
TYPE Original Research

PUBLISHED 17 June 2024

DOI 10.3389/fnhum.2024.1338453

OPEN ACCESS

EDITED BY

Sana Amoozegar,

University of Minnesota Twin Cities,

United States

REVIEWED BY

Mohammadhossein Nadian,

University of Alabama at Birmingham,

United States

Yuanyuan Gao,

Stanford University, United States

*CORRESPONDENCE

Jing Du

eric.du@essie.ufl.edu

RECEIVED 15 November 2023

ACCEPTED 31 May 2024

PUBLISHED 17 June 2024

CITATION

Zhou T, Ye Y, Zhu Q, Vann W and Du J (2024)

Neural dynamics of delayed feedback in robot

teleoperation: insights from fNIRS analysis.

Front. Hum. Neurosci. 18:1338453.

doi: 10.3389/fnhum.2024.1338453

COPYRIGHT

© 2024 Zhou, Ye, Zhu, Vann and Du. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Neural dynamics of delayed
feedback in robot teleoperation:
insights from fNIRS analysis

Tianyu Zhou1, Yang Ye1, Qi Zhu2, William Vann1 and Jing Du1*

1The Informatics, Cobots and Intelligent Construction (ICIC) Lab, Department of Civil and Coastal

Engineering, University of Florida, Gainesville, FL, United States, 2Communications Technology

Laboratory, Public Safety Communications Research Division, Advanced Communications Research

Group, National Institute of Standards and Technology, Boulder, CO, United States

Introduction: As robot teleoperation increasingly becomes integral in executing

tasks in distant, hazardous, or inaccessible environments, operational delays

remain a significant obstacle. These delays, inherent in signal transmission and

processing, adversely a�ect operator performance, particularly in tasks requiring

precision and timeliness. While current research has made strides in mitigating

these delays through advanced control strategies and trainingmethods, a crucial

gap persists in understanding the neurofunctional impacts of these delays and

the e�cacy of countermeasures from a cognitive perspective.

Methods: This study addresses the gap by leveraging functional Near-Infrared

Spectroscopy (fNIRS) to examine the neurofunctional implications of simulated

haptic feedback on cognitive activity and motor coordination under delayed

conditions. In a human-subject experiment (N = 41), sensory feedback was

manipulated to observe its influences on various brain regions of interest (ROIs)

during teleoperation tasks. The fNIRS data provided a detailed assessment of

cerebral activity, particularly in ROIs implicated in time perception and the

execution of precise movements.

Results: Our results reveal that the anchoring condition, which provided

immediate simulated haptic feedback with a delayed visual cue, significantly

optimized neural functions related to time perception and motor coordination.

This condition also improved motor performance compared to the

asynchronous condition, where visual and haptic feedback were misaligned.

Discussion: These findings provide empirical evidence about the

neurofunctional basis of the enhanced motor performance with simulated

synthetic force feedback in the presence of teleoperation delays. The study

highlights the potential for immediate haptic feedback to mitigate the adverse

e�ects of operational delays, thereby improving the e�cacy of teleoperation in

critical applications.

KEYWORDS

robot teleoperation, functional Near-Infrared Spectroscopy (fNIRS), sensory feedback
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1 Introduction

Robot teleoperation enables human operators to command and control robots in

distant, hazardous, or inaccessible environments (Senft et al., 2021). This ability expands

the range of feasible applications, such as deep-sea exploration, space missions, and

hazardous material handling, allowing for complex tasks to be conducted beyond the

conventional spatial limitations imposed between the human operator and the robot (Zhou

et al., 2023). However, the potential of teleoperation is often undermined by operational

delays due to physical constraints like signal transmission distances and processing

limits, resulting in latency that affects situational awareness, control precision, and task

performance (Kluge et al., 2013; Wenhao et al., 2017; Payra et al., 2020). Such delays
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increase cognitive workload, error potential, and challenge the

efficiency and effectiveness of teleoperation (Orlosky et al., 2018;

Kim E. et al., 2021).

In order to mitigate the implications of inevitable delays

in robot teleoperation, literature has presented a variety of

technical or behavioral countermeasures (Farajiparvar et al., 2020).

Prominent among these countermeasures include supervisory

controls (Manoharan and Ponraj, 2019), predictive controls (Uddin

and Ryu, 2016), diversified of interaction modalities (Magrini et al.,

2020), and intensive trainings for developing adaptive manipulative

tactics such as the “move and wait” strategy (Hokayem and Spong,

2006). These countermeasures aim at optimizing the reactive

actions based on the predicted delay patterns (Zhu et al., 2023), or

improve human responses while repetitive training (Pervez et al.,

2019). Nevertheless, these existing methods are less effective when

delay patterns are less clear, or when training is limited such as

in emergent scenarios. To prepare for more extreme conditions of

delayed teleoperation, we have proposed an innovative approach

to sensory manipulation. By utilizing a physics engine, we simulate

synthetic force feedback in anticipation of the actual haptic signal

data (Du et al., 2023). This method creates a more intuitive and

responsive teleoperation experience, even when communication

delays change. The simulated feedback is designed to approximate

the real physical interactions that the robot would experience,

providing the operator with a preemptive sense of the forces

involved in the task. In our pilot test we have found that this sensory

manipulation method could significantly improve the operator’s

perception and control, thereby reducing the adverse effects of the

inherent delays in robot teleoperation.

However, we noticed a knowledge gap in terms of the

neurofunctional underpinnings of sensory manipulation or other

similar approaches as countermeasures to teleportation delays.

While existing studies have examined the implications of

teleoperation delays and corresponding mitigation strategies on

motor performance, or self-assessment of perception and cognitive

status, there remains a significant gap in understanding how these

strategies affect neural functions, particularly those related to time

perception and motor coordination. The existing literature largely

neglects the neural underpinnings that could play a crucial role in

determining the efficacy of teleoperatedmanipulations. Specifically,

there is a scarcity of evidence on how synthetic, simulated

haptic feedback influences these neural processes. This omission

is critical as understanding the neurofunctional impacts of sensory

manipulation could provide deeper insights into the mechanisms

through which these strategies improve teleoperation performance.

In addressing the challenges posed by teleoperation delays,

it’s crucial to understand their impact on neural functions and

motor coordination, which are essential for precise task execution.

Research highlights that the basal ganglia and supplementary

motor areas play pivotal roles in timing and motor coordination,

directly influencing teleoperated task performance under latency

conditions (Halsband et al., 1993; Merchant et al., 2013). Moreover,

advancements in neuroimaging techniques, particularly functional

Near-Infrared Spectroscopy (fNIRS), have provided insights into

how these delays impact the prefrontal and motor cortices, areas

crucial for decision-making and movement execution (Sanes and

Donoghue, 2000; Zimeo Morais et al., 2018). Our study leverages

fNIRS technology to enhance teleoperation system design and

training, aiming to improve operator performance and mitigate the

challenges of delayed feedback.

In designing the conditions for this study, we focused on

realistic teleoperation scenarios characterized by long-distance

communication where visual and haptic data transmission times

differ significantly. Visual data, often large in size such as a frame of

1080p video, tends to incur longer transmission delays compared

to haptic data, which typically consists of smaller packets (e.g.,

six floats data for force and torque). This difference is caused by

inherent differences in data size and transmission requirements,

leading us to hypothesize that visual delays would generally be

greater than haptic delays in real-world teleoperation applications.

Our study aimed to explore how these common delay scenarios

affect both neurofunctional responses and task performance in

teleoperation, providing insights that could guide the optimization

of teleoperation systems, particularly in fields requiring high

precision and rapid feedback.

The objective of this paper is to address this knowledge gap

by exploring the neurofunctional implications of synthetic haptic

feedback in delayed robot teleoperation. To this end, we have

conducted a human-subject experiment (N = 41), utilizing fNIRS

to monitor neural activity. Our study concentrated on analyzing

data from several key brain regions relevant to robot teleoperation:

the anterior prefrontal cortex (APFC), left and right dorsolateral

prefrontal cortex (LDLPFC and RDLPFC), left and right premotor

cortex (LM1 and RM1), and left and right primary motor cortex

(LPM and RPM) as illustrated in Figure 1. The specific channels

designated for each ROI are below:

APFC (8): S5-D3, S5-D6, S5-D4, S3-D4, S6-D4, S4-D4, S4-

D2, S4-D5.

