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The brain is a living organ with distinct metabolic constraints. However, these

constraints are typically considered as secondary or supportive of information

processing which is primarily performed by neurons. The default operational

definition of neural information processing is that (1) it is ultimately encoded as a

change in individual neuronal firing rate as this correlates with the presentation of

a peripheral stimulus, motor action or cognitive task. Two additional assumptions

are associated with this default interpretation: (2) that the incessant background

firing activity against which changes in activity are measured plays no role

in assigning significance to the extrinsically evoked change in neural firing,

and (3) that the metabolic energy that sustains this background activity and

which correlates with di�erences in neuronal firing rate is merely a response

to an evoked change in neuronal activity. These assumptions underlie the

design, implementation, and interpretation of neuroimaging studies, particularly

fMRI, which relies on changes in blood oxygen as an indirect measure of

neural activity. In this article we reconsider all three of these assumptions

in light of recent evidence. We suggest that by combining EEG with fMRI,

new experimental work can reconcile emerging controversies in neurovascular

coupling and the significance of ongoing, background activity during resting-

state paradigms. A new conceptual framework for neuroimaging paradigms

is developed to investigate how ongoing neural activity is “entangled” with

metabolism. That is, in addition to being recruited to support locally evoked

neuronal activity (the traditional hemodynamic response), changes in metabolic

support may be independently “invoked” by non-local brain regions, yielding

flexible neurovascular coupling dynamics that inform the cognitive context. This

framework demonstrates how multimodal neuroimaging is necessary to probe

the neurometabolic foundations of cognition, with implications for the study of

neuropsychiatric disorders.
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Introduction and motivation

Neuroimagingmethods, such as functional magnetic resonance imaging (fMRI), provide
relatively precise anatomical assessment of brain activity, but rely on slow changes in
the vascular oxygen signal to infer information processing. By contrast, electrophysiologic
methods (such as electroencephalography, EEG) depend on electric fields generated by
the brain and provide high resolution temporal dynamics, but with relatively limited
anatomical resolution. Simultaneous EEG-fMRI has developed as an approach to bridge
the high temporal resolution of EEG with the spatial precision of fMRI. However, less
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work has considered how EEG-fMRI might be applied to
investigate the coupling of vascular and metabolic signals with
neural activity. Simultaneous EEG-fMRI might help reconcile
differences between electrophysiologic and vascular/metabolic
perspectives on information processing.

That the brain is an “information processor” is all but
assumed. Information theory and related computational tools have
advanced knowledge about stimulus-activity relationships from
single neurons up to population-level activity (Quian Quiroga
and Panzeri, 2009; Dimitrov et al., 2011). This methodological
definition of neuronal information is based on the principle that
numerical changes in neural data streams correlate with extrinsic
manipulations (commonly referred to as the “neuron doctrine;”
Yuste, 2015). The correlated change in neural activity is presumed
to encode information about some attribute of the correlated
stimulus and is modeled on computation. But both Turing’s (1936)
formalization of a general theory of computation and Shannon’s
(1948) mathematical theory of communication are agnostic about
how these processes might be physically instantiated and the
energy required to perform them. A digital computing device is
therefore designed so that variations of its material components
and fluctuations of the energy of its operations have essentially no
impact on the formal properties of the computations it performs
and the meanings that are assigned to it.

In contrast, information processes within a nervous system
radically diverge from these computational criteria. Neuronal
function is susceptible to being modified by changes in the local
chemical milieu as well as in response to signals from other
neurons. In particular, neurons are highly susceptible to changes
in their metabolic support (Moreno et al., 2013; Iadecola, 2017). A
neuron’s functioning depends on the constant work of molecular
pumps to maintain an ionic gradient across its surface membrane
despite rapidly varying activity levels. And each time a neuron
generates an action potential to initiate the propagation of a signal
there is a significant energetic recovery required to prepare for
the next. So the induction of rapid bursts is often followed by
refractory periods during which this potential is re-established. The
tight correlation between regional neural activity levels and local
blood oxygen delivery is, of course, the rationale for treating the
BOLD signal in fMRI as a surrogate for functional localization of
brain functions (Mishra et al., 2021).

