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Introduction: Brain cancer is a frequently occurring disease around the globe and 
mostly developed due to the presence of tumors in/around the brain. Generally, 
the prevalence and incidence of brain cancer are much lower than that of other 
cancer types (breast, skin, lung, etc.). However, brain cancers are associated 
with high mortality rates, especially in adults, due to the false identification of 
tumor types, and delay in the diagnosis. Therefore, the minimization of false 
detection of brain tumor types and early diagnosis plays a crucial role in the 
improvement of patient survival rate. To achieve this, many researchers have 
recently developed deep learning (DL)-based approaches since they showed a 
remarkable performance, particularly in the classification task.

Methods: This article proposes a novel DL architecture named BrainCDNet. 
This model was made by concatenating the pooling layers and dealing with 
the overfitting issues by initializing the weights into layers using ‘He Normal’ 
initialization along with the batch norm and global average pooling (GAP). Initially, 
we sharpen the input images using a Nimble filter, which results in maintaining 
the edges and fine details. After that, we employed the suggested BrainCDNet for 
the extraction of relevant features and classification. In this work, two different 
forms of magnetic resonance imaging (MRI) databases such as binary (healthy vs. 
pathological) and multiclass (glioma vs. meningioma vs. pituitary) are utilized to 
perform all these experiments.

Results and discussion: Empirical evidence suggests that the presented model 
attained a significant accuracy on both datasets compared to the state-of-the-art 
approaches, with 99.45% (binary) and 96.78% (multiclass), respectively. Hence, the 
proposed model can be used as a decision-supportive tool for radiologists during 
the diagnosis of brain cancer patients.
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1 Introduction

Brain tumors are characterized by the uncontrolled growth of cells within or near the 
brain. According to the American Cancer Society and the National Brain Tumor Foundation 
(NBTF) report, so far, more than 150 distinct brain tumors have been documented. Among 
them, glioma and meningioma tumors occur frequently, while pituitary tumors rarely 
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happen. Typically, brain tumors are categorized into two groups: 
primary and secondary or metastatic. Primary brain tumors originate 
from the brain or its surroundings and are divided into benign 
(non-cancerous) or malignant (cancerous) (Rasheed et al., 2023). 
Tumors that do not have active cells and have less effect on human 
life are called benign. Meningioma and most pituitary tumors are 
benign. Tumors that contain active cells and highly impact human 
life are called malignant. Gliomas (astrocytoma, ependymoma, and 
oligodendroglioma) are malignant tumors. To identify these tumors, 
we require an adequate radiological examination and estimation. 
Physicians utilize medical imaging or scanning techniques, such as 
X-ray, computed tomography (CT), and magnetic resonance imaging 
(MRI) to meet this criterion. Among them, MRI is a frequently used 
non-invasive scanning procedure for identifying the abnormalities of 
brain tissues since it produces high spatial resolution images and is 
safe from radiation. Hence, it is most suitable for all subjects, such as 
children, adults, pregnant women, etc. In addition, MRI yields 
accurate visualization of anatomical structures in the human body, 
especially the soft tissues of the brain. Based on these details, 
radiologists or doctors will quickly decide to provide appropriate 
treatment to the patient, such as radiotherapy, chemotherapy, 
and surgery.

According to the Brain Cancer Statistics 2019 (Ilic and Ilic, 2023), 
347,992 new cases (187,491 males and 160,501 females) are registered 
across the globe. Among them, 246,253 (138,605 males, 107,648 
females) died from brain cancer. These statistics show that, in males, 
the incidence and mortality are higher than in females. The incidence 
rate for males is 4.8/100,000, and for females is 3.6/100,000, while the 
mortality rate in males is 3.9/100,000, and in females is 2.6/100,000. 
Worldwide, European countries have higher incidence and mortality 
rates (incidence rate: 7.9/100,000 in males and 5.5/100,000 in females; 
mortality rate: 5.4/100,000 in males and 3.5/100,000 in females).

From the statistical analysis, we conclude that early diagnosis of 
brain tumors is crucial in improving a patient’s lifespan. However, 
manually inspecting these MRI images for longer periods of time is 
tedious and prone to errors. Therefore, computer-aided diagnosis 
plays a vital role in assisting clinicians. Hence, in this work, 
we proposed a novel approach called BrainCDNet.