LDLPFC (6): S2-D3, S2-D1, S1-D1, S1-D2, S3-D3, S3-D2.

RDLPFC (6): S8-D6, S8-D7, S7-D7, S7-D5, S6-D6, S6-D5.

LPM (5): S16-D16, S16-D14, S15-D14, S13-D14, S13-D13.

RPM (5): S9-D9, S9-D10, S10-D10, S11-D10, S11-D12.

LM1 (5): S15-D16, S15-D15, S15-D13, S14-D15, S14-D13.

RM1 (5): S10-D9, S10-D11, S10-D12, S12-D11, S12-D12.

Each selected region plays a crucial role in teleoperation: the

APFC is involved in executive functions and complex problem-

solving (Euston et al., 2012; Carlén, 2017), the LDLPFC and

RDLPFC in working memory and decision-making processes

(Philiastides et al., 2011; Kim K. et al., 2021; Martin et al., 2024),

the LM1 and RM1 in movement planning (Hoshi and Tanji, 2000;

Garbarini et al., 2019; Gale et al., 2021), and the LPM and RPM

are involved in the execution of movements (Schnitzler et al., 1997;

Solopchuk et al., 2016). Notably, the APFC, LDLPFC, and RDLPFC

also contribute to the perception of time, a cognitive function that

becomes especially important in the context of feedback delays

where the brain must reconcile the discrepancy between expected

and actual sensory inputs (Wei-Cong et al., 2015; Coull et al., 2016).

This study primarily aims to provide empirical evidence

on how adjustments to force feedback timing influence neural

functions related to time perception and motor coordination,

thereby offering a neuroscientific perspective on the effectiveness of

sensory manipulation in enhancing teleoperated task performance.

While we also consider the role of visual feedback, our focus is

on filling the knowledge gap regarding force feedback’s unique

and interactive effects with visual cues. This approach enables us

to explore how both types of feedback jointly influence human
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FIGURE 1

fNIRS layout setting. (A) Wearing of real fNIRS; (B) region of interest (ROI).

performance and brain activity in teleoperation, particularly under

conditions of latency. The remainder of the paper introduces the

relevant body of literature, details the design of our experiment, and

discusses the key findings, emphasizing the impact of optimized

force feedback in complex teleoperation scenarios.

2 Literature review

2.1 Neural functions in temporal motor
tasks in teleoperation

Understanding how teleoperation delays impact neural

functions, particularly time perception and motor coordination, is

crucial for addressing the challenges in robot teleoperation. The

principles of optimality in sensorimotor control, which suggest

that the brain minimizes costs like effort or error despite feedback

delays, are crucial for navigating teleoperation complexities (Li

et al., 2022; Ijspeert and Daley, 2023). Understanding how these

optimization strategies are employed can provide deeper insights

into the adaptive mechanisms in teleoperation. The first noticeable

function is the time perception ability. The role of time perception

in tasks requiring precise timing, such as in surgical procedures

or precision engineering, is critical. The integration of optimal

feedback control (OFC) mechanisms is vital for maintaining

precision in teleoperated tasks, particularly where time perception

and motor synchronization are challenged by latency (Sheng

et al., 2023). OFC principles can explain how individuals adapt

their sensorimotor behaviors to maintain efficiency and accuracy,

even when the timing of feedback is altered (Razavian et al.,

2023). Studies like Block and Zakay (1996) have explored the

subjective nature of time perception, indicating its susceptibility

to various factors, including task complexity and attentional

resources. Ivry and Spencer (2004) further emphasize the intrinsic

link between time perception and motor functions, particularly

in tasks requiring synchronization and rhythm. In teleoperation,

particularly in precision-demanding tasks like surgical operations

or complex machinery control, the synchronization of motor

responses with perceived time is critical. Altered time perception

due to latency, as demonstrated in studies such as Merchant

et al. (2013), can significantly impact the accuracy of these tasks.

This highlights a crucial area for teleoperation systems design:

minimizing latency effects to improve time perception accuracy

and thus task performance.

Research has identified that the basal ganglia are central to

timing and time perception, crucial for teleoperation tasks that

require millisecond to second precision (Merchant et al., 2013;

McElvain et al., 2021; Baladron et al., 2023). Additionally, the

supplementary motor area (SMA) and pre-SMA are involved in

integrating temporal and motor information, essential for planning

and timing movements (Halsband et al., 1993; Mondok and

Wiener, 2023). Furthermore, the dorsolateral prefrontal cortex

(DLPFC) is implicated in the cognitive aspects of time perception

(Wei-Cong et al., 2015). Studies by Yin et al. (2019) and Onoe et al.

(2001) suggest the DLPFC’s role in temporal discrimination and the

cognitive control of time estimation, crucial for adjusting to delays

in teleoperation. In the context of teleoperation, where operators

need to integrate temporal judgments with motor coordination

and decision-making, the role of the DLPFC could be significant.

It may contribute to how operators perceive and adjust to delays,

particularly in tasks that require them to maintain and manipulate

temporal information over short periods.

Motor coordination, crucial for executing complex teleoperated

tasks, depends significantly on the quality and timeliness of

sensory feedback, with studies emphasizing the critical role of

accurate haptic feedback (Ankarali et al., 2014). Further, research
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by Tin and Poon (2005) on internal models in sensorimotor

integration suggests that delays in feedback can disrupt these

internal models, leading to a misalignment between intended

and executed actions. The impact of this misalignment in high-

precision tasks, as highlighted in the work of Jones and Kandathil

(2018), underscores the necessity for real-time or predictive

sensory inputs in teleoperation. Literature has provided solid

evidence about the neurofunctional ROIs related to the motor

coordination. For example, the primary motor cortex, as shown

by Hari et al. (1998) and Seghezzi and Zapparoli (2020), is

pivotal not only in movement execution but also in motor

planning, adapting strategies in dynamic environments typical of

teleoperation. Scott (2012) and Albert and Shadmehr (2016) further

illustrate its role in encoding movement parameters and adapting

motor plans in response to feedback, crucial under teleoperation

delays. Complementing this, the cerebellum, highlighted in studies

by Fautrelle et al. (2011) and Johnson et al. (2019), plays an

essential role in fine-tuning movements and error correction,

ensuring smooth and coordinated motor output. Its involvement

in predictive motor control, as noted by Witney et al. (1999)

and Zhu et al. (2023), is particularly relevant for anticipating

and compensating for communication delays in teleoperation. The

synergy between the primary motor cortex and the cerebellum, as

discussed by Galea et al. (2011), is fundamental in maintaining

precision and control, adapting, and compensating for the delayed

feedback inherent in teleoperated tasks.

Following this discussion, it is crucial to incorporate recent

insights into the optimality principles of sensorimotor control,

which emphasize the role of OFC in achieving efficient and

accurate motor responses. The OFC framework suggests that the

central nervous system optimally integrates sensory feedback with

predictions of future states to minimize the variance of movement

errors (Todorov and Jordan, 2002). This principle is particularly

significant in teleoperation, where feedback delays can disrupt the

sensory-motor loop. Incorporating OFC principles can lead to the

development of teleoperated systems that better compensate for

these delays by adjusting the control algorithms to anticipate and

mitigate the impact of latency on motor accuracy (Mitrovic et al.,

2010; Zhu et al., 2023). Studies such as Franklin andWolpert (2011)

have demonstrated that applying OFC in robotic systems enables

more adaptive and resilient responses to unexpected changes or

errors in movement execution, enhancing the overall effectiveness

of teleoperated tasks (Zhang et al., 2023).

It is also noted that investigating how simulated feedback

influences specific brain regions can provide critical insights into

the neural mechanisms that could mitigate the adverse effects of

teleoperation delays. The concept of predictive coding suggests

that the brain is not a passive recipient of sensory signals but

actively generates predictions about incoming sensory information,

updating these predictions as new data arrives (Kilner et al.,

2007). This model has profound implications for understanding

how simulated feedback might be integrated into neural processes

to counteract the disorienting effects of delayed teleoperation.

Research by Shadmehr et al. (2010) builds on the predictive coding

framework, proposing that the brain’s predictive mechanisms allow

for smoother motor control by anticipating sensory events. This

is particularly relevant when considering the DLPFC and its

role in cognitive functions, including the integration of sensory

information with motor planning (Abe and Hanakawa, 2009).

