

the brain grows substantially during fetal development, we have

used different brain models for the two different age groups,

i.e., 20 and 30 weeks of GA, respectively. In addition, as stated

above, two head orientations were identified after exporting the

ultrasound scans to nifti. However, instead of mirroring the

images of one of these two groups to the orientation of the

other, we decided to use two different brain models for each age

group. The rationale was that we wanted to interfere as little

as possible with pre-processing steps. We refer to them as the

“Left” group and the “Right” group. Thus, we ended up with four

brain models, two for the 20 weeks age group and two for the 30
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weeks age group. For each of these four brain models, one of

the authors (IJI) edited an ICV mask by manually controlling

which voxels should be considered part of the ICV and which

lay outside the ICV region.

We averaged 13 ultrasound images for constructing each of

the two brain models at GA of 20 weeks. For the GA of 30

weeks, we used 11 and 17 ultrasound scans for the “Left” and

“Right” groups, respectively. The number of subjects used for

constructing the brain models was based on a rule of thumb. It

took into account both the theoretical need to average a relatively

large number of subjects to obtain good quality brain model

and the practical limitation of computer time needed for the

averaging. For three out of the four groups, choosing 10–20

subjects from each group for averaging resulted in a good quality

brain model after one trial round. However, for the “Left” group

of the GA of 30 weeks, we had to repeat the attempts to create

a brain model several times (14–11 subjects) until we obtained a

good enough quality of the brain model where the typical brain

structures were clearly identified.

2.3.5. Mask development

Several steps were implemented to create an accompanying

ICV mask for each one of the four brain models. First, we

chose four ultrasound scans as templates. We used the manually

delineated ICV mask for each of these subjects and exported

them from 4DView to an stl mesh file. Next, we used a python

script within the program Slicer (https://www.slicer.org/) to

manually match, as much as possible, the stl ICV mesh file to

the nifti ultrasound file previously created for this subject. The

matching was done using a series of translation and rotation

steps. Subsequently, the ICV mash file was converted to a nifti

format. Next, these subjects and their accompanied ICV masks

were used as models, and our Minc-based pipeline registered

the calculated brain models to the four subjects, respectively, to

create the brain models that approximate the ICV masks.

To obtain the highest quality ICV masks for the brain

models, one of the authors (IJI) manually edited the four ICV

masks based on the anatomical knowledge of the fetal brain.

The procedure for editing the ICV masks included adding

voxels in the ICV mask (especially around the edges) that are

anatomically supposed to be included in ICV masks and erasing

parts that were wrongly included in the tentative ICV masks.

This procedure was repeated for all three projections (axial,

coronal, and sagittal) and for all planes until the ICV mask was

considered anatomical adequate. Finally, a median filter with a

kernel of three voxels was applied three times to smooth the ICV

mask to an appropriate level.

In practice, the segmented ICV includes the total sum

volumes of the brain cellular mass and CSF. Note that the skull

base shadows the brainstem in an axial projection of ultrasound

scans but less so the cerebellum (Pilu et al., 2007). Thus, though

we included the cerebellum in our mask, we cannot know what

portion of the brainstem is included in our measurement.

2.3.6. Quality controls

When measuring structures automatically from biomedical

images, one is constantly faced with the problem that the ground

truth is unknown. Hence, artifacts and false measurements

can occur. We sought a procedure for making an automatic

distinction between measurements that have a high probability

of representing the actual ICV and those that do not. By

implementing our intensity-based registration pipeline with

two different computational registration packages, we could

construct a well-defined criterion for a distinction between

these two cases. The rationale behind this approach is that

the parameter space of two independent registration packages

should be somewhat decoupled. Hence, errors that occur in one

of the cases would probably not occur in the other.

Consequently, quality control (QC) for the automatic ICV

calculation was based on the standard deviation (SD) between

the Elastix-based and Minc-based pipelines ICV calculation.

Empirically, as further discussed in the Results Section, we

showed that an SD of about 10% of the ICV for either age

groups was a suitable threshold for deciding which subjects can

be considered outliers and, therefore, excluded from the analysis.

In practice, we repeated the registration for subjects with

an ICV SD larger than the threshold (using the Minc-based

pipeline, the Elastix-based pipeline, or both) with different

registration parameters. If, after one or two rounds of parameters

tweaking, the SD of the ICV was still above the threshold, we

excluded this subject from further analysis. To assess which of

the two pipelines was responsible for the large SD, we overlaid a

picture of the ICV outline for several planes over the ultrasound

scan image. These images are produced automatically by the

two pipelines. This procedure was done blinded to participant

information such as gender.