When we analogize neural function to logical circuit operations
in computers, we implicitly (or even explicitly) assume that the
energy is supplied irrespective of the content of information
processing. Each operation to flip the charge of a semiconductor
element during computer operation takes roughly the same amount
of energy. So local energy use (often reflected in the heat of some
component) is directly correlated with operations per second. The
supply of energy to a computer thus plays no role in the structure
of the operation being performed and is entirely determined by
mere quantity of signal processing. We suggest that the distinction
between computation and biological information processing
depends on metabolism and that multimodal neuroimaging
paradigms, particularly EEG-fMRI can identify the unique role of
neurometabolic coupling for cognition.

Computational assumptions about brain processes have led to
the so-called “dark-energy” problem of the brain. This problem

asks why the brain utilizes a large amount of energy at rest, in the
apparent absence of any cognitive processes (Carhart-Harris and
Friston, 2010; Zhang and Raichle, 2010; Capolupo et al., 2013).
But resting metabolic activity in the brain is only “dark” from
the perspective of non-living systems; computers don’t require
energetic input at “rest” or when “asleep.” Resting metabolism
in the brain is not merely for the support of living processes, it
also supports incessant neural signal processing. The brain at rest
is still incessantly active, processing information in background,
whether awake and unfocused or in a dreamless sleep. Background
activity is always present, even though obscured by a peripherally
evoked significant increase in activity. Though it is often treated
as background noise, this is too simple. To the extent that the
structure of this “background” activity reflects intrinsic local circuit
biases, it provides “self-in-context” information with respect to
which non-self information can be juxtaposed.

So in general, the field of neuroscience currently does not
make a formal distinction between the energetics of biological
information processing and the energetics of computational
information processing. Nonetheless, that metabolism is
intertwined with information processing is increasingly recognized
by models of neuronal intracellular energy homeostasis (Watts
et al., 2018; Vergara et al., 2019), metabolic resource constraints
(Laughlin, 2001; Burroni et al., 2017; Fardet and Levina, 2020),
cognitive function (Collell and Fauquet, 2015), and consciousness
(Pepperell, 2018). Whereas, these models suggest that it is likely
that the energy use in brains plays a direct role in processing
information, regarding the self/non-self pragmatic distinction,
there is no counterpart in traditional computation. In what follows,
we offer a view of embodied cognition that is dependent on
the entanglement between metabolism and signal processing,
highlighting how simultaneous EEG-fMRI might be used to
investigate these interrelations.

Entangled embodied cognition

The paradigm of embodied cognition has challenged the
classical perspective that neural computations are logical
operations that just happen to be processed by a living medium.
The so-called “4E-cognition” approach considers that cognition is
embodied, embedded, enactive, and extended (Newen et al., 2018).
This paradigm recognizes that the context in which the organism
is embedded, including both its organismic and ecological
contexts, fundamentally shapes cognition. We propose a related
interpretation of the role of embodiment in cognition based on
the ways that neurometabolic energetics is entangled with signal
processing in the brain (see Figure 1).

From this perspective we distinguish “shallow” from “deep”
information processes with respect to the degree of entanglement
between the patterns of signal generation, transmission, and
modification, including the substrate in which these activities
take place. In a computer, the energetics of signal processing is
minimally relevant (if at all) to what the information is about. In
this respect the information is “shallow” because it has nothing to
do with its embodiment. In the terminology of functionalism, it is
multiply realizable. The outside user/observer can effectively ignore
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FIGURE 1

Interpretation of embodied cognition in the context of the nervous

system. (A) Traditional conceptions of embodied cognition results

are interpreted along a weak-strong horizontal axis (light to dark

blue). According to the traditional interpretation, the “strength” of

embodiment reflects the extent to which the body shapes cognition

through a unified perceptual-action-cognition system (After Binder

and Desai, 2011, who propose an intermediate “embodied

abstraction” interpretation. According to their proposal, the impact

of embodied semantics on perceptual representations depends on

the context). (B) We hypothesize an orthogonal interpretation of

“entangled” embodiment that indicates the extent to which the

physical-energetic substrate is of relevance to information

processing content.