Simulated feedback, when designed effectively, could harness these

predictive mechanisms, potentially reducing the cognitive load and

improving motor execution in teleoperation scenarios. The SMA

and pre-SMA, regions involved in the initiation and temporal

organization of movements (Shima and Tanji, 1998; Zhang et al.,

2023), may also benefit from simulated feedback. By providing

early sensory cues, simulated feedback could help in “pre-setting”

these regions, allowing for more accurate timing predictions and

motor responses despite delays (Kilavik et al., 2014). This study

mainly relies on fNIRS data for capturing the key neurofunctional

characteristics, which will be introduced in the next section.

2.2 fNIRS methods in exploring
neurodynamic in teleoperation

fNIRS utilizes near-infrared light to monitor brain activity.

It operates on the principle that oxygenated and deoxygenated

hemoglobin in the brain have distinct absorption spectra in the

near-infrared range. When neurons are active, they consume more

oxygen, altering the balance between oxygenated and deoxygenated

hemoglobin (Zimeo Morais et al., 2018). fNIRS detects these

changes, providing an indirect measure of neural activity. This

method is advantageous for its non-invasiveness, portability,

and relative insensitivity to motion artifacts compared to other

neuroimaging techniques, making it suitable for use in diverse

settings, including those that simulate real-world teleoperation

environments (Tak and Ye, 2014).

Compared to other neuroimaging tools like functional

Magnetic Resonance Imaging (fMRI), Electroencephalography

(EEG), and Positron Emission Tomography (PET), fNIRS offers

unique advantages in the context of teleoperation studies (Abtahi

et al., 2020). fMRI, while offering high spatial resolution, is limited

by its need for a highly controlled, immobile environment, making

it less suitable for dynamic tasks (Ma et al., 2022). EEG, with its

excellent temporal resolution, is sensitive to electrical noise and

requires complex setups (Parvizi and Kastner, 2018). PET, though

powerful in metabolic studies, involves exposure to radioactive

tracers, limiting its practicality (Slough et al., 2016). In contrast,

fNIRS is more adaptable to naturalistic settings, relatively motion-

tolerant, and does not require a strictly controlled environment.

This makes fNIRS a more feasible option for teleoperation

research compared to these other methods (Balardin et al., 2017).

Furthermore, when compared to subjective self-report measures

like the NASA Task Load Index (NASA-TLX; Hart and Staveland,

1988), fNIRS provides a more direct, objective measure of brain

activity. While questionnaires can capture an operator’s self-

perceived workload and stress, they are limited by subjective biases

and post-task rationalization. fNIRS, on the other hand, allows

for the investigation of real-time neural processes underlying task

performance (Maior et al., 2014).

fNIRS has proven crucial for uncovering neural functions

critical to teleoperation. It effectively measures activity in key

areas like the prefrontal cortex, important for executive functions

and decision-making, and the primary motor cortex, involved in
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executing movement commands. These capabilities are essential

for understanding how operators manage the complexities and

dynamic demands of teleoperation (Sanes and Donoghue, 2000;

Euston et al., 2012). Additionally, fNIRS can be used to examine

regions associated with sensory integration and processing, such as

the prefrontal cortex. This area is crucial in how operators combine

visual, auditory, and haptic information during teleoperation. This

capability provides deeper insights into the neural mechanisms

of multisensory integration, which is essential for managing the

complexities of teleoperated environments (Zheng et al., 2023).

fNIRS also plays a pivotal role in providing direct insights into the

neural mechanisms underpinning operator’s motor performance.

In the dynamic and often demanding context of teleoperation,

where operators must continually adapt to feedback delays and

complex control tasks, fNIRS offers a unique observational

perspective on cerebral processes. This includes monitoring of

changes in cortical blood flow related to cognitive and motor

functions, specifically within brain areas like the prefrontal cortex

and motor cortex. Such insights are crucial for understanding how

operators manage and compensate for sensory feedback delays,

enhancing our ability to design more effective teleoperated systems

(Zhu et al., 2021). By continuously monitoring brain activity during

task performance, fNIRS enables post-hoc analysis that allows

researchers to observe how variations in teleoperation conditions,

such as feedback delays, influence specific brain regions. This

analysis is crucial for identifying which aspects of teleoperation

are most cognitively demanding and determining how different

sensory manipulations can effectively mitigate these challenges.

fNIRS technology is crucial for identifying how different

feedback modalities affect operator brain activity. This insight

guides the development of user-centered interfaces and training

programs, which are tailored to the cognitive demands of

teleoperation tasks, enhancing both efficiency and performance.

3 fNIRS-based analytical pipeline

3.1 fNIRS system

We utilized the NIRx fNIRS device with 16 sources and

15 detectors, plus an additional reference detector at the right

pre-auricular point, to filter out extracerebral signals. Operating

at a standard 10Hz sample rate, the device emits near-

infrared wavelengths of 760 and 850 nm, enabling differentiation

between oxygenated and deoxygenated hemoglobin. Our study

concentrated on analyzing data from several key brain regions

relevant to robot teleoperation as illustrated in Figure 1.

3.2 fNIRS data analysis

We processed raw fNIRS data using MNE-python, effectively

removing noise like electronic interference and motion artifacts.

This conversion to changes in hemoglobin concentrations (1HbR)

allows us to measure the brain’s response to teleoperation delays,

assessing cognitive load and decision-making efficiency (Gramfort

et al., 2013). The pipeline for fNIRS data analysis is illustrated in

Figure 2.

Upon importing the raw fNIRS data, it was converted into

optical density (1OD), a measure reflecting changes in light

absorption due to variations in chromophore concentration in the

brain tissue (Tak and Ye, 2014). An essential step in ensuring data

quality involved the evaluation of the Scalp Coupling Index (SCI),

an objective metric quantifying the quality of the optode-scalp

connection (Pollonini et al., 2016). The SCI is critical in fNIRS

data analysis as it reflects the signal strength and integrity; values

<0.5 typically indicate poor data quality, possibly due to motion

artifacts or insufficient contact between the optodes and the scalp.

Channels with SCI values below this threshold were excluded from

subsequent analysis to maintain the integrity of our dataset.

Following the quality assessment, the optical density data from

the fNIRS device underwent a critical filtering process to isolate

the neural signals related to cognitive activity from extraneous

physiological noise. We employed a finite impulse response (FIR)

method, utilizing a bandpass filter within the frequency range of

0.04–0.15Hz to target various types of noise (Khan et al., 2020; Pinti

et al., 2020): Cardiac Cycles: Typically, cardiac-related fluctuations

occur at frequencies around 1.0–1.5Hz; Respiration: Respiratory

patterns generally manifest in the fNIRS signal at frequencies

around 0.3Hz; Very Low-Frequency Drifts: Low-frequency drifts

in fNIRS data, typically below 0.01Hz, can arise from slow shifts

in sensor positioning or gradual changes in baseline physiological

states. The transition band width was set to 0.1 and 0.02Hz at the

high and low cut-off frequencies to ensure a smooth transition

between the passband and the stopband, preventing the abrupt

cutoff of relevant signals. The high cut-off frequency was designed

to exclude high-frequency noise, such as electronic interference or

rapid motion artifacts, while the low cut-off frequency was adjusted

to remove the slower physiological oscillations without affecting the

integrity of the cognitive-related hemodynamic signals.

To measure hemoglobin concentration changes, we utilized the

Beer-Lambert Law (Swinehart, 1962). This principle posits that the

concentration of a light-absorbing substance within a medium is

directly proportional to the length of the light’s path through that

medium. By applying this law in the context of fNIRS, we estimate

changes in oxygenated (HbO) and deoxygenated hemoglobin

(Hb) based on the absorption properties of blood, incorporating

adjustments for light scattering with a partial pathlength factor.

We prioritized HbO as our primary measure due to its enhanced

sensitivity to changes in cerebral blood flow, particularly significant

in tasks that involve motor execution. This decision is supported by

literature indicating HbO’s reliable reflection of the brain’s response

to motor-related demands, as it more directly captures the increase

in blood oxygenation following neuronal activation (Obrig and

Villringer, 2003; Pereira et al., 2023). These characteristics make

HbO a particularly useful indicator in studies focused on motor

activities, where accurate measurement of regional brain activation

is critical.