For the Elastix-based pipeline, we added an additional QC

step. This test was based on calculating a similarity grayscale

metric between the subject scan and the registration average

at the last stage of the non-linear registration. From the many

possible similarity metrics that exist (Che et al., 2017), we used

for the calculation:

Similarity =

∑

i,j,k

SubjectScanijk × Averageijk

(
∑

i,j,k

SubjectScan2
ijk

×
∑

i,j,k

Average2
ijk
)0.5

Here, SubjectScanijk is the grayscale value at voxel with

indices i,j, and k of the subjects scan and similarly for Averageijk.

The value of this similarity can vary between 0 (no overlap) and

1 (full overlap). Post-hoc analysis suggested that a value below

0.7 is too low and indicated a wrong ICV registration.
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FIGURE 2

Brain Model and ICV Mask. Upper row-an example of three

projections (axial, coronal, and sagittal) of one of the brain

models used for the registration. The current one is one of the

two models used for the GA of 30 weeks group. Lower row - a

mask (in green) of the manually traced ICV mask of the brain

model.

2.4. Statistical analysis

Data analysis was performed using the statistical computing

environment R (Team, 2020). Intraclass Correlation Coefficients

were calculated using the R psych package. Graphs were plotted

using the ggplot2 package.

2.5. Image preparations

All images were prepared using Inkscape

(RRID:SCR_014479) and GIMP (RRID:SCR_003182).

3. Results

3.1. Brain models

We developed an averaged brain model for both the 20- and

30-week GA groups by averaging the brains of 10-17 subjects

using the same pipeline used for the ICV calculation as described

in Methods Section. An example of the axial, coronal, and

sagittal planes of one of the brain models is shown in the upper

row of Figure 2.

An example of the three-axis projection of one ICV mask is

shown in the lower row of Figure 2. The four ICV masks (for

the two age groups and the two head orientations) were used for

calculating the subjects’ ICV based on the inverse registration of

the brain models and the subject brain images.

3.2. Validation of the automatic
measurement results

After running the registration algorithm twice, once based

on the Minc-toolkit registration package and once based on the

Elastix registration package, we noted a long-tail distribution

for the calculated standard deviation (SD) between the results

of these two computational packages. The results of the SD

distributions are shown in Figure 3A for GA of 20 weeks and

in Figure 3B for GA of 30 weeks. At GA of 20 weeks, the SD

was below 10 cm3 for all cases. A manual inspection of the

outline of the generated ICV over the subjects’ brain images

suggested that even for the cases with the largest SD, it was

hard for a human rater to decide which of the two automatically

calculated ICV masks was more closely representative of the

ground truth. Hence, we decided not to exclude any subject from

further analysis. For the GA of 30 weeks, the SD distribution

also had a long tail. However, in that case, the tail was much

longer as compared to the 20 weeks group. Moreover, some

results did not fit well with the individual ICV, as judged by

the human rater (IJI). Hence, we set a criterion of 20 cm3 for

the exclusion of subjects from further analysis. Individuals with

ICV SD above this value were excluded from further analysis.

Though this criterion is somewhat arbitrary, it was based on the

inspection of the SD distributions (Figure 3A) and choosing a

value that removes most of the long tail part of the distribution

while maintaining the largest number of subjects included in

the final analysis. We also tried to analyze the data with a

somewhat different exclusion criterion (e.g., 15 cm3). However,

since this change did not substantially influence the final results,

we report here only the results with an exclusion criterion of 20

cm3. Overall, four subjects (4.4%) were excluded based on this

criterion. All the excluded subjects were males. We do not know

what is the source of this gender imbalance. Based on the average

ICV of subjects (84 ± 16 cm3, 276 ± 37 cm3), the exclusion

criterion should probably be somewhere between 7.5% and 12%

of the average ICV for future usage of our procedure.

After excluding the four subjects from the 30 weeks GA

group, we obtained an overall good agreement between the

results of the Elastix-based registration pipeline and the Minc-

toolkit-based one. The results are shown in Figures 4A, 5A. Full

parameters of the fits can be found in Supplementary Table S2.