1.1 Highlights of this study

In this study, first, we exploited a Nimble filtering algorithm to 
highlight edge details within the image. Following this, we developed 
a novel deep neural network called BrainCDNet to extract meaningful 
features by addressing issues encountered in existing approaches, 
such as training parameters and network stability. The internal 
architecture of the suggested network is designed to enhance model 
accuracy by adjusting hyperparameters such as optimizer, learning 
rate, epochs, batch size, and the number of layers. Our model is 
implemented on binary (healthy vs. pathological) and multiclass 
(glioma vs. meningioma vs. pituitary) classification problems using 
5-fold cross-validation and hold-out. The proposed framework 
achieved optimal performance with an accuracy of 99.45% (binary) 
and 96.78% (multiclass). Experimental outcomes demonstrate that 
the presented technique achieves better classification accuracy with 
fewer learning parameters (997,123, including 994,563 trainable and 
2,560 non-trainable) than existing approaches.

2 Related works

For a past two decades, researchers and scientists focus on the 
classification of brain tumors from MRI images by adopting machine 
learning (ML), and deep learning (DL) mechanisms. In this section, 
we outline a few recently developed approaches.

Islam et al. (2021) proposed an enhanced brain tumor detection 
approach using super pixels and principal component analysis (PCA)-
based feature extraction followed by template-based k-means (TKM) 
clustering. Through this sequence of steps, they attained 95% accuracy. 
Demir et al. (2023) suggested a deep learning (DL)-based model with 
an accuracy of 99% using MobileNetV2, ReliefF feature selection, and 
k-nearest neighbors (KNN). With the help of pre-trained 
convolutional neural networks (CNN) such as VGG-16, Srinivas et al. 
(2022) implemented a deep transfer learning framework that obtained 
86.04% classification accuracy.

Shanthi et  al. (2022) developed an optimized hybrid CNN 
(OHCNN) methodology using CNN followed by long short-term 
memory (LSTM) and adaptive RIDER optimization (ARO). The 
CNN-LSTM-ARO-based model generated an accuracy of 97.25%. 
Reddy et  al. (2023) outlined a diagnosis model that utilized local 
texture features, blue monkey extended bald edge optimization 
(BMEBEO), and deep belief network (DBN) followed by Bi-LSTM 
(DBN-LSTM). The presented technique obtained an accuracy 
of 92.61%.

Vankdothu and Hameed (2022) offered an automated brain tumor 
detection approach with an accuracy of 95.17% for identifying the 
pathological behavior of MRI images. The proposed framework 
includes segmentation by improved k-means clustering (IKMC), 
feature extraction using gray-level co-occurrence matrix (GLCM), 
and classification based on recurrent CNN (RCNN). Zhu et al. (2023) 
developed a novel architecture: ResNet-based bat extreme learning 
machine (RBELM) to discriminate between normal and abnormal 
brain MRI images, gaining 99% detection accuracy.

Mijwil et al. (2023) suggested a MobileNet V1-based DL model to 
detect brain tumors from MRI images, and they yielded 97.3% 
accuracy. Rahman and Islam (2023) developed a parallel deep CNN 
(PDCNN) architecture to diagnose brain MRI tumors, and they 
attained 97.33% accuracy. To classify brain tumors into malignant and 
benign, Mehrotra et al. (2020) proposed an artificial intelligence (AI) 
based DL methodology with an accuracy of 99.04%.

Nanda et al. (2023) presented a new hybrid model that utilized a 
saliency KMC, social spider optimization, and radial basis neural 
network (RBNN). Through this process, the authors yield 92% 
accuracy. Kibriya et al. (2023) implemented an ensemble model by 
concatenating VGG-16 and GLCM features. Later, these features were 
fed to a support vector machine (SVM) to detect the pathological 
behavior of brain MRI images. The presented ensemble architecture 
attained 99.03% accuracy.

Abiwinanda et al. (2019) attempted to classify MRI-based brain 
tumors by developing an optimized CNN architecture. By this 
network, the authors achieved a detection rate of 84.19%. Pashaei et al. 
(2018) extracted relevant features using CNN and then employed a 
kernel-based extreme learning machine (KELM) for detecting brain 
tumors. Here, the suggested approach attained 93.68% accuracy.