In this study, we utilized an event-related analytical approach,

focusing on crucial teleoperation tasks such as object pick-up and

drop-down. We segmented the fNIRS data into epochs extending

from 10 s before to 30 s after each event. This 40-s window was

strategically chosen to not only capture the preparatory phase,
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FIGURE 2

Analytical pipeline for fNIRS data, detailing the sequential steps in the data processing workflow. Signal acquisition: involves collecting raw fNIRS

signals under controlled conditions to ensure data integrity and reliability. Preprocessing: entails filtering, correcting, and normalizing the data to

remove noise and artifacts, enhancing signal quality for analysis. Processing: consists of applying statistical and computational techniques to extract

meaningful patterns and metrics from the preprocessed data, leading to the identification and interpretation of cerebral hemodynamic responses.

where participants are actively engaging with the controls to

accurately target and maneuver the object, but also to include

the post-event period. This approach ensures that we account

for significant brain activity initiated by both visual and haptic

feedback delays during task execution, which is critical for a

comprehensive understanding of cognitive andmotor adjustments.

The selected time window also accommodates the inherent

delay in hemodynamic responses, commonly referred to as the

time-to-peak, which ranges from 2 to 8 s following the stimulus

onset (Huppert et al., 2006). Furthermore, the hemodynamic

response does not immediately return to baseline after peaking but

rather declines gradually over an extended period. This gradual

decline can last significantly beyond the peak, necessitating an

extended observation window to accurately capture the entire

hemodynamic curve (Lindquist et al., 2009; Amiri et al., 2014;

Duarte et al., 2023). Baseline levels were established during a

separate 5-min measurement phase prior to task engagement,

ensuring that the fNIRS data collected during tasks are accurately

reflective of changes due to task-specific brain activity.

To maintain data integrity, a thorough cleaning process

was implemented to remove physiological interferences, such as

those caused by heartbeats and respiration (Pinti et al., 2020).

This meticulous approach to data preparation ensures that our

analysis remains focused on the brain activity directly linked to

each task performance. Averaging data across all phases of the

experiment could potentially obscure these detailed event-specific

hemodynamic patterns, particularly given the longer periods of

lower neural activity that occur between the task events.

For our primary measure, we calculated the mean change in

oxygenated hemoglobin (delta HbO) within this 40-s window for

each event, thus providing a detailed view of the brain’s response

to each specific task action. This approach was chosen to capture

the hemodynamic responses associated with the specific tasks or

stimuli in our experiment, providing a direct measure of the

cerebral blood flow changes over time. This averaging is intended

to stabilize the signal against short-term fluctuations and highlight

more sustained changes in brain activity that are directly relevant

to task performance.

While this method effectively captures the overall

hemodynamic pattern related to specific events, we acknowledge

that it averages out finer temporal details within these windows.

Some of the finer temporal dynamics, particularly those within

shorter time intervals, are not distinctly represented. Future studies

might benefit from incorporating more granular time-series

analyses, such as General Linear Model (GLM) approaches, which

could provide additional insights into the precise timing and

magnitude of neural responses. Such analyses would complement

our current findings by offering a detailed temporal resolution of

neural activity patterns, enhancing our understanding of the neural

underpinnings in teleoperation tasks.

4 Materials and methods

4.1 Overview

The study was approved by the Institutional Review Board

(IRB) of the University of Florida, Gainesville, FL, USA (No.

IRB202100257). Written informed consents were obtained from

all participants in full accordance with the ethical principles of

the relevant IRB guidelines and regulations. All methods were

carried out in accordance with relevant guidelines and regulations.

The following inclusion criteria were applied: (1) age ≥ 18 years;

(2) no known physical or mental disabilities; (3) no known

musculoskeletal disorders.
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FIGURE 3

The layout of the object manipulation task in human-subject experiments. (A) 3D perspective of the experimental scene; (B) Objects and targets

setup; (C) First person view of the participants; (D) Participants completed the experiment using haptic feedback device.

4.2 Experiment design

The main task in the human-subject experiment was an object

manipulation task. The experiment was designed as a within-

participant experiment, i.e., each participating subject experienced

four conditions. To avoid learning effects, the sequence order

was shuffled for each subject. The performance data (time and

accuracy), motion data (moving trajectory), eye tracking data (gaze

focus and pupillary size), and neurofunctional data (measured by

fNIRS) were collected. Participating subjects were also requested

to report their perceived delays, to compare them with the actual

delays. Before the experiment, each participant was required to fill

out a form of demographic survey, and the consent form approved

by UF’s IRB office. Then they would take a training session, to

familiarize themselves with the use of VR. Afterwards, participants

were required to take a break by sitting quietly with all sensors on.

This break session was for collecting baseline data (e.g., pupillary

diameter and fNIRS baseline), and to remove possible impacts of

the training session. After each experiment trail, participants were

promoted to fill out questionnaires related to NASA TLX and trust.

Participants needed to interact with four colored cubes: gray,

green, blue, and purple. Each cube aligned with a target with

the same color, requiring participants to accurately move these

cubes following a predefined sequence: gray, green, blue, and

then purple. The sequenced tasks were systematically structured

to gradually increase in complexity and challenge. In this setting,

each cube’s path to its corresponding target was blocked by various

obstacles, which carefully integrated into the task environment.

These obstacles vary in size and position, adding to the complexity

of the task and representing different locomotor challenges that

participants had to contend with as illustrated in Figure 3. In

total, each participant needs to complete 10 trails (as illustrated in

Table 1) and each trail has four blocks needed to move.

To minimize the effects of fatigue, our experimental session

was structured to be∼1 h per participant, including all preparation

and breaks. Device Setup and Training (10min): Participants

spent around 10min wearing the fNIRS device and getting

familiarized to the virtual reality (VR) environment to ensure

comfort and reduce anxiety or fatigue during the experiment.

Baseline Measurement (5min): A 5-min break was provided to

establish a fNIRS baseline, allowing participants to rest before

engaging in the tasks. Task Conditions (average 3min each):

Each experimental condition was designed to last an average

of 3min. These short, manageable intervals helped maintain
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TABLE 1 Feedback delays correspond to each condition.

Condition Visual delay (sec) Haptic delay
(sec)

Standard 0 0

Anchoring 0.25 0

Anchoring 0.5 0

Anchoring 0.75 0

Synchronous 0.25 0.25

Synchronous 0.5 0.5

Synchronous 0.75 0.75

Asynchronous 0.5 0.25

Asynchronous 0.75 0.25

Asynchronous 1.0 0.25

participant focus and energy. Rest Periods: Regular 1-min breaks

were incorporated between conditions to provide participants with

time to relax and minimize fatigue.

Additionally, to address potential order effects and ensure that

fatigue did not disproportionately affect any single condition, we

employed a counterbalancing approach by shuffling the sequence

of conditions for each participant. This approach was aimed at

distributing any potential fatigue effects evenly across all conditions

and ensuring that no specific task was consistently encountered at

the end of the session.

When dissecting the delay, it is categorized into haptic feedback

delay (1haptic), and visual feedback delay (1visual). As illustrated in

Table 1, our experiment was based on four sensory manipulation

conditions as follows:

Condition 1: Standard condition: 1haptic = 1visual, resulting

in instantaneous haptic and visual feedback. In this real-time

interaction scenario, the operator receives immediate multisensory

feedback post-action initiation.

Condition 2: Anchoring. 1haptic = 0 while 1visual changes.

Due to the intrinsic delays in visual feedback, real-time haptic

responses are generated post-action initiation based on the

simulated force feedback (e.g., inertia, resistance, and vibration) at

the local workstation.

Condition 3: Synchronous. Both 1haptic and 1visual are

intentionally subjected to a synchronized delay in order to promote

multisensory alignment and enhance the coherence of perceptual

experiences through the alignment of sensory modalities.

Condition 4: Asynchronous. This condition embodies variable

delays in sensory feedbacks, presenting a realistic and challenging

scenario in which perceptible delays influence the initiation and

reception of haptic and visual feedbacks.

The standard condition is intended to serve as the ground

truth or baseline for comparison with other experimental

conditions. Specifically, this condition is conducted under

optimal conditions where there are no visual or haptic delays,

providing an unaltered scenario that represents the ideal state of

teleoperation performance.

4.3 Experiment platform

Building upon our detailed system design presented in Du et al.

(2023), this section offers a concise overview of the key components

of our teleoperation system, focusing on the VR system, its

integration with various elements, and the implementation of delay

coding functions.