The coefficient of determination (R2) for the linear fit between

these two calculations was 0.84 and 0.90 for the 20 and 30

weeks GA groups. For further analysis, we have used the average

calculated ICV between the two registration package pipelines

as the value for the automatically calculated ICV. Using the

average ICV of these two intensity-based registration pipelines,

we found a high degree of correlation between the manual

measurements of the ICV, as was delineated by one of the

authors (RL), and the automatic ones. For the 20 weeks GA

group, the results are shown in Figure 4B. For the 30 weeks
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A B

FIGURE 3

Distribution of SD. Distribution of the SD ICV values between the Elastix-based and Minc-based pipelines for (A) the group with GA of 20 weeks

and (B) the group with GA of 30 weeks. Note the long tail distribution in both cases. Vertical red lines represent the threshold chosen for the

rejection of outliers. Note that for the GA of 20 weeks, the threshold chosen was ten cm3. Due to binning presentation, the case with the largest

SD is grouped together with the threshold despite being smaller. Legend inside each panel provides details about the threshold and number of

subjects rejected from the analysis for each age group.

GA group, the results are shown in Figure 5B. Full parameters

of the fits can be found in Supplementary Table S3. The linear

fit R2 was equal to 0.90 and 0.76 for the 20- and 30- weeks

GA groups, respectively. However, for both age groups, the

absolute value of the automatically calculated ICV was larger

than the manually calculated one (84 ± 16 vs. 76 ± 15 cm3;

and 274 ± 35 vs. 237 ± 28 cm3). We believe that the reason

for this discrepancy is related to the hindbrain delineation. The

hindbrain is better seen in the average brain models than in the

images of the individual subjects. Hence, it might have been

better represented in the average brain models and therefore

in the automatically generated ICV compared to the manual

measured ICV. Nevertheless, the linear relationship between

the manual and automatic measurements of ICV provides

substantial support for the validity of the automatic procedure.

As an additional layer of control, we calculated the Intraclass

Correlation Coefficients (ICC) for the automatic and manual

measurements of the ICV. Overall, the ICCs were between

good to excellent (Shrout and Fleiss, 1979). For the 20 weeks

GA group, we report an ICC of 0.95 (bounds-0.93, 0.96) for

the manual rater and 0.97 (0.96, 0.98) for the average of the

automatic and manual rating. For the 30 weeks GA group,

we report an ICC of 0.85 (bounds-0.79, 0.89) for the manual

rater and 0.92 (0.88, 0.94) for the average of the automatic and

manual rating. Note, however, that we have noticed some bias in

the difference between the ICV calculated by the manual rater

and the automatically calculated one (Figure 6). This bias was

manifested in a linear relationship between the automatic and

manual ICV difference and the value of the ICV itself. We do

not know if the source of this bias is related to the manual

delineation of the ICV or the automatic calculation.

3.3. Comparison of the “Left” and “Right”
groups

One caveat of our procedure might be the usage of two

different models for each age group, as discussed above.

Altogether, in our dataset, we had 42 ultrasound scans (18

females) in the “Left” group and 50 ultrasound scans (24 females)

in the “Right” group for the 20 weeks GA group. Similarly,

we had 39 ultrasound scans (15 females) in the “Left” group

and 47 ultrasound scans (24 females) in the “Right” group

that passed our QC for the 30 weeks GA group. To check the

possibility that this choice potentially created a biased in our

calculation, we evaluated the distribution of ICV values obtained

from the two models for each age group. The results are shown

in Supplementary Figure S2. The calculated t-test P-values for

comparing the two brainmodels (abbreviated by us as “Left” and

“Right”) were 0.47 and 0.48 for the 20- and 30-weeks GA groups.

Thus, we concluded that working with two brainmodels for each

age group did not bias our results. Consequently, we report the

results of the “Left” and “Right” groups together in the following

analysis.

3.4. ICV and age correlation

A linear relationship was found between the automatic

ICV measurements and GA for each age group separately

(Figures 4C, 5C). Similar linear relationships between the ICV

and GA for the manual cases are shown in Figures 4D, 5D.