Anaraki et  al. (2019) proposed a CNN and genetic algorithm 
(GA) based model to grade the brain MRI images into glioma, 
meningioma, and pituitary. The experimental results of the presented 

https://doi.org/10.3389/fnhum.2024.1405586
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Reddy et al. 10.3389/fnhum.2024.1405586

Frontiers in Human Neuroscience 03 frontiersin.org

model reveal that they attained 94.2% accuracy. Afshar et al. (2019) 
offered a modified CapsNet to analyze brain tumors from MRI images. 
Through this model, the authors achieved better performance with 
90.89% accuracy in comparing conventional CNN approaches.

To implement an accurate brain tumor identification model, 
Gumaei et al. (2019) utilized a hybrid feature extraction framework 
such as PCA followed by gradient image descriptor (PCA-GIST) and 
regularized ELM (RELM). Here, the authors gained maximum 
accuracy with a 94.23% value. Swati et al. (2019) used a pre-trained 
CNN, namely VGG-19, and block-wise fine-tuning to distinguish 
MRI-based brain tumors. Based on this architecture, they achieved 
94.82% classification accuracy.

Das et al. (2019) described a customized CNN-based strategy to 
interpret brain MRI images that achieved a significant accuracy of 
94.39%. Kurmi and Chaurasia (2020) outlined an automated 
prognosis system with 92.6% accuracy based on hand-crafted 
features, neighborhood component analysis (NCA), and multilayer 
perceptron (MLP). Noreen et al. (2021) designed a hybrid technique 
through Xception and ensemble techniques. To improve the 
performance of the model, the authors further employed fine-tuning. 
Using this idea, they yield 94.34%.

Mukherkjee et al. (2022) offered a DL-based framework using 
aggregation of generative adversarial networks (AggrGAN) and 
ResNet-152 to identify the type of brain tumor. By making use of this 
technique, they obtained 93.88%. Deepak and Ameer (2023) utilized 
a deep feature fusion and majority voting mechanism to categorize 
brain tumors from the imbalanced MRI database. Here, the suggested 
approach attained 95.4% accuracy. To improve the performance of 
brain tumor diagnosis methodology, Khan et al. (2023) developed a 
hybrid network with 95.10% accuracy using DenseNet 169 and ML 
frameworks such as random forest (RF), SVM, and XGBoost.

3 Materials and methods

This section describes the dataset used in the work and the 
relevant steps involved in the proposed model to identify the 
pathology of brain tumors using MRI images. Figure 1 indicates the 
flow diagram of the suggested BrainCDNet. Subsequent sections 
describe each block of Figure 1.

3.1 Dataset

To analyze the presented framework, we  consider the two 
brain MRI image dataset scenarios: binary (healthy vs. 
pathological) and multiclass (glioma vs. meningioma vs. 
pituitary). The first scenario comprised 2,376 T2-weighted MRI 
images, including 1746 pathological (glioma, Sarcoma, 
meningioma, and Alzheimer’s) and 630 healthy images (Kaggle, 
n.d.). The second scenario constituted 2,764 T1-weighted 
contrast-enhanced MRI images with 926 glioma, 937 meningioma, 
and 901 pituitary gland tumor images (MRI, n.d.). Figure 2 shows 
the sample images used in this work. All of these images have 
varied resolution sizes; however, to feed these images to the 
proposed deep net, we resize them to 224 × 224 × 3.

3.2 Image sharpening

Image sharpening is a digital image processing technique used to 
enhance the contrast and detail of an image. The goal of sharpening is 
to improve the visual perception of the image by enhancing the edges, 
contours, texture, and some fine details that may have been blurred or 
softened during image capturing or processing. Over the last few 
decades, various approaches have been developed to fulfill the 
requirements of image sharpening. Unsharp masking, Laplacian 
sharpening, deconvolutional sharpening, and frequency-domain 
filtering techniques are more popular among them. However, image 
sharpening is an open problem for researchers due to the over-
sharpening (Toh and Isa, 2011) and amplification of image noise 
(Sheppard et al., 2004). To minimize these problems, we used a Nimble 
filter (Zohair, 2018), developed recently and the processes is as follows:

 1 Initially, generate a blurred version of the original image, I(m,n), 
by estimating the average of the horizontal and vertical shifts for 
a source image, then multiply by a scaling factor α. The resultant 
image includes the spatial details of original image.

 2 Secondly, multiply the original image with a scaling factor α.
 3 Finally, add outcomes of steps 1 and 2 to obtain the resultant 

sharpened image.