Central to our teleoperation system is an advanced Virtual

Reality (VR) setup, providing a fully immersive simulation

environment developed in Unity. This platform replicates the

physical dynamics and robot interactions with high fidelity,

ensuring a realistic teleoperation experience. Another critical

element in our system is the seamless integration between

the Robot Operating System (ROS) and the Unity-based VR

environment, facilitated by ROS#. This connection allows for real-

time synchronization between the virtual environment and the

physical robot, ensuring that any action taken in the VR space is

instantly mirrored in the robot’s movements.

To enhance the realism and interactivity of the VR

environment, we incorporated the Touch X haptic controller. This

device provides haptic feedback, replicating the physical sensations

of manipulating objects or encountering resistance, crucial for

tasks requiring fine motor control. The haptic feedback system is

intricately coded to respond to both the operator’s actions and the

simulated physics of the VR environment, creating a cohesive and

immersive experience. Finally, recognizing the impact of feedback

delays on teleoperation, our system architecture includes specially

developed coding functions to simulate various delay scenarios.

Both visual and haptic feedback can be intentionally delayed,

allowing us to study the operator’s adaptability and performance

under different sensory delay conditions.

While our VR task provides valuable insights into the

neurofunctional and motor control challenges in teleoperation, it

is distinct from surgical teleoperation, which involves additional

complexities such as biological variability and higher stakes in

terms of patient safety. Our findings contribute to a broader

understanding of teleoperation in non-medical contexts, offering

implications for the design and training of teleoperated systems

in industrial and rescue operations. Future research could

explore how these insights might translate to the more nuanced

requirements of surgical environments.

4.4 Data collection methods

Optimal data collection quality for fNIRS requires careful

preparation. Participants were advised to ensure their hair was

clean and free from products that could obstruct the fNIRS sensors,

and to avoid hairstyles or accessories that might disrupt the

cap’s placement. This preparation stage was critical for enhancing

sensor-skin contact and the fidelity of the collected data, enabling

a more accurate assessment of the cortical activity associated with

the cognitive demands of the task. The stability of the experimental

conditions, including controlled lighting and the participant’s

stationary posture while operating the haptic device, ensured that

data integrity was maintained.
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In the beginning, participants were asked to sign an informed

consent form and fill out a background questionnaire about their

age, gender, and VR experience. The experimental scene and

content of each phase were the same. The sequence of tasks under

different conditions was shuffled to eliminate the learning effects.

The training session was designed to familiarize participants with

the VR system and interactions within the virtual environment.

Each participant was instructed to be acquainted with the devices

(VR headset and haptic controller) and the virtual environment.

Then, participants were given instructions about how to use the

haptic controller to pick up and place the objects. After the training

session, participants were asked to perform the pick-up and place

task based on the virtual pipe skid system. After each phase,

participants provided feedback throughNASATLX questionnaires.

During the experiment, participants were required to precisely

control the robot gripper to stably grasp the cubes without

knocking them away. Once successfully grasped, they should

control the robot gripper past the obstacles and accurately place

them on the corresponding target plate. The accuracy of the cube’s

positioning on the target is crucial, as it is a key metric for

evaluating participants’ operational performance. The use of visual

and haptic feedback delays in the experimental design was critical

for simulating the temporal challenges inherent in teleoperation

tasks. These delays required the participants to rely on their

cognitive adaptability, a phenomenon that conventional behavioral

metric might not fully capture. Employing fNIRS allowed us to

measure the operator’s brain activities in response to sensory

feedback delays, providing objective data on the neural correlates

of delay adaptation in teleoperation. This technique helped us to

elucidate the fundamental neurological mechanisms impacted by

delays and the cognitive strategies employed by operators during

task performance.

To ensure robust statistical analysis, we initially assessed the

distribution of each variable for normality. Variables not normally

distributed were transformed using a logarithmic transformation

to achieve normality. We then verified that normally distributed

variables had homogeneous variances. For variables meeting these

assumptions, we employed repeated measures Analysis of Variance

(ANOVA) to analyze parametric study measures. For data that

did not meet parametric assumptions, we conducted Signed Rank

Wilcoxon tests to identify significant differences.

Prior to the main study, we conducted a pilot with five

participants to refine our experimental procedures and perform

an initial power analysis. This analysis, conducted using the

open-source library Pingouin (Vallat, 2018), was based on Vallat’s

recommendations, considering the condition as the between-group

factor and placement error and time on task as dependent variables.

The power analysis indicated effect sizes of 0.50 for placement error

and 0.31 for time on task, determining minimum sample sizes of 4

and 8, respectively, to achieve a power of 0.8 with a Type I error

probability of 0.05. To enhance the reliability of our findings, we

expanded our sample to 41 healthy subjects. A subsequent power

analysis incorporating all participants demonstrated a statistical

power of 0.997, indicating a very high likelihood of detecting

significant differences among the conditions in our ANOVA tests.

This robust sample size greatly increases our confidence in the

statistical validity and reliability of our results.

TABLE 2 Demographic information of the participants.

Number Percentage

Gender Male 26 63.41%

Female 15 36.59%

Age group 18–24 14 34.15%

25–30 24 58.53%

31 and older 3 7.31%

Major Engineering (civil,

coastal, construction,

mechanical, and related)

18 43.90%

Non-engineering 23 56.10%

VR

experience

Experience with VR 12 29.27%

Non-experience with VR 29 70.73%

5 Results

5.1 Participants

We recruited a total of 41 subjects for this experiment.

The demographic information includes the gender, age group,

major, and VR experience of participants are illustrated in

Table 2. All participants reported that they were right-handed

and did not have any known motor disorders or a history of

neurological abnormalities.

5.2 Performance results

In our previous study Du et al. (2023), we investigated

various performance metrics to determine the influence of delayed

feedback in teleoperation. The placement error, time on task, and

cognitive load during pick-up and drop-off phases were evaluated

using pupil size as a physiological indicator. Subjective assessments

were also employed through the NASA-TLX questionnaire to

measure the perceived workload and stress levels of participants.

Figures 4–7, 10–13 is the comparison analysis results among

four conditions: Standard (1haptic = 1visual), Anchoring

(1haptic = 0 while 1visual changes), Synchronous (Both 1haptic and

1visual are intentionally subjected to a synchronized delay), and

Asynchronous (variable delays in sensory feedbacks). ∗Indicates

statistically significant change (n.s., no significant difference, ∗p <

0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001). The boxplot shows

the distribution of the data being analyzed. The bottom and top of

the box represent the 25 and 75th percentiles, respectively, while

the line inside the box denotes the median (50th percentile). The

whiskers extend to the 1.5 IQR (interquartile range), and the error

bars indicate the 95% confidence intervals (CI= 95%), providing a

statistical measure of the precision of the sample mean. Outliers

are represented as solid circles. The black horizontal line in the

box plots below represents the median of the data and the red line

represents the mean of the data.
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FIGURE 4

Statistical analysis results of (A) placement error and (B) time on task comparison. *Indicates statistically significant change (n.s., no significant

di�erence, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

For placement error, we measured it as the Euclidean distance

between the actual placement of the cube and the center of the

target location. As illustrated in Figure 4, the results indicate that

for the placement error, the standard condition is significantly

better than asynchronous condition (p = 0.007) as well as

synchronous condition (p = 0.004); the anchoring condition is

significantly better than the asynchronous condition (p = 0.043)

and the synchronous condition (p = 0.032). There is no significant

difference between the standard and anchoring (p = 0.168), the

asynchronous and synchronous condition (p = 0.892). Time on

Task is the difference between the end time and the start time of

the task. The results also indicate significant differences between

the standard and anchoring condition (p = 0.009), asynchronous

condition (p < 0.001), synchronous condition (p < 0.001); and

between anchoring and asynchronous condition (p= 0.018) as well

as the synchronous condition (p = 0.049). There is no significant

difference between the asynchronous and synchronous condition

(p= 0.741).

About time perception, we focused on examining three time

perception metrics: visual perception difference, haptic perception

difference, and visuomotor gap perception difference.

Perceived visual delay: This is the delay that participants

perceive between initiating an action and seeing the result visually.

It is measured by asking participants to estimate the visual delay

they experience during each phase of the experiment.

Actual visual delay: This is the delay objectively introduced

in the visual feedback within the teleoperation system. It is a

controlled variable set by the experiment to simulate different

conditions of teleoperation latency.

Perceived haptic delay: Similar to perceived visual delay, this

is the delay that participants report feeling between initiating an

action and receiving haptic feedback. This is measured through

participant self-report after each experimental phase.