FIGURE 2

Three types of neurometabolic work to support cognition. Evoked

work (A) is characterized by the recruitment of metabolic activity in

response to stimulus driven neural activity. Maintenance work (B)

does not depend on the presence of a stimulus: metabolic

processes support neuronal background activity that, in turn,

enables reliable synaptic network structure. Invoked work (C)

anticipates the need for metabolic activity on the basis of the

self-in-context, recruiting background activity for cognitive and

behavioral readiness.

the details of its physicality, except in the case that these properties
fail to remain within the operational limits of the system and cause
it to fail its design purpose.

By contrast, “deep” entanglement characterizes information
processes in which the details of information value and use are

inseparably entangled with the material and energetic processes
that enable them. This is obvious with respect to information
processes at the genetic and epigenetic levels, where specific
molecular affinities and energetic relationships play critical roles
in determining what takes place. This is because the specific
physical and chemical properties are of direct relevance to
cellular and organism function, and their interaction with the
world (Gilbert, 2014; Bongard and Levin, 2021; Deacon, 2021).
Analogously, we argue that the material and energetic embodiment
of neural signal production andmodulation cannot be disentangled
from the information processing that constitutes cognition and
mental experience.

To illustrate the distinction between “shallow” and “deep”
entangled-embodied cognition, consider a non-biological example:
a hand-held metal detector. A metal detector transmits an
electromagnetic field from its search coil that can be disturbed by
the presence of a conducting metal object (an extrinsic constraint).
Detection of metallic objects is enabled by the parameters of
the coil, the degree of sensitivity of the system, the work of
generating the electromagnetic field, and of course, the positioning
of the device in the environment. For both the metal detector
and the brain, energy is required in order to operate. They
both maintain far-from-equilibrium dynamics (maintenance of an
electrical potential) that contribute to their capacity to do the work
essential to their functions. In the case of the metal detector, the
work of device maintenance is extrinsic; supported by an outside
observer who also tunes the device to be sensitive to the physical
properties that are relevant. Like a computer, the energy running
the metal detector needs to only be stably supplied, sufficient to
maintain the critical electronics, irrespective of the information
it provides to the user. Unlike the metal detector, however, the
brain processes information that is of intrinsic relevance to the
system itself, including its specific physico-chemical constitution.
The maintenance of far-from-equilibrium responsiveness in both
systems requires thermodynamic work, accomplished by the same
intrinsic, physical substrate that performs information processing.
But for the brain there is no “outside observer” available to
design, maintain, or interpret what the changing patterns of neural
activity mean. Moreover, what is and is not meaningful to the
brain involves its material and energetic constitution, not merely
pattern matching or dynamical coupling. It is with respect to their
embodiment that neural signals convey more than just physical
patterns of activity that correlate with extrinsic patterns. As we shall
review, metabolic embodiment is entangled in the incessant and
ongoing “background” activity of neural circuits. This background
activity is the focus of resting-state neuroimaging paradigms, so
understanding the biological significance of this activity is of
paramount importance.