The mathematical characterization of the suggested Nimble filter 
is described in the Equation 1 as follows:

 

( ) ( )
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where, S(m,n) is the sharpened image; m,n are the spatial coordinates; 
α is a scaling factor that controls the amount of sharpness 
enhancement, and which is always greater than 1. In this work, 
we  consider α as 2 and the corresponding implications of image 
sharpening are represented in Figure 3. From this figure, we observed 
that due to the image sharpening, we highlighted the patterns (see 
Figure  3C) and removed the blurring (see Figure  3D) from the 
original images.

3.3 The BrainCDNet architecture

In this study, we developed a BrainCDNet model by concatenating 
the pooling layers, which is shown in Figure  4. The suggested 
architecture mainly includes three CNN blocks (blocks 1 to 3), global 
average pooling, and a softmax layer.

The first block (or block 1) consists of four ConvNetA architectures, 
which can be used as a feature extractor. Each ConvNetA includes a 
3 × 3 convolutional layer with 64 filters and a stride 2, scaled exponential 
linear unit (SELU), batch normalization, and 2 × 2 max-pooling with 
stride 2. Features obtained from each ConvNetA are concatenated using 
Equation 2 as follows (Barzekar and Zeyun, 2022):
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where, (p,q) are the dimensions of ConvNet; x and y denotes the 
feature maps; (cm,cn) represents the number of channels on each 
ConvNet output, ⨁ illustrates the concatenation operator.

The above process is applied to the top two and the bottom two 
ConvNetA architectures. The corresponding feature maps obtained 
from the first block are fed to the second block CNN framework.

The second block (or block 2) incorporates two ConvNetB 
architectures. Each ConvNetB includes 2 convolutional layers with a 
kernel size of 3 × 3 and 1 × 1, stride 1, and 128 filters. Here, by the 1 × 1 
convolution, we  relatively minimize the model’s computational 
complexity and reduce the significant number of feature maps. Later on, 
after 3 × 3 convolutions, we  placed a SELU activation and batch 

normalization. Similarly, after 1 × 1 convolutions, we introduced a SELU 
activation and batch normalization followed by 2 × 2 max-pooling with 
stride 2. The outcomes of both ConvNet B architectures are concatenated 
by  Equation (2) , and the resultant feature maps feed as input to block 3.

The third block (or block 3) contains one CNN architecture 
namely, ConvNetC, which has the following configurations: One 
convolutional layer with a filter size of 3 × 3, stride 1, and 256 filters, 
followed by Gaussian error linear unit (GELU) and batch 
normalization. In addition, we incorporated a 1 × 1 convolution with 
the same configurations. Afterward, the features obtained from the 
third block are summarized by a global average pooling (GAP). By 
this pooling layer, we can reduce the number of training parameters 
and also prevent overfitting issues. Finally, these summarized features 
are fed to the softmax layer to classify the brain MRI images into two 

FIGURE 1

Block diagram of the proposed model.

A B C D

FIGURE 2

Sample brain MRI images: (A) glioma; (B) meningioma; (C) pituitary; (D) healthy.
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categories: healthy vs. pathological and glioma vs. meningioma vs. 
pituitary. The hyperparameters of the BrainCDNet architecture is 
presented in Table 1.

4 Results and discussions

This section presents the simulation results of the proposed method, 
as shown in Figure 1. As mentioned in the previous section, the MRI 
images are first preprocessed using the Nimble filter for better 
visualization and diagnosis. Later, we followed two classification scenarios. 
In the first scenario, we considered 2376 T2-weighted MRI images from 
the healthy and pathological subjects. The experimentation on this group 
discriminates only between these two classes. In scenario 2, we considered 
2764 T1-weighted MRI images from three classes, namely glioma, 
meningioma, and pituitary gland tumor images. This set of experiments 
classifies these three pathological MRI images.

4.1 Performance metrics

The choice of performance metrics is crucial for any ML or 
DL-based models for quantified analysis. In this work, we adopted 

the most often used metrics in the literature (Srinivas et al., 2022): 
true positive rate (TPR)/Sensitivity, true negative rate (TNR)/
Specificity, positive predictive value (PPV)/Precision, F-score, area 
under curve (AUC), and accuracy. For better performance, all of 
these values must be high.