Detailed statistical characteristics of the fitting for both the

automatic and manual measurements of the ICV are shown in
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FIGURE 4

Analysis of the group with GA of 20 weeks. (A) Correlation between the results of the two pipelines (Elastix- and Minc- based). (B) Correlation

between the automatically calculated ICV and the manually traced ones. Error bars are the SD of the Minc- and Elastix- based results. For (A,B),

the three lines represent linear fits of the data for the “Left” group (light blue), “Right” group (pink), and for all subjects together (yellow). For

details of the fits, (see Supplementary Tables S2, S3). (C,D)—ICV as a function of GA for (C) automatically calculated results and (D) manually

traced ICV. For (C,D) pink solid line—fit of the data for females, solid green line—fit of the data for males. Dashed lines represent the 95%

confidence intervals of the intercept di�erence for males and females. The table below the graphs provides details about the fitting results of the

ICV as a function of GA with intercept-dependent sex.

the tables in Figures 4, 5. As can be seen, the automatic and

manual results corresponded well to each other in terms of the

linear relationship between ICV and GA. This fact provides

additional support for the validity of the automatic procedure.

3.5. ICV and sexual dimorphism

We used sexual dimorphism, the difference in the average

ICV between females and males, as an additional test for

the validity of the automatic extraction method. Detection

of small group differences between different groups, if they

exist, can increase trust in an automated extraction method.

However, despite the general correspondence between the

automatic and manual measurements of the ICV, there was

one crucial difference between these two approaches concerning

ICV sexual dimorphism. While sex differences in the ICV with

a P-value below 0.05 were found within the automatic and

manual measurements for the younger age group, it was not

the case for the ICV results at 30 weeks GA (Figures 4C,D,

5C,D). For the older age group, adding sex as a covariate

to the linear model of the manual measurements resulted

in a P-value of 0.01 for the sex label. By contrast, for the

automatic measurements, the P-value for the sex label was 0.25.

The 95% confident intervals for each approach are shown in

Figures 5C,D as dashed lines. As can be seen, the findings of

the manual measurements suggest a statistically-based sexual

dimorphism around 30 weeks of GA. By contrast, the automatic

measurements did not provide support for such a conclusion,

or they might suggest that the effect is too small to be

detected within our limited sample. Note, however, that in both

the manual and automatic approach, males had larger ICV

than females, as is evident from the fitting lines of the two

sex groups.
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FIGURE 5

Analysis of the group with GA of 30 weeks. (A) Correlation between the results of the two pipelines (Elastix- and Minc- based). (B) Correlation

between the automatically calculated ICV and the manually traced ones. Error bars are the SD of the Minc- and Elastix- based results. For (A,B),

the three lines represent linear fits of the data for the “Left” group (light blue), “Right” group (pink), and for all subjects together (yellow). For

details of the fits, (see Supplementary Tables S2, S3). (C,D)—ICV as a function of GA for (C) automatically calculated results and (D) manually

traced ICV. For (C,D) pink solid line—fit of the data for females, solid green line—fit of the data for males. Dashed lines represent the 95%

confidence intervals of the intercept di�erence for males and females. The table below the graphs provides details about the fitting results of the

ICV as a function of GA with intercept-dependent sex.

3.6. ICV growth rate

Next, we checked whether additional support for the validity

of our automatic procedure could be obtained by studying the

growth behavior of the ICV. The growth graphs are shown in

Figure 7A for the automatic method and in Figure 7B for the

manual method. Linear fits for the relationship between ICV

and GA are also shown in the same figure. Three observations

can be deduced from the two panels of the figure. First,

qualitatively, the automatic and manual measurements showed

the same behavior. Second, in both cases, the slope of ICV

GA dependency is steeper for fetuses at an older age. This

finding suggests that there is an accelerated growth of the

brain volume as the fetuses develop. The same fact can also

be seen from the relationship between the GA at which a

subject was first scanned and the ICV difference per day for that

individual (see Supplementary Figures S3A,B for the automatic

and manual measurements). Third, as is evident from Figure 7,

the intraindividual variability increases for older GA for both

the automatic and the manual measurements. Although we did

not directly quantify this observation, this observation provides

additional support to the validity of the automatic procedure to

calculate the ICV.

To summarize all the findings of the Results Section: Based

on this analysis, we concluded that the automatic procedure

for calculating fetal ICV, as is presented here, is a valid way to

measure the ICV.