In order to characterize the impact of background activity
on cognition, we will examine neurometabolism as reflective of
three classes of work: (1) evoked work, (2) maintenance work,
and (3) invoked work (Figure 2). Evoked work is the form of
work typically studied in neuronal physiology and neuroimaging
paradigms; linking increases in neurometabolic activity to specific
cognitive processes, typically triggered by an extrinsic stimulus.
In these evoked or event-related studies, background or baseline
activity is subtracted from task activity (typical in the case
of EEG-derived evoked potentials) or “removed” by statistical
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contrasts when comparing two related conditions (typical in
the case of event-related fMRI parametric models). In either
case, the goal is to isolate brain activation that is specifically
evoked by the experimental variable under study, and where
the background activity is not considered to be relevant. By
contrast, maintenance work is not linked to extrinsic stimuli and
instead reflects the physical-chemical work done tomaintain circuit
predispositions, supporting reliable synaptic network structure
and resting-membrane potential (Laumann and Snyder, 2021).
Sometimes referred to as “cellular housekeeping,” this form of
work is typically not considered in neuroimaging paradigms
although it reflects up to a third of neuronal energy use and
sustains spontaneous background activity (Howarth et al., 2012).
Lastly, we propose an additional category of work that is neither
explicitly evoked nor merely “maintenance,” and reflects changes in
neurometabolic activity that are intrinsic (not directly linked to a
stimulus) and anticipate the regional needs of metabolic activity. By
increasing (or decreasing) regional metabolic availability, invoked
work “recruits” background activity. Increasingly identified from
neuroimaging paradigms and animal studies, an invoked metabolic
signal conveys additional information of contextual significance.
Next, we will discuss these three classes of work in the context
of cellular and systems neuroscience, including implications for
simultaneous EEG-fMRI neuroimaging paradigms.

Metabolic maintenance and
background brain activity

According to the computing hardware-software analogy, the
physical structures of neurons and networks are assumed to be
the stage upon which the “actual” information processing occurs
in the form of signal propagation (“shallow” embodiment). Others
have pointed out that unlike a computer, living systems do not
have clear hardware/software distinctions (Bongard and Levin,
2021). As such, computational models ignore the physical and
energetic properties of the information processing medium (But
see emerging paradigms, such as thermodynamic computing,
Hylton, 2020; Hylton et al., 2021; and energy-aware computing;
Kozma et al., 2018). By contrast, the brain does maintenance
work to form and maintain the resting membrane potential,
synaptic connections and network architecture. The presence of
“spontaneous,” background activity within these networks enables
maintenance of connections through hebbian mechanisms (Kirkby
et al., 2013; Litwin-Kumar and Doiron, 2014). Thus, quite unlike
the computational model, maintenance activity is necessary to
sustain network organization. Referring to background activity
as “spontaneous” is a misnomer, however. Thermodynamically
speaking, it is decidedly not-spontaneous, it takes metabolic
work. This metabolic work enables reliable synaptic network
configuration, but raises a crucial question: is the ongoing,
background activity merely epiphenomenal “noise” that sustains
connectivity (akin to an idling engine in a car)?

Spontaneous background activity has long been recognized
as critical to cortical development and the precise anatomy of
brain circuit organization (Weliky and Katz, 1999; Blankenship
and Feller, 2010; Molnár et al., 2020). Multiple lines of evidence
now indicate that background activity in the mature brain is

more than mere “noise” (Uddin, 2020). Historically, the presence
of ongoing, spontaneous background activity in the absence
of an experimentally defined stimulus or task was assumed
to reflect random resting membrane fluctuations (Shadlen and
Newsome, 1994; Amit and Brunel, 1997). Nonetheless, these
fluctuations are correlated with trial-by-trial variability, suggesting
that spontaneous activity and trial-by-trial correlations arise from
similar biophysical processes (Kohn and Smith, 2005; Mendels and
Shamir, 2018). Furthermore, although these fluctuations occur in
the “background,” they impact psychophysical performance and
behavior (Zohary et al., 1994; Faisal et al., 2008). Competing
evidence has found that background correlations reduce statistical
measures of information in animal studies involving perceptual
descrimination (Bartolo et al., 2020; Kafashan et al., 2021).
However, this reduction in statistical information coincides with
successful behavioral performance, which in turn, is linked to
greater reliability in activity across a population of neurons
(Hennig et al., 2018; Valente et al., 2021). This seeming paradox
between a reduction in statistical information and an increase in
behavioral performance can be reconciled by the fact that statistical
information in the above studies is determined relative to extrinsic

stimulus-spiking relationships. Instead, background activity may
convey contextual information relevant to behavior.