4.1.1 Scenario 1 (binary classification)
Before executing any DL model, the first step is to separate the 

dataset into training and test sets for proper validation. Therefore, the 
selection of a validation scheme is a significant step. In this work, 
we performed two types of validation schemes, namely, K-fold cross-
validation and a holdout, to estimate the performance of the proposed 
method. The whole data will be divided into approximately K-portions 
in the K-fold scheme. Later, one portion of the data will be kept for 
testing, and the remaining K-1 portion will be used for training the 
model. This process repeats for K times, and a different test set will 
be used for each run. Finally, the average result of all these K runs is 
considered for the model. Besides, the holdout scheme will randomly 
divide the dataset into training and testing datasets by ensuring data 
from all classes is available in both datasets. Here, we  considered 
K = 5 in the prior validation scheme and two holdout cases (Case 1: 
75% of data for training and 25% for testing. Case 2: 85% of data for 
training and 15% for testing).

A B

C D

FIGURE 3

Image sharpening using Nimble filtering: (A,B) original images; (C,D) sharpened images.
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Table 2 presents the binary classification results with the proposed 
BrainCDNet using 5-fold cross-validation and two holdout schemes 
mentioned above. Our method gives better results in all validation 
scenarios, and the most significant results are highlighted in bold font. 
Figure 5 represents the receiver operating characteristics (ROC) of the 
holdout method. From this we observed that holdout (85/15) method 
has a wider ROC curve compared to the holdout (75/25), which 
indicates better classification performance.

4.1.2 Scenario 2 (multiclass classification)
As mentioned above, in this scenario, we considered a multiclass 

classification. The given MRI images are distinguished between the 
three pathological classes, glioma, meningioma, and pituitary. It is 
one of the essential models for preparing for real-time situations. 
Table 3 presents the simulation results of this scenario. The table 
shows that the proposed approach yields a better result by more than 
90% in all validation schemes. However, the holdout scheme is 
dominating among them. The average results of each scheme are 

presented in boldface. Another important observation from the 
table is that our approach provides higher metric values for each 
class. Figure  6 illustrates the ROC curves for the multiclass 
classification using holdout method. From these, we observed that 
compared to the other primary tumors, pituitary brain tumors are 
significantly classified.

4.2 Ablation study

To evaluate the contribution of the image enhancement using 
Nimble filter to the overall performance of our model, we conducted 
an ablation study by training and evaluating our model with and 
without using the Nimble filter. The Tables 2, 3 presents the results 
with Nimble filter, and the Tables 4, 5 presents the results without 
using Nimble filer.

Comparing the metric values in Tables 2, 4, and similarly, Tables 3, 
5, it is evident that the results are significantly improved when using 
the Nimble filter. Specifically, the accuracy of the model is higher 
when the Nimble filter is applied. These results indicate that the 
Nimble filter plays a crucial role in improving the performance of 
our model.

4.3 Discussion

To understand the efficacy of our proposed method, we conducted 
a comparative analysis with the existing state-of-the-art. We compared 

FIGURE 4

The suggested BrainCDNet architecture.

TABLE 1 The hyperparameter values used for modeling the BrainCDNet 
architecture.

Optimizer Adam

Hyper-parameter Values

Learning rate 0.001

Batch size 64

Epochs 50
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TABLE 2 Evaluation measures of the presented binary classification model.

Validation Scenario Evaluation metrics (%)

TPR TNR PPV F-Score AUC Accuracy

K-FCV 5-FCV 99.61 99.06 99.65 99.62 99.33 99.44

Holdout 75/25 99.55 98.67 99.55 99.55 99.11 99.33

85/15 99.27 100 100 99.63 99.63 99.45

FIGURE 5

ROC curve for a binary classification using holdout method.

TABLE 3 Evaluation measures of the suggested multiclass classification model.

Validation Scenario Class Evaluation metrics (%)

TPR TNR PPV F-Score AUC Accuracy

K-FCV 5-FCV Glioma 93.20 93.79 88.03 90.48 93.28 93.48

Meningioma 99.32 97.89 95.93 97.56 98.61 98.37

Pituitary 88.12 98.58 96.91 92.26 93.35 95.04

Average 93.55 96.75 93.62 93.43 95.08 95.63

Holdout 75/25 Glioma 86.38 97.37 94.42 90.26 91.87 93.63

Meningioma 90.78 92.65 85.89 88.27 91.71 92.04

Pituitary 98.24 97.62 95.32 96.76 97.93 97.83

Average 91.8 95.88 91.88 91.76 93.84 94.5

85/15 Glioma 94.12 97.85 95.52 94.81 95.98 96.62

Meningioma 92.64 97.13 94.03 93.33 94.88 95.66

Pituitary 98.60 97.8 95.92 97.24 98.2 98.07

Average 95.12 97.6 95.16 95.13 96.35 96.78
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TABLE 4 Evaluation measures of the presented binary classification model (without Nimble filter).