4. Discussion

An important research question is how normal fetal brain

development correlates with future cognitive and behavioral

outcomes. Automatic computational-based methods are
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FIGURE 6

Di�erence between the automatic and manual methods. Di�erence between the results of the automatic ICV measurements and the manual

ICV measurements as a function of the automatically calculated ICV. (A) Results for the group of fetuses at GA of 20 weeks. (B) Results for the

group of fetuses at GA of 30 weeks. Solid lines—mean di�erence. Dotted lines—95% confidence intervals base on t-statistics. Dashed

lines—linear fit of the di�erence as a function of the automatically calculated ICV. The tables below the graphs provide details about the fitting

results.

paramount for these efforts. Many times, extracting the brain or

the intracranial volume is the first step in downstream automatic

analysis pipelines. Over the years, multiple computational-

based methods have been developed for detecting, classifying,

segmenting, and registering ultrasound scans (e.g., see Kutarnia

and Pedersen, 2015). For detailed methodological reviews

for ultrasound registration or segmentation of global shape

and internal structures and features, (see Che et al., 2017 and

Torres et al., 2022). See also references therein for a complete

list of methods previously used. In principle, one can divide

registration-based and segmentation methods into those based

on intensity similarity and those using feature selection. Initial

attempts to register 2D ultrasound images were intensity-based

and applied several filtering methods to reduce the inherent

limitations of ultrasound images (Cen et al., 2004). More

modern attempts to register or align 2D ultrasound scans are

based on artificial intelligence (e.g., Yaqub et al., 2015) or, in

particular, on deep learning algorithms (Liu et al., 2019). For

example, an automatic method was developed to measure

fetal head circumference based on a Haal-like feature classifier,

Hough transform, and ellipse fitting (van den Heuvel et al.,

2018). Another study used a deep learning algorithm to measure

brain circumference in real-life situations in under-developed

countries (van den Heuvel et al., 2019). Similarly, a regional

convolutional neural network was used to detect the feature of

the standard axial plane for its identification (Lin et al., 2019).

As a final example, a Bayesian Neural Network was used to

estimate gestational age (GA) from an ellipse fitting of the skull

(Lee et al., 2020).

Similar to 2D ultrasound, also for 3D ultrasound, initial

registration attempts were intensity-based and used advanced

filtering and down-sampling procedures (Pratikakis et al., 2003).

Similarly, a Gabor transformation was used to identify the

pose of fetuses based on the eyes’ location (Chen et al., 2012).

Followed steps that included rigid and non-rigid registrations

to a reference model allow the measurements of several facial

characteristics. Note that in this case, global skull features

that are not necessarily available in all scanning settings were

required. Moreover, a manual step of Region Of Interest

selection was required for successful operation.

More recently, the field has moved from more traditional

computational methods toward machine-learning algorithms

for utilizing different aspects of ultrasound registration and

alignment. For example, two-stage convolutional neural

network (CNN) was used to obtain a full segmentation of

the skull (Cerrolaza et al., 2018). In another example, a

geometric-based feature detection using the point-drift method

and random forest tree was used to register different scans

of the same subject to each other (Perez-Gonzalez et al.,

2020). Similarly, after manual brain editing, a constitutional

regression network was used to estimate brain age based on

its folding program (Namburete et al., 2017). In yet another

example, A CNN network was used to align 2D planes to their

corresponding 3D scan (Yeung et al., 2021). A similar approach
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A B

FIGURE 7

Combined time points graphs. Reproduction of the results from Figures 4C,D, 5C,D of the two age groups only for the subjects that had two

measurements. (A) Automatically calculated ICV. (B) Manually traced ICV. Dark and light yellow lines are fits of the two age groups without

di�erentiating between females and males. The tables below the graphs provide details about the fitting results.

utilized a multi-task, fully convoluted neural network to align

a series of 3D ultrasound scans to a common space and extract

the volume of the brain based on an ellipsoid fitting of the

skull (Namburete et al., 2018). The main limitation of the

Namburete et al. (2018) approach was that it disregards 3D

information associated with the scan. Hence, as a continuation

of that work, Moser et al. suggested an alternative CNN

for extracting the brain from 3D ultrasound scans based on

the complete 3D information (Moser et al., 2020). Finally,

while working on this manuscript, the same group published

an extension of their CNN algorithm and combined it with

another machine-learning network for registration to a standard

space (Moser et al., 2022). The main difference between the

earlier (Moser et al., 2020) and latter (Moser et al., 2022)

works concerning brain extraction is that the latter application

includes an initial down-sampling and final up-sampling steps.