What is the nature of this contextual information? Notably,
background activity demonstrates reliable stimulus “tuning” and
response biases (Tsodyks et al., 1999). Spontaneous activity among
co-active neurons show similar stimulus tuning preferences, and
these same neurons are co-active during driven, extrinsic stimulus
excitation (Grinvald et al., 2003; Omer et al., 2019). Additional
studies have linked background activity to spontaneous motor
behaviors in animals (Montijn et al., 2016; Stringer et al., 2019).
These findings extend well-known effects of attention and alertness
on background activity (Luck et al., 1997; Reynolds et al., 2000;
Ecker et al., 2014). These contextual factors may be intrinsic,
that is linked to spontaneous shifts of attention, arousal, and
motor behavior, or additional extrinsic factors, as might be evoked
by naturalistic environments (Berkes et al., 2011). Critically,
ongoing activity forms the pre-stimulus “baseline” that modulates
stimulus-evoked activity, perception and behavior. This has been
observed in human (Boly et al., 2007; Hesselmann et al., 2008;
Iemi et al., 2017; Podvalny et al., 2019) and animal studies
(Quraishi et al., 2007; Gutnisky et al., 2017; Johnston et al., 2022).

In some sense, this background activity is similar to a
metal detector insofar as it is “pre-tuned” (biased) to particular
extrinsic constraints (stimulus preferences). However, in another
sense, background activity in neurons is quite different from
the metal detector, reflective of intrinsic organismal factors for
which there is no machine analog. With respect to experimental
paradigms, deviation from the expected background signal as
a result of extrinsic stimuli or tasks, changes the relationship
between background activity and the factors that caused the
change in activity. However, this change in activity could also
arise from intrinsic factors that may not be well captured by a
simple additive process (as is typically modeled in neuroimaging
paradigms). Non-stationarity in the background activity might
corrupt statistical contrasts in fMRI models (Renvall et al., 2014;
Evans et al., 2015) and baseline subtraction models in EEG
(Wainio-Theberge et al., 2021). We now consider the impact of
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this perspective on neuroimaging paradigms more explicitly and
the potential for metabolic signals to modulate background activity
and contextual relevance.

The resting-state paradigm is
entangled with metabolism

Spontaneous brain activity in humans has largely been
studied using the so-called “resting-state” paradigm. This paradigm
describes a research context wherein participants are not given
explicit cognitive or task instructions and are told to “rest.” (Some
studies utilize an eyes open condition whereas others utilize an
eyes closed condition and with varying specificity about what
to do with one’s thoughts). Therefore, brain activity generated
under these conditions has been described as “spontaneous,”
much like the spiking of individual neurons in the absence
of an explicit stimulus. Concerns about the construct validity
of “rest” and influence of resting instructions notwithstanding
(Benjamin et al., 2010), resting-state activity ultimately provides
the background context in which stimulus driven activity is
embedded. Accordingly, there is more than mere analogy between
the background electrical activity of single-neurons, which provides
relevant local circuit context, and background activity across
regional networks, which provides global “self-in-context” for
the organism (Koban et al., 2021). Moreover, as was the case
for background activity at the single neuron level, ongoing and
background activity identified in neuroimaging paradigms is
supported by high metabolic expenditure.