Validation Scenario Evaluation metrics (%)

TPR TNR PPV F-Score AUC Accuracy

K-FCV 5-FCV 99.14 97.62 99.08 99.10 98.38 98.69

Holdout 75/25 96.52 99.38 99.76 98.11 97.95 97.31

85/15 96.5 100 100 98.22 98.25 97.48

TABLE 5 Evaluation measures of the proposed multiclass classification model (without Nimble filter).

Validation Scenario Class Evaluation metrics (%)

TPR TNR PPV F-Score AUC Accuracy

K-FCV 5-FCV Glioma 87.14 95.52 91.43 86.78 91.33 92.73

Meningioma 80.4 94.84 89.51 83.73 87.61 89.94

Pituitary 98.94 92.83 87.85 92.99 95.88 94.9

Average 88.54 95.52 88.67 88.80 91.61 90.48

Holdout 75/25 Glioma 89.91 94.38 88.74 86.59 92.15 92.91

Meningioma 56.84 98.67 95.80 71.35 77.75 84.08

Pituitary 100 79.74 70.03 82.37 89.87 86.25

Average 82.25 90.93 84.86 80.10 86.59 87.74

85/15 Glioma 75.75 100 100 86.20 87.87 92.28

Meningioma 98.69 84.73 79.05 87.79 91.71 89.87

Pituitary 93.84 99.29 98.38 96.06 96.57 97.59

Average 89.43 94.67 92.48 90.02 92.05 93.25

our approach with existing methods by scenario (binary and 
multiclass) for fair analysis. Table 6 shows the results of the existing 
literature and proposed approach for binary classification, and Table 7 
is about multiclass classification. In these tables, we compared the 
metric accuracy for all the methods as it is a standard measure used 
by all the mentioned works.

Table  7 shows the results of the multiclass classification. 
It is evident from the results that the proposed work 
achieved considerable improvement over the other works. The 

discussion on the proposed work with the compared works is 
given below.

Tables 6, 7 demonstrates that most of the existing studies achieved 
over 95% accuracy in MRI image classification. However, these studies 
suffer from several limitations.

The study in Islam et al. (2021) utilized a combination of datasets, 
including one mentioned in (Kaggle, n.d.), yet their dataset for 
classification purposes consisted of only about 40 MRI images, which 
is nearly 60 times smaller than the dataset used in our research. 

FIGURE 6

ROC curves for a multiclass classification using holdout method: (A) Holdout (75/25); (B) Holdout (85/15).
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Similarly, studies in Shanthi et al. (2022), Srinivas et al. (2022), Demir 
et al. (2023), Reddy et al. (2023), Zhu et al. (2023), Mehrotra et al. 
(2020), and Nanda et al. (2023) employed deep neural networks but 
were constrained by relatively small datasets, ranging from 100 to 
1,000 MRI images. To fully exploit the effectiveness of deep networks, 
it is essential to train them with extensive data. While the work 
mentioned in Vankdothu and Hameed (2022) used a substantial 
dataset of 2,870 images, the authors first extracted handmade features 
before applying them to the RNN. In contrast, our proposed algorithm 
bypasses this manual feature extraction process, achieving the desired 
result more efficiently. In another study (Mijwil et  al., 2023), the 
authors grouped MRI images of glioma, pituitary, and meningioma 
tumors into one category, totaling 7,788 images, and treated 2,500 
images as no tumor images. Despite employing a considerable number 
of MRI images, they followed only a binary classification scheme. In 
contrast, our proposed approach considered two distinct scenarios for 
improved predictive analysis. The study (Rahman and Islam, 2023), 
utilized three datasets for classification, employing a significant 
number of MRI images and various holdout schemes for validation. 
Despite achieving a high accuracy rate of 97.33%, which is less than 
2% lower than our approach, the employed deep neural network 
architecture required more parameters to implement. Our proposed 
BrainCDNet architecture reduces the number of training parameters 
and enhances network stability. Finally, in another study (Kibriya 
et  al., 2023), the authors achieved a 99% classification result by 
combining the features of a deep network and GLCM and using SVM 
for classification. However, this approach does not constitute a fully 
adaptive feature extraction scheme like our proposed BrainCDNet.