Indeed, the latter work of Moser et al. showed excellent results

and can deal with the internal limitation of fetal ultrasound

imaging, such as increased ossification of the skull and position

variations.

This work used the more traditional intensity-based

registration procedure to analyze 3D ultrasound scans and

extract the ICV. In principle, ICV is only one of the possible

biomarkers that can connect fetal development and later life

functioning. Indeed, traditionally medical imaging rely on a

set of 2D measures such as the sizes of the lateral ventricles,

cavum septi pellucidi, cisterna magna, and the corpus callosum

(see Torres et al., 2022 and references therein). Also, the

head circumference, biparietal diameter, and occipitofrontal

diameter are widely used biomarkers to assess fetal growth

(Monteagudo and Timor-Tritsch, 2012; Napolitano et al., 2020).

Recently, machine-learning algorithms showed great promise

for analyzing 3D structures in the fetal brain as possible

biomarkers (Hesse et al., 2022). Here, we concentrate only

on one crucial biomarker, namely ICV. We showed that

our automated intensity-based registration and segmentation

procedure could measure fetal ICV from 3D ultrasound images

with high reliability and accuracy. Overall, once installed, the

usage of the pipelines becomes quite an easy task, even for a

non-experienced user.

Wewere able to reproduce twowell-known characteristics of

fetal brain growth, even with the relatively limited sample size we

used to validate our method; Namely, we found (i) accelerated

brain growth rate; and (ii) increased intrasubject variance of

the ICV distribution size for older fetuses. Concerning these

two findings, the automatic ICV measurements were consistent

with the manual ones. In addition, we reported automatic and

manual ICC values between good and excellent despite some
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bias observed in the measurement difference for smaller vs.

larger ICV for each age group separately.

The fact that fetal brain growth is a non-linear process was

shown multiple times over the years, especially during the late

second and third trimesters of pregnancy (Roelfsema et al.,

2004; Napolitano et al., 2020). Usually, a quadratic behavior is

suggested for the non-linear dynamic (Hsu et al., 2013). For

example, in an MRI study of fetal brain growth, a quadratic

dependence on age was observed for various brain measures

such as the head circumference and the skull biparietal diameter

(Kyriakopoulou et al., 2016). However, in this study, the cortical

volume showed exponential growth rather than a quadratic one.

While, in contrast, in a relatively small sample sizeMRI study, no

substantial statistical difference between the linear and quadratic

models’ description of the supratentorial volume growth was

reported (Scott et al., 2011). We withheld from fitting an exact

function for the ICV growth since we measured it only for two

separate age groups and not throughout a continuous gestational

age range. Thus, we cannot specify whether the ICV growth

followed a quadratic, exponential, or any other functional form.

Nevertheless, the fact that we obtained a non-linear growth

behavior of fetal ICV supports our automatic method’s validity.

In parallel to the observed non-linear behavior of fetal

brain growth, the intraindividual variability also increased

with GA, as was observed recently in the INTERGROWTH-

21st cohort (Napolitano et al., 2020). Similarly, an increased

intrasubject variance was observed in another study for the

thalamus, cerebellum, and cerebral cortex volumes (Babucci

et al., 2019). Interestingly, in one study, the intrasubject variance

increased with age for various volumetric measures but not for

2D measures like head circumference (Kyriakopoulou et al.,

2016). In the current study, both the manual and the automatic

measurements indicated an increased intrasubject variance for

older fetuses. This finding provides support for the accuracy of

the automatic procedure presented in this work.

In contrast with these two points discussed above, there

was some disagreement about the ICV sexual dimorphism

differences between the automatic and manual measurements at

GA of 30 weeks. For the manual measurement, the difference

between the ICV of the two sexes reached a statistical P-value

smaller than 0.05. By contrast, the P-value was much higher

for the automatic measurements, though males did have, on

average, larger ICV than females. Whether the P-value will be

above or below 0.05 depends, naturally, on the sample size and

the effect size. Our sample size was quite limited since this study

is a method validation study and not a detailed research study.

Still, for the sake of validation, it is important to ask what the

expected effect size might be and what the corresponding sample

size should be to validate such an effect.

Previously, fetal sexual dimorphism differences were shown

in several studies (e.g., Smulian et al., 1995; Rizzo et al., 2016).