Although rhythmic resting-state activity has been studied for
nearly a century using scalp-recorded EEG (Lennox et al., 1938),
with the discovery of the default mode network (DMN) in the
last 25 years and other so-called resting-state networks (Andreasen
et al., 1995; Shulman et al., 1997; Gusnard et al., 2001a,b;
Raichle et al., 2001), spontaneous activity from the resting-state
paradigm has undergone a research renaissance. At rest the DMN
shows robust metabolic activity and deactivates when participants
engage cognitively demanding tasks (Raichle, 2015). The DMN is
composed primarily of midline brain regions, including the medial
prefrontal cortex and posteromedial regions including the posterior
cingulate cortex, precuneus as well as posterior parietal cortex and
the hippocampus. The midline regions of the DMN are the most
metabolically active regions of the brain (Bleich-Cohen et al., 2012;
Leech and Sharp, 2014). Of course, resting-state networks including
the DMN were discovered from neuroimaging methods that rely
on metabolic measures as a surrogate for neural activity, such as
positron emission tomography (PET) and fMRI.

Resting EEG rhythms were historically interpreted and
described as idling rhythms (Rhodes, 1969; Pfurtscheller, 1992),
and the energy cost of this activity was not explicitly considered.
Early multimodal neuroimaging studies demonstrated a to-be-
expected, inverse correlation between thalamic glucose metabolism
and alpha power (Larson et al., 1998), in line with an idling,
lower energy state associated with resting-brain rhythms. Multiple
simultaneous EEG-fMRI studies have identified correlations
between resting alpha power and the default mode network
(Scheeringa et al., 2012; Bowman et al., 2017; Marino et al.,
2019). However, alpha-BOLD dynamics show considerable

spatiotemporal variability (Mayhew and Bagshaw, 2017), overlap
with multiple resting-state networks (Mantini et al., 2007) and
are influenced by whether eyes are open or closed while at rest
(Mo et al., 2013). Recent approaches to resting-state EEG have
emphasized the relevance of broadband (aperiodic or non-
rhythmic) activity (Donoghue et al., 2020) and that may be coupled
to regions of the salience network (Jacob et al., 2021). Taken
together, these findings suggest that resting brain activity (whether
derived from EEG or BOLD signals) reflects active readiness
embedded in the experimental context, rather than mere “idling.”

From the perspective of metabolic entanglement, this
“readiness” may provide critical contextual information with
respect to subject arousal and expectations. In the discussion
above, we considered the background activity of single neurons
as reflective of intrinsic contextual factors (e.g., spontaneous
behavior and arousal). Intrinsic factors therefore provide a local
context for extrinsically conveyed signals. By extension, the
default mode network and other resting-state networks may
play a similar role with respect to self-context. Both resting
alpha and the DMN have been described as reflecting internal,
self-oriented cognitive processing (Knyazev, 2013; Koban et al.,
2021; Yeshurun et al., 2021). Moreover, both alpha and the DMN
are linked to the embodied processing of autonomic signals
and arousal (Beissner et al., 2013). These networks may reflect
psychological self-content, such as narrative, autobiographical
and episodic memory (Dastjerdi et al., 2011; Yeshurun et al.,
2021) that is directly informed by autonomic arousal signals
(Babo-Rebelo et al., 2016). Resting-state activity in the DMN has
been proposed as a self-in-context dual-code; correlated with
self-psychology and self-physicality (Koban et al., 2021). The deep
entanglement perspective may offer an evolutionary explanation
for this arrangement, in that the self-psychological context must
always depend upon maintenance of a reliable self-physical or
metabolic context. While this description offers a conceptual
explanation of background and resting-brain activity, it does
not address the possible impact that changes in metabolism
may have on cognitive processing. Next we explore evidence for
this possibility.

Embodied context and the dynamics
of neurometabolic coupling

In the sections above we considered that high levels of
metabolic work enable reliable far-from-equilibrium activity in
the background activity of single neurons, their populations
and regional networks. This background activity supports the
structural maintenance of network architecture in addition to
providing a dynamic self-context for cognitive processing. Below
we consider the extent to which changes inmetabolismmay directly
or indirectly influence neural background activity and thereby
contribute to different readiness contexts. Because any effect of
metabolic change that modifies background activity originates
internally, we refer to it as invoked work. The possibility of invoked
work requires reconsidering whether metabolic processes are
merely supportive of neural signaling, or whether they may impact
or drive neuronal signaling directly (Watts et al., 2018; Vergara
et al., 2019). This reconsideration has important implications
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for the design, implementation and interpretation of ongoing
neuroimaging studies.