Actual haptic delay: This is the objectively measured delay

between the initiation of an action and when the haptic feedback

is provided by the system. Like the actual visual delay, this is

a predefined variable controlled throughout the experiment to

simulate various feedback scenarios.

Perceived visuomotor gap: This refers to the gap that

participants perceive between the visual and haptic delays. It is

calculated as the difference between perceived visual delay and

perceived haptic delay.

Actual visuomotor gap: This is the actual difference between

the visual and haptic delays as programmed into the teleoperation

system. It is calculated as the difference between the actual visual

delay and the actual haptic delay.
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FIGURE 5

Statistical analysis results of perception performance. (A) Visual perception di�erence; (B) haptic perception di�erence; (C) visuomotor gap

perception di�erence. *Indicates statistically significant change (n.s., no significant di�erence, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

Visual perception difference (Equation 1) is defined by the

difference between the perceived visual delay (Delayvp) and the

actual visual delay (Delayva) in a phase, i.e.,

1v = Delayvp − Delayva (1)

Haptic perception difference (Equation 2) is defined by the

difference between the perceived haptic delay (Delayhp) and the

actual haptic delay (Delayha) in a phase, i.e.,

1h = Delayhp − Delayha (2)

Note there were cases when there was a gap between the

visual delay and the haptic delay, which we call visuomotor

gap. We are also interested in the perception of the visuomotor

gaps in different conditions. Visuomotor perception difference

(Equation 3) is defined by the difference between the perceived

visuomotor gap (Gapp) and the actual visuomotor gap (Gapa) in

a phase, i.e.,

1gap = Gapp − Gapa (3)

The results show that for visual perception difference, the

standard is significantly lower than asynchronous condition (p

< 0.001) and synchronous condition (p < 0.001); anchoring

condition is significantly lower than the asynchronous condition

(p= 0.003) as well as the synchronous condition (p< 0.001). There

is no significant difference between the standard and anchoring

(p = 0.448), the asynchronous and synchronous condition (p =

0.506). For the haptic perception difference, the results indicate

that synchronous condition is significantly lower than anchoring

condition (p = 0.003) as well as asynchronous condition (p =

0.001). There is no significant difference between the standard

and anchoring condition (p = 0.091), asynchronous condition (p

= 0.090), synchronous condition (p = 0.052); between anchoring

and asynchronous condition (p = 0.098). For the visuomotor

gap perception difference, synchronous condition is significantly

larger than standard condition (p < 0.001), anchoring condition

(p < 0.001), asynchronous condition (p < 0.001); anchoring

condition is lower than asynchronous condition (p = 0.024).

There is no significant difference between standard and anchoring

condition (p = 0.237) and asynchronous condition (p = 0.534).

In the synchronous condition, where both visual and haptic

feedbacks were delayed identically, we observed a surprisingly large

visuomotor perception gap. This could be attributed to several

interrelated factors:

Integration and expectation of sensory inputs: Participants in

synchronous conditions might process aligned sensory delays with

heightened sensitivity, leading to an exaggerated perception of

discrepancies. This sensitivity is potentially compounded by precise

expectations of temporal alignment, where any minor deviation in

synchronization between seen and felt stimuli could be perceived as

a significantly larger gap.

Lack of adaptive calibration: Unlike asynchronous conditions

where participants might gradually adapt to staggered sensory

delays, the synchronous setting does not encourage such adaptive

strategies. Without the need to adjust to differing times of sensory

inputs, the brain may not calibrate as effectively to the delays,

maintaining a consistent perception of a larger gap. This lack of
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FIGURE 6

Statistical analysis results of cognitive load changes in (A) object pickup and (B) drop-o� stages. *Indicates statistically significant change (n.s., no

significant di�erence, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

adaptation could result in a more pronounced discrepancy between

expected and actual sensory feedback, accentuating the perceived

visuomotor gap.

These insights into the cognitive processing of synchronized

sensory feedback highlight the complexity of human perception

under controlled delay conditions. Further research is warranted

to delineate the specific neural and cognitive mechanisms that

contribute to these perceptions, potentially using more nuanced

psychophysical tests or neuroimaging to track how the brain

integrates and responds to synchronous vs. asynchronous stimuli.

For cognitive load, we developed a novel approach to evaluate

participants’ real-time cognitive load based on their pupillary

diameter data (mm) collected by eye trackers. We divided the data

of each trail into object pick-up stage and object drop-off stage. As

illustrated in Figure 6, for the pick-up stage, the standard condition

has lower cognitive load than anchoring condition (p = 0.032),

asynchronous condition (p = 0.003), synchronous condition (p

< 0.001); anchoring condition have lower cognitive load than

synchronous condition (p = 0.004). There is no significant

difference between anchoring and asynchronous condition (p =

0.086), between asynchronous and asynchronous condition (p

= 0.276). For the drop-off stage, the results indicate that the

standard also better than asynchronous condition (p = 0.006) and

synchronous condition (p = 0.012); the anchoring condition has

lower cognitive load than asynchronous condition (p = 0.048) and

the synchronous condition (p = 0.045). There is no significant

difference between the standard and anchoring condition (p =

0.178), between the asynchronous and synchronous condition

(p= 0.983).

The NASA-TLX results shown in Figure 7. The results indicate

that for total score, standard condition have the lowest cognitive

load compared to anchoring condition (p = 0.021), asynchronous

condition (p = 0.006), synchronous condition (p = 0.024); There

is no significant difference between anchoring and asynchronous

condition (p = 0.470) as well as the synchronous condition (p =

0.843); between the asynchronous and synchronous condition (p=

0.632). For confidence level, standard condition also shows highest

confidence level compared to anchoring condition (p = 0.007),

asynchronous condition (p < 0.001), synchronous condition

(p < 0.001); anchoring condition is significantly higher than

asynchronous condition (p = 0.024) as well as the synchronous

condition (p = 0.019). There is no significant difference between

the asynchronous and synchronous condition (p = 0.829). For

frustration level, standard condition still better than anchoring

condition (p = 0.004), asynchronous condition (p < 0.001),

synchronous condition (p < 0.001); anchoring shows lower
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FIGURE 7

Statistical analysis results of NASA TLX related to (A) total score (when calculating the total score, 10-Confidence score is used as the calculation

parameter), (B) self-confidence level, and (C) frustration level for delays up to 1 s. Other NASA TLX results are not shown because of the insignificant

di�erence among the conditions. *Indicates statistically significant change (n.s., no significant di�erence, *p < 0.05, **p < 0.01, ***p < 0.001, ****p <

0.0001).

frustration level than asynchronous condition (p = 0.033). There

is no significant difference between anchoring and synchronous

condition (p = 0.110), between asynchronous and synchronous

condition (p= 0.694).

Participants in the standard condition reported higher levels of

self-confidence and lower levels of frustration compared to other

conditions, with anchoring also outperformed the synchronous and

asynchronous conditions. The results from these metrics provided

an initial understanding of the operational performance and

cognitive states of operators under different feedback conditions.

Building upon this foundation, the present study delves deeper

into the cognitive activities in different brain areas. By using fNIRS,

we aim to demonstrate the specific brain regions engaged during

teleoperation tasks, thereby providing a more refined perspective

on the neural correlates of performance and brain activation. This

approach allows us to pinpoint the hemodynamic responses in

areas critical for decision-making, sensorimotor coordination, and

time perception, factors that are critical to managing the challenges

posed by feedback delays in teleoperation.

5.3 fNIRS results

Figure 8A illustrated the raw OD data as initially recorded

during the teleoperation tasks and Figure 8B illustrated the filtered

OD data. The SCI was used to identify and exclude channels

with insufficient signal quality, which show as lighter lines in

filtered data. The remaining channels were then subjected to a

bandpass filter, carefully designed to remove physiological noise

such as cardiac and respiratory influences while preserving the

signals pertinent to cognitive activity. These filtered OD values

were then further processed to derive the concentration changes of

oxyhemoglobin based on Beer-Lambert Law.

To analyze the brain activities to task events in teleoperation,

we segmented the processed fNIRS data into specific epochs. Each

epoch ranges from 10 s before to 30 s after the events of object pick-

up and drop-off. Figure 9 presents an example of this segmentation,

showcasing data from participant #11 during a pick-up event.

The figure visualizes the changes in oxyhemoglobin concentration,

reflecting the brain’s hemodynamic response during this critical

phase of the task.