Moreover, it is well-known that the median head circumference

of males at birth is larger than those of females (ratio

of 1.032, see https://www.cdc.gov/growthcharts/clinical_charts.

htm). Thus, the measured effect sizes of sexual dimorphism at

birth are relatively small. In accordance with these findings,

three studies estimated a ratio of 1.014 to 1.016 between the

head circumference of males and females; (i) across the GA

range of 20–37 weeks, (ii) at an average GA of 34.5 weeks, or

(iii) average GA of 30 weeks (Schwärzler et al., 2004; Melamed

et al., 2013; Yeo et al., 2017). Similarly, another study that used

laser measurements of the outer cranial volume for newborn

babies estimated an average ICV ratio of 1.066 and an average

head circumference ratio of 1.02 between males and females

(Vermeulen et al., 2021). Interestingly, in a large Dutch cohort,

sexual dimorphism differences were observed already in the first

trimester, and the measured head circumference for males was

larger than that of females (Broere-Brown et al., 2016). However,

in that study, the differences were significantly reduced from

about 0.5 SD at GA of 20 weeks to about 0.35 SD at GA of 30

weeks. If indeed ICV sexual dimorphism decreases with GA, this

fact might explain our findings and the difference between the

consistency of the two measurement methods at a younger GA

relative to their inconsistency at an older GA. Note, however,

that some studies did not find sexual dimorphism differences for

various brain measures (Kyriakopoulou et al., 2016; Kavak et al.,

2021).

Thus, the published literature suggests that the ratio of the

average fetal ICV for males and females will be somewhere

between 1.02 and 1.05. Based on these values, the automatically

measured average ICV for females, and its SD, one can calculate

that a sample size between 550 and 96 is needed to detect such

an effect with a type I error probability of 0.05 and a type II

error probability of 0.8. Since the ground truth for the differences

in the fetal ICV between females and males is unknown, the

P-values that the automatic and manual methods reported

concerning the fetal ICV sexual dimorphism are compatible

with the statistical expectations. I.e., it might be the case that

(i) the automatic method underestimated the difference; that

(ii) the manual method over-estimated it; or (iii) both. Thus,

we believe that our results suggest that the ICV of males is

larger than that of females at GA of 30 weeks, but they are

inconclusive concerning the size of the effect. Nevertheless,

this discrepancy might suggest that the gold standard (manual

measurements) against which we validated our automatic ICV

extraction method might not be the best choice. Indeed, we

consider, in future studies, validating the current automatic

method against other available automatic methods.

One of the advantages of our method, and the fact that

it uses two independent computational packages to calculate

the same volume, is that it provides a simple criterion to

differentiate between measurements that can be trusted and

those that cannot. The criterion to differentiate between these

two cases is based on the difference in the outcomes of the

Minc and Elastix packages. When the difference of ICV between

the packages is relatively large, the measurements cannot be
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trusted. When the difference is relatively small, the results of the

automatic procedure can be trusted. Though the criterion we set

for rejection of results is not based on a precise mathematical

formula but rather on the impression from the results, we can

suggest that deviation between the two automatic measurements

of more than approximately 10% of the average ICV for subjects

at a specific age group raises a red flag for the validity of

the results. The percentage of images that had to be rejected

remained below 5%.

Another advantage of our method is its usage of non-

linear B-spline registration steps that make a local adjustment

to the ICV mask. Usually, this step is still not used in

machine learning algorithms, and the registration is restricted

to translation, rotation, global scaling, and sometimes affine

transformations (see, for example, Moser et al., 2022). This step

is predicted to better fit local differences in the ICV of different

individuals.