The proposal that changes in blood flowmight actively facilitate
background activity patterns is not new, having its origins in
the so-called “hemo-neuro hypothesis” (Moore and Cao, 2008).
In part, this hypothesis relates to many aspects of hemodynamic
function that are unexplained by evoked work. For example, blood
flow greatly exceeds the regional oxygen needs for active neurons
(estimates suggest it may be as much as 20 times more) and has
been described as “watering the entire garden for a single flower”
(Ekstrom, 2021). Perhaps the brain errs on the side of excess blood
flow, given the potentially devastating consequences of hypoxia.
However, the overshoot effect suggests that the brain may have
some flexibility to reallocate blood flow during stress (Elbau et al.,
2018) as a compensatory mechanism in dementia (Becker et al.,
1996) or in neuropsychiatric disorders such as schizophrenia (Tan
et al., 2006). These examples raise the intriguing possibility that
the overshoot may relate to the needs of “baseline” metabolic
maintenance and intrinsic processes that are distinct from the
extrinsic stimulus and evoked responses (Devor et al., 2011).

Maintenance of intrinsic signal responsiveness requires
metabolic energy, and the proposal of invoked work suggests
additional energetic processes that might further initiate or
constrain electrical dynamics. Initially a source of controversy
(Logothetis, 2010), multiple studies in animal models now support
the hypothesis that metabolic energy might anticipate, regulate or
initiate changes in neural dynamics. These include simultaneous
intracellular work monitoring ATP in Drosophila (Mann et al.,
2021), intracranial evidence combining functional ultrasound with
LFP in rodents (Bergel et al., 2020), BOLD-LFP recordings in
rhesus macaques (Schölvinck et al., 2010) and LFP-optical imaging
methods in rhesus macaques (Sirotin and Das, 2009). Although
the experimental context of the above studies varies, most point
toward the relevance of task-related expectation and arousal, either
with respect to a stimulus, task or state as driving hemodynamic
activity (Cardoso et al., 2019). These studies are complemented by
findings of flexible coupling and decoupling of neural and vascular
signals, particularly during the transitions between active behavior
and rest (Huo et al., 2014; Winder et al., 2017).

Basic cellular studies have identified subtle metabolic changes,
such as mild hypoxia, that can modify neuronal excitability (Le
Feber et al., 2018) and adaptive plasticity (Rybnikova et al., 2005).
In fact, hypoxia may be typical in the developing brain, relevant
to angiogenesis, neural network formation and the development
of neurovascular coupling (Hillman, 2014; Kozberg and Hillman,
2016; Kozberg et al., 2016). In otherwise healthy human adults,
the DMN specifically shows reversals of neurovascular coupling
during mild hypoxia that are not seen in other brain regions,
raising critical questions about the impact of these changes on
cognition (Rossetti et al., 2021). Beyond oxygen status, food
scarcity (Padamsey et al., 2022), change in neuronal fuel from
glucose to ketone bodies (Ma et al., 2007) or circulating immune
factors (Tonelli et al., 2005) can also impact neuronal information
processing in animalmodels, highlighting the diversity ofmetabolic
processes that may play a role in normal neural signaling (Watts
et al., 2018). These experimental findings are further supported
by computational efforts that suggest a role for bidirectional

neurovascular coupling in the plasticity of neuronal selectivity
(Kumar et al., 2019, 2021). Taken together, computational, cellular
and systems level findings support the hypothesis that metabolic
activity may serve as a generic mechanism to alter the context of
information processing dynamics.