4.4 Overall remarks

In contrast to many existing works in the literature that primarily 
focus on binary classification or multiclassification schemes, our proposed 
approach demonstrates improved results for both of these cases. While 
many existing studies relied on single cross-validation analysis, 
we provided results for three different validation schemes, enhancing the 

robustness and reliability of our findings. Compared to many existing 
studies, we considered a larger MRI image dataset, allowing for more 
comprehensive analysis and evaluation of our proposed approach. Our 
proposed BrainCDNet scheme is implemented in a block-wise manner, 
significantly reducing the number of trainable parameters. This reduction 
in parameters not only streamlines the implementation process but also 
enhances the efficiency and stability of the network.

Besides, the results of the ablation study demonstrate the importance 
of the image enhancement filter in improving the performance of our 
model. By enhancing the input images before feeding them into the 
model, we were able to achieve higher accuracy and better image quality. 
This confirms the effectiveness of our proposed approach for image 
enhancement using machine learning. Medical images often rely on fine 
details and clear edges for accurate diagnosis. The Nimble Filter is 
designed to enhance these aspects effectively. Traditional sharpening 
filters can amplify existing noise in images. The Nimble Filter aims to 
achieve sharpening while minimizing the impact on noise levels.

5 Conclusion

In conclusion, developing accurate and efficient methods for 
detecting and classifying brain tumors is paramount in improving 
patient outcomes. This study introduces BrainCDNet, a novel DL 
architecture for brain tumor classification using MRI. By leveraging 
advanced techniques such as Nimble filtering for image sharpening, 
batch normalization for addressing overfitting, and GAP for feature 
extraction, BrainCDNet demonstrates a good performance on both 
binary (healthy vs. pathological) and multiclass (glioma vs. 
meningioma vs. pituitary) MRI databases.

The results presented in this study showcase the effectiveness of 
BrainCDNet in accurately identifying and classifying brain tumors, 
achieving an impressive accuracy of 99.45% for binary classification 
and 96.78% for multiclass classification. These findings highlight the 
potential of DL-based approaches in medical image analysis and 

TABLE 6 Comparison between the proposed and existing binary 
classification models.

Method Evaluation measures (%)

TPR TNR Accuracy

TKM-PCA (Islam et al., 2021) 97.36 100 95

MobileNetV2-KNN (Demir et al., 2023) 100 97.96 99

VGG-16 (Srinivas et al., 2022) 83.33 89.47 86.04

CNN-LSTM (Shanthi et al., 2022) 96.81 97.64 97.25

DBN-LSTM (Reddy et al., 2023) 95.64 85.83 92.61

GCM-RCNN (Vankdothu and Hameed, 2022) 98.42 89.28 95.17

RBELM (Zhu et al., 2023) 100 95 99

MobileNetV1 (Mijwil et al., 2023) 97 96.1 97.3

PGCNN (Rahman and Islam, 2023) 95.65 100 97.33

AlexNet (Mehrotra et al., 2020) 99.30 98.50 99.04

RBNN (Nanda et al., 2023) 93 91 92

VGG-GLCM-SVM (Kibriya et al., 2023) 98.67 99.37 99.03

BrainCDNet (The Proposed) 99.27 100 99.45

TABLE 7 Comparison between the proposed and existing multiclass 
classification models.

Method Evaluation measures (%)

TPR TNR Accuracy

Optimized CNN (Abiwinanda et al., 2019) - - 84.19

CNN-KELM (Pashaei et al., 2018) 91.43 - 93.68

CNN-GA (Anaraki et al., 2019) 94.2 97.1 94.2

CapsNet (Afshar et al., 2019) - - 90.89

PCA-GIST-RELM (Gumaei et al., 2019) 93.46 97.05 94.23

VGG-19 (Swati et al., 2019) 94.25 94.69 94.82

Customized CNN (Das et al., 2019) 92.64 97.02 94.39

NCA-MLP (Kurmi and Chaurasia, 2020) - - 92.6

Inception-v3-Ensemble (Noreen et al., 2021) 92.33 - 94.34

AggrGAN-ResNet 152 (Mukherkjee et al., 2022) - - 93.88

CNN- Majority Voting (Deepak and Ameer, 

2023)

94.93 - 95.4

DenseNet-169 (Khan et al., 2023) 95 94 95.10

BrainCDNet (The Proposed) 95.12 97.6 96.78

The hyphen (−) mark denotes the results are not reported in that article.
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underscore the importance of early detection and precise diagnosis of 
brain cancer where timely intervention is critical.
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