Despite our ability to validate our automatic procedure to

measure the ICV from fetal 3D ultrasound scans, our procedure

also has some limitations. First, the intensity-based method does

not perform well if there is a large difference between the size

of the brain model and the subject’s ICV, for example, if the

brain model is constructed from subjects with GA relatively

different from the subject GA. Note that in the context of the

YOUth cohort, fetal development is assessed around a GA of

20 and 30 weeks. During this period, the brain goes through

major developmental changes. For example, many primary and

secondary sulci and gyri start to emerge during this period (Stiles

and Jernigan, 2010; Budday et al., 2015), though some major

brain fissures can be detected by 2D ultrasound even before

20 weeks (Correa et al., 2006). Similarly, also the cerebellum

experiences a period of accelerated growth, and its relative size

relative to the telencephalon and diencephalon changes. As a

result, the difference between the typical brain of fetuses at 20

weeks GA and the one at 30 weeks GA is not only the result of a

scaling transformation. Consequently, we used separated brain

models for the 20 weeks and 30 weeks groups. Based on the

distribution of ages we examined for each age group (140–170

gestational days for the younger fetuses and 203–230 gestational

days for the older ones—see Supplementary Table S1), it is safe

to say that our method works well for model brains for every

four gestational weeks. Models for a shorter period (e.g., two

gestational weeks) will probably improve our observed bias (see

Figure 6). Hence, although this is a limitation of our method, it

is a limitation that could be expected from the need to register

relatively similar model and subject brains.

A second limitation of our methods is that we have used

two brain models for each age group. One of the limitations of

transabdominal ultrasound imaging is the inherent shadowing

of the brain hemisphere closer to the probe by the skull

(Monteagudo and Timor-Tritsch, 2012; Cuingnet et al., 2013).

On top of that, after exporting the images from the scanner

to a Dicom format, we noticed that in some cases, the corpus

callosum is facing to the left, and in others, to the right is the

sagittal projection. Similarly, in some cases, structures such as

the cavum septi pellucidi and the thalamus were facing to the

left in the axial projection, while in some cases, they faced to

the right. Thus, there were two non-identical brain orientations

in our database. We believe that this is caused by different fetal

positions in the womb during the ultrasound scan. In principle,

one of these groups could have been mirrored to the orientation

of the other. This is a feasible solution. However, we took a

different approach and decided to use two different models that

would fit the orientation of each group of subjects (for each age

group). Selecting the first solution can reduce the chances of

possible bias. Selecting the second would save processing steps.

We choose the second approach. The reasons that led us to take

the second approach were double. First, we wanted to reduce the

pre-processing steps. Second, we wanted the two model brains

for each age group to act as an additional test for our method’s

validity. If no bias between the results of the two models for the

same age group is found, it suggests that our method is robust

concerning the specific brain model used. Indeed, despite the

risk of a bias in the ICV measurements due to the usage of two

brain models for each age group, by comparing the results of

ICV measurements based on these two models, we showed that

the findings were not statistically different. Nevertheless, future

researchers that will implement our pipeline can decide to take

the first approach. Considering these two possible routes, we

believe that this is not a severe limitation of our pipeline (or even

an advantage).

A third limitation of our procedure is that the registration

parameters had to be tweaked in some cases to obtain a

satisfactory ICV measurement. As explained above, comparing

the Minc-based and Elastix-based results provided a clear-cut

criterion to decide whether the registration was successful.

In cases that it is not, the operator can decide to tweak the

parameters of either the Minc-based pipeline or the Elastix-

based pipeline to achieve better measurements. In addition,

a visual inspection of the ICV outline overlaying the scan,

which is automatically produced, can inform the operator

which of the two pipelines missed. In these cases, although

identifying which registration parameters should be changed

can be a bit tedious, it should be relatively easy for an

experienced operator. It should be noted that one of the

dangers of an automatic method that may include tweaking

steps for the parameters is that it is downgraded from a fully

automated level to a semi-automated process. The method

described in this manuscript can undoubtedly suffer from

such limitations. It necessitates some acquaintance with the

pipelines and some learning phase. Once such a learning phase

is fulfilled, choosing which parameter to tweak is relatively

straightforward. We describe the main parameters that should

be tweaked in the method section (see above). As a matter

of fact, these were all the parameters we tweaked in this

test cohort.
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A fourth limitation of our method is related to the time

it takes to run the pipeline (about half an hour per subject

for the Minc-based pipeline and about 50 min for the Elastic-

based pipeline). However, the method outweighs the time to

complete a manual segmentation. Manual segmentation of one

subject usually takes about 10 min. This duration is shorter than

the time it takes the pipelines to run. However, it is a dead

time from the point of view of the human rater. In the case of

the automatic method presented in this manuscript, the most

manually labor-intensive steps are those related to exporting the

Dicom ultrasound scans to nifti files and sorting them into the

two “Left” and “Right” groups. We have added some auxiliary

python scripts that automatically take care of all other steps in

preparing the dataset for analysis and reading the final results.

Nevertheless, developing an automated method to export the

ultrasound scans and deal with the two head orientations is left

for future work.
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