These findings complicate approaches that treat non-neuronal
brain physiology as noise (Bright and Murphy, 2015; Das et al.,
2021). Emerging evidence identifies synchronized activity within
resting-state networks, including the DMN, that is driven by
vascular stimuli (carbon dioxide inhalation) and in a manner
that mirrors task-evoked networks (Bright et al., 2020). One
interpretation of these findings is that the brain includes distinct
neuronal and systemic “physiological networks” (Chen et al.,
2020). However, as suggested by Bright et al., it is possible (and
we might suggest probable) that these networks would interact,
that is, vascular physiology may modulate or drive functional
brain networks. This is supported by findings of hemodynamic
signals preceding neural activity in humans from studies of EEG-
fMRI in patients with epilepsy (Rathakrishnan et al., 2010) in
addition to EEG combined with Near Infrared Spectroscopy (EEG-
NIRS; Seyal, 2014). In healthy human participants, EEG-fMRI
during the resting-state identified BOLD activity that precedes and
predicts EEG rhythms across a wide range of EEG frequency bands
and resting-state networks (Feige et al., 2017). Few studies have
followed-up this intriguing result, and could be confirmed by re-
analysis of existing EEG-fMRI datasets using lagged-correlation
relationships, rather than conventional hemodynamic modeling.
These findings are consistent with a growing literature that
identifies variability in the shape or latency of the canonical
hemodynamic response function (HRF; Rangaprakash et al., 2017;
Elbau et al., 2018; Ekstrom, 2021). In fact, simultaneous EEG-fMRI
has been proposed as an ideal method to help disentangle this
variability in the hemodynamic response (Prokopiou et al., 2020)
since the canonical hemodynamic response function was initially
developed and has largely been studied in the context of event-
related paradigms rather than during the resting-state. Alternative
models, such as hemodynamic deconvolution, might also reveal
unique resting-state hemodynamics (Wu et al., 2021).

Multimodal approaches to study
entangled cognition

Resting-state EEG-fMRI studies can offer an important
avenue to investigate non-canonical, “invoked work” in models
of neurometabolic coupling. Hemodynamic variability is also
observed from multimodal neuroimaging that combines fMRI and
PET-glucose metabolism in humans. This work has identified at
least two distinct dynamic, neurometabolic coupling relationships:
one for the DMN and another for the fronto-parietal (so-called,
task-positive networks, Stiernman et al., 2021). Task positive
neurometabolic coupling is characterized by canonical and lagged
neurovascular temporal dynamics, typical of task evoked work. By
contrast, regions of the DMN do not necessarily follow canonical
hemodynamic coupling dynamics and are instead characterized
by BOLD signal increases prior to task onset, followed by a
negative response (Stiernman et al., 2021). In an accompanying
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commentary, Goyal and Snyder (2021) note that “why would
the brain develop two relatively independent systems to engage
in intrinsic vs. evoked activity is an important theoretical
question.” We suggest that our characterization of evoked and
invoked neurometabolic coupling offers a framework to address
this question theoretically and experimentally. The findings of
Stiernman et al., wherein BOLD activity increases prior to task
onset, match prior findings of internally-driven preparatory task
activity that has also been linked to the DMN (Goldberg et al.,
2008; Soon et al., 2013; Sakata et al., 2017). Broadly, this preparatory
activity is reminiscent of the readiness potential, or slow buildup
of electrical potential prior to the onset of voluntary action, and
that is typically measured using EEG. One intriguing possibility
to arise from our proposed framework is that the slow-cortical
potential, given that its timescale mirrors that of the BOLD
response, may show near synchronous neurovascular coupling, and
could serve a predictive or preparatory function (Khader et al.,
2008; He and Raichle, 2009). That is, invoked work may reflect an
entanglement between slow EEG rhythms and the BOLD response
to set the readiness context through the modulation of background
activity. Future EEG-fMRI work might investigate non-canonical
neurometabolic coupling to EEG slow waves (< ∼0.1Hz) that are
linked to arousal (Toker et al., 2022), preparatory activity (Schurger
et al., 2021) as well as fMRI defined