To comprehensively evaluate the impact of different

teleoperation conditions on brain activity, we conducted a

statistical analysis of the oxyhemoglobin concentration across

various brain areas. We employed the Kruskal-Wallis test, a

non-parametric method used to determine if there are statistically

significant differences between the groups. It is especially useful

when our data does not follow a normal distribution, which is often

the case in real-world data. The test essentially assesses whether

one group is stochastically larger than the other and provides a

p-value that we can use to test our hypothesis.

5.3.1 Anterior prefrontal cortex results
As illustrated in Figure 10, in the anterior prefrontal cortex,

known for its role in executive functions and decision-making,

the anchoring condition showed lower brain activation compared

to the asynchronous (p = 0.005) and synchronous conditions (p
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FIGURE 8

fNIRS signal preprocessing example of participant #11: (A) raw optical density signals; (B) filtered optical density signals.

= 0.006). There is no significant difference between standard and

anchoring conditions (p = 0.126), asynchronous conditions (p =

0.062), synchronous conditions (p= 0.063); between asynchronous

and synchronous conditions (p = 0.883). This could suggest that

immediate haptic feedback, even when visual feedback is delayed,

may help reduce the cognitive demands associated with integrating

sensory information and making decisions. This reduction in brain

activation could facilitate more efficient task performance, as the

operator may rely more on the sense of touch, which is less affected

by the delays.

5.3.2 Dorsolateral prefrontal cortex results
As illustrated in Figure 11, in the dorsolateral prefrontal

cortex, associated with motor planning, working memory, and

the cognitive aspects of time perception, exhibited a pattern of

reduced brain activation in the anchoring condition. The left

dorsolateral prefrontal cortex displayed a lower brain activation

in both the standard (p = 0.006) and anchoring (p = 0.017)

conditions than in the synchronous condition. There is no

significant difference between standard and anchoring conditions

(p = 0.993) as well as asynchronous conditions (p = 0.073);

between anchoring and asynchronous conditions (p = 0.095);

and between asynchronous and synchronous conditions (p =

0.392). The right dorsolateral prefrontal cortex exhibited a lower

brain activation in the anchoring condition compared to both the

asynchronous (p= 0.002) and synchronous (p= 0.003) conditions.

There is no significant difference between standard and anchoring

conditions (p = 0.113), asynchronous conditions (p = 0.551),

synchronous conditions (p = 0.462); between asynchronous and

synchronous conditions (p = 0.749). This observation suggests

that synchronized delays in feedback may hinder the operators’
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FIGURE 9

Oxyhemoglobin concentration changes of the pick-up event for participant #11.

ability to effectively plan motor actions and manage time-based

decision-making, consequently increasing brain activation. The

anchoring condition, which provided immediate haptic feedback,

appeared to promote a more efficient cognitive process, possibly

by aiding in the temporal synchronization of motor actions and

mitigating the disorienting effects of delayed visual feedback. It

also highlights how the integration of haptic cues can support the

cognitive processes involved in time perception, helping operators

to maintain a coherent sense of timing despite the inherent delays

in teleoperation.

5.3.3 Primary motor cortex results
As illustrated in Figure 12, in the primary motor cortex,

responsible for the execution of movements, anchoring condition

demonstrated better performance compared to the asynchronous

condition. The left primary motor cortex displayed a lower

brain activation in the anchoring condition compared to the

asynchronous condition (p = 0.037). There is no significant

difference between standard and anchoring conditions (p= 0.539),

asynchronous conditions (p= 0.180), synchronous conditions (p=

0.993); between anchoring condition and synchronous condition

(p = 0.312); between asynchronous and synchronous conditions

(p = 0.113). The right primary motor cortex also exhibited a

lower brain activation in the anchoring condition compared to

the asynchronous condition (p = 0.040). There is no significant

difference between standard and anchoring conditions (p= 0.952),

asynchronous conditions (p= 0.243), synchronous conditions (p=

0.517); between anchoring condition and synchronous condition

(p = 0.204); between asynchronous and synchronous conditions

(p = 0.243). This suggests that the stabilizing effect of immediate

haptic feedback extends beyond planning and preparation, directly

facilitating the actual motor execution. The reduction in brain

activation observed in this region further supports the idea that

the immediate feedback in the anchoring condition mitigates the

challenges brought on by delayed visual feedback, enhancingmotor

execution efficiency.

5.3.4 Premotor cortex results
As illustrated in Figure 13, in the premotor cortex, focused

on the organization and planning of movements, anchoring

condition also showed better performance compared to the

asynchronous condition. The left premotor cortex displayed a

lower brain activation in the anchoring condition compared to

the asynchronous condition (p = 0.039), suggesting that the

immediate haptic feedback provided by the anchoring condition

enhances the brain’s ability to plan and prepare for movements.

There is no significant difference between standard and anchoring

conditions (p = 0.431), asynchronous conditions (p = 0.198),

synchronous conditions (p = 0.462); between anchoring condition

and synchronous condition (p = 0.058); between asynchronous

and synchronous conditions (p = 0.550). For right premotor

cortex, there is no significant difference between standard and

anchoring conditions (p = 0.723), asynchronous conditions (p =

0.076), synchronous conditions (p = 0.634); between anchoring

condition and asynchronous condition (p = 0.186) as well as

synchronous condition (p = 0.452); between asynchronous and

synchronous conditions (p = 0.257). This finding indicates that

even in the presence of visual feedback delays, immediate haptic

feedback can effectively support the cognitive processes involved in

organizing motor actions, leading to more efficient motor planning

and reduced brain activation.

Interestingly, despite the standard condition demonstrating

better task performance, it was associated with a larger brain

activity mean value across several cortical areas, including the

prefrontal, right dorsolateral prefrontal cortex, and motor cortices.

One possible explanation for this phenomenon is that: in the
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FIGURE 10

Statistical analysis results of oxyhemoglobin concentrations

changes in anterior prefrontal cortex. *Indicates statistically

significant change (n.s., no significant di�erence, *p < 0.05, **p <

0.01, ***p < 0.001, ****p < 0.0001).

standard condition, without feedback delay, operators may adopt

a strategy that emphasizes speed and accuracy, taking advantage

of the immediacy of the system’s responses. This could result in

the utilization of more “cognitive energy” to maintain a high level

of performance. The term “cognitive energy” here refers to the

engagement and allocation of cognitive resources, such as attention,

working memory, and executive functions, that are necessary to

perform a task effectively.

Consequently, the fNIRS data indicated increased activity in the

relevant brain regions, which might reflect this intensive cognitive

engagement. This high level of activation could be interpreted

positively as an indicator of the operators’ active and focused state,

enabling them to perform efficiently without delays. Conversely,

in the anchoring condition and even more so in the asynchronous

and synchronous conditions, the presence of feedback delays may

require a shift in strategy. Operators had to first compensate for

the “disruption” introduced by the delay, which could involve a

more cautious approach, increased error-checking, or a reliance

on alternative sensory feedback (like haptic cues in the anchoring

condition). This shift could lead to a different pattern of brain

activation, possibly a less intense one, as operators may spread

their cognitive resources over a longer period due to the delay

in feedback.

Therefore, the reduced activation in the anchoring condition

compared to the standard condition might be due to a more

distributed brain activation over time, rather than a concentrated

burst of cognitive activity to immediately respond to feedback.

This interpretation suggests that the high activation in the standard

condition aimed at optimizing performance, whereas in the delayed

conditions, cognitive efforts might be partly directed toward

mitigating the negative impacts of delay.

It’s important to note that these assumptions about the

nature of cognitive activation are based on the observed data

patterns and theoretical understanding of task demands. However,

without direct evidence of the operators’ strategies or subjective

experiences, these interpretations remain speculative. Further

research, perhaps incorporating qualitative data on operator

strategies or additional quantitative measures, would be necessary

to substantiate these hypotheses.

6 Discussion

Our human-subject experiment was designed to understand

the neurofunctional implications of sensory manipulation in

delayed robot teleoperation, yielded several insightful findings.

Initially, when considering the neural data averaged across

all phases of the experiment (pick-up, movement, and drop-

off), no significant differences were observed among the four

conditions: standard, anchoring, synchronous, and asynchronous.

Nevertheless, a focused analysis on the pick-up phase (40 s)

indicated differences among the four conditions. It suggests that

the neurofunctional changes may have been event driven. And the

pick-up phase represented a more difficult motor action, because

the participants needed to move the robotic gripper to the center

of the object, align well with the edge, and then grab the object,

it did require more nuanced controls. While in contrast, the

movement and the drop-off of the object on the target platform

were comparably easier. As a result, we focused on the analysis of

the pick-up phase.

In this phase, our initial hypothesis posited that the standard

condition, characterized by simultaneous and delay-free visual and

haptic feedback, would exhibit lower cognitive strain compared to

conditions with delayed feedback. Contrary to our expectations,

however, our findings did not reveal a significant reduction in

cognitive strain in the standard condition relative to the anchoring

condition. This observation suggests that even in the absence of

sensory delays, the cognitive load required to manage multiple

synchronous sensory inputs remains substantial.

One possible explanation for this phenomenon, as suggested

by studies in the field of cognitive neuroscience, is that the

higher activation observed in the standard condition may

represent positive engagement with the task (Jansma et al., 2000).

Engaging actively with multiple sensory channels might stimulate

more extensive neural networks, reflecting a more involved

and potentially enjoyable task experience. However, this higher

activation could also signify cognitive strain. The need to constantly

switch between visual and haptic feedback, as theorized by

Alport et al. (1994), might place additional demands on cognitive
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FIGURE 11

Statistical analysis results of oxyhemoglobin concentrations changes in (A) left dorsolateral prefrontal cortex and (B) right dorsolateral prefrontal

cortex. *Indicates statistically significant change (n.s., no significant di�erence, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

resources, thereby increasing cortical activation. This scenario is

consistent with the dual-task interference model, which suggests

that managing multiple streams of sensory information can elevate

cognitive load (Pashler, 1994).

Despite the cognitive demands being comparable across

standard and anchoring conditions, the standard condition

exhibited the best performance in terms of placement accuracy

and time on task. This indicates that effective integration of

synchronous sensory feedback, even at higher cognitive costs, may

enhance performance. In contrast, in the anchoring condition, as

visual feedback delay increases, participants may rely more heavily

on haptic feedback and lessen their reliance on visual cues. This

reduced sensory switching could lead to lower cortical activation

but also results in poorer performance compared to the standard

condition, where sensory integration is more balanced.

For anchoring, synchronous, and asynchronous conditions,

the anchoring condition (immediate simulated haptic feedback

with delayed visual cue) not only demonstrated improved motor

performance but also showed a lower activation level in the

anterior prefrontal cortex compared to both the synchronous and

asynchronous conditions. This suggests a reduction in cognitive

load. This aligns with the theory of cognitive load proposed

by Sweller (1988), which posits that tasks with lower intrinsic

cognitive demand result in lower cortical activation. By providing

consistent haptic feedback, the anchoring conditionmay streamline

the cognitive process, reducing the need for continuous cross-

modal integration and error-checking that is more pronounced

in conditions with asynchronous or no feedback. This reduction

in cross-modal processing, as discussed in the multisensory

integration literature (Stein and Stanford, 2008), may lead to amore

efficient cognitive process with less prefrontal engagement.

Additionally, activation in the dorsolateral prefrontal cortex

was similarly lower in the anchoring condition compared to

both the synchronous and asynchronous conditions, reflecting a

reduction in the cognitive demands of task management. This

observation aligns with findings from Dockree et al. (2004), who

noted that lower DLPFC activation correlates with reduced task-

switching costs and more streamlined decision-making processes.

Similarly, research by Paus (2001) suggests that decreased DLPFC

activation during task performance could indicate more efficient

cognitive control, particularly when participants become adept

at utilizing consistent feedback to anticipate and adapt to

task requirements. Such efficiency could explain the improved

performance in motor tasks observed in the anchoring condition,

as consistent haptic feedback may reduce the necessity for constant

vigilance and adjustment prompted by varying sensory delays.

Furthermore, the anchoring condition led to reduced activation

in the motor cortex compared to the asynchronous condition.
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FIGURE 12

Statistical analysis results of oxyhemoglobin concentrations changes in (A) left primary motor cortex and (B) right primary motor cortex. *Indicates

statistically significant change (n.s., no significant di�erence, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

The reduced activation in the motor cortex under the anchoring

condition, significantly lower than in the asynchronous condition,

reflects amore streamlined and efficientmotor response. According

to studies like Fitts and Posner (1967), as motor skills become more

automated, the reliance on cognitive processes decreases, leading

to reduced cortical activation. In the anchoring condition, the

immediate haptic feedback might facilitate quicker motor learning

and automation, thereby reducing the need for active motor

planning and decision-making processes, typically associated with

higher cortical activation. This efficiency could be attributed to

a form of “sensorimotor tuning,” where the brain quickly adapts

to the reliable haptic cues, optimizing motor outputs with less

cognitive intervention (Wolpert et al., 2011).

However, it is important to note that there is no significant

difference in motor cortex activation when comparing the

anchoring condition with the standard and synchronous

conditions. This observation suggests that the anchoring

condition, while offering advantages over the asynchronous

condition in terms of reduced motor cortex activation, exhibits

similar activation levels to the standard condition. This similarity

could be due to the consistent haptic feedback provided in both

the anchoring and standard conditions, which may stabilize motor

cortex activation despite variations in visual feedback delay. For

the synchronous conditions, although both visual and haptic

feedbacks are delayed, their simultaneous delay at equivalent levels

could maintain a balance in sensory input, potentially preventing

an increase in motor cortex activation. This synchronization might

help preserve motor efficiency by ensuring that the discrepancies

between sensory modalities do not exaggerate cognitive processing

demands, thereby maintaining motor cortex activation at levels

comparable to the standard and anchoring conditions.

These findings underscore the complex interplay between

sensory feedback, motor coordination, and cognitive processing

in teleoperation. They highlight that while reducing cognitive

load through fewer sensory switches might decrease cortical

activation, it does not necessarily translate to improved task

performance. Future research should aim to disentangle these

aspects further, possibly using subjective measures of task

engagement and cognitive strain in conjunction with neuroimaging

data. Additionally, exploring variations in task complexity and

sensory feedback modalities could provide deeper insights into

optimizing teleoperated systems for both performance efficiency

and user experience.

7 Conclusions

This research is driven by the motivation to understand

the neurofunctional implications of sensory manipulation in

delayed robot teleoperation, a field that, despite its technological

advancements, still hindered by the challenges of communication

delays. The primary goal of this research is to fill a critical
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FIGURE 13

Statistical analysis results of oxyhemoglobin concentrations changes in (A) left premotor cortex and (B) right premotor cortex. *Indicates statistically

significant change (n.s., no significant di�erence, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001).

knowledge gap: the lack of neurofunctional evidence regarding

the impact of simulated, synthetic haptic feedback on neural

functions, especially those related to time perception and motor

coordination. Delays in teleoperation can significantly affect

performance, but the underlying neural dynamics, particularly

in the context of sensory augmentation, remained largely

unexplored. By focusing on these aspects, our study aims

to provide insights that could lead to more intuitive and

effective teleoperated systems, especially in applications demanding

precision and timeliness.

Our human-subject experiment, involving different conditions

of sensory feedback in teleoperation, revealed that the anchoring

condition, with immediate simulated haptic feedback, not only

improved motor performance but also regulated the activation

levels of key brain regions such as the DLPFC and the APFC. This

finding is significant as it suggests that providing real-time synthetic

force feedback can reduce the cognitive andmotor challenges posed

by delayed teleoperation, particularly in the more demanding pick-

up phase of the task. The reduction in DLPFC and APFC activation

under the anchoring condition points toward a potential decrease

in cognitive load and enhanced motor coordination. These results

contribute to the understanding of how synthetic sensory feedback

can be optimized to improve teleoperated task performance,

providing a foundation for future technological developments in

this area.

While our findings are promising, they are not without

limitations. The study’s scope was confined to a controlled

experimental setting, which might not fully capture the

complexities of real-world teleoperation scenarios. Additionally,

the focus on specific brain regions, though insightful, does not

encompass the entire spectrum of neural processes involved in

teleoperation. Future research should aim to replicate these findings

in more varied and dynamic settings to verify their applicability

in real-world applications. Furthermore, exploring other forms of

sensory manipulation and their neurofunctional impacts, as well

as investigating the long-term effects of such interventions on skill

acquisition and adaptation in teleoperation, would be beneficial.

These future agenda items could provide deeper insights into

the neural mechanisms underlying teleoperated systems, guiding

the development of more responsive, efficient, and user-friendly

teleoperation technologies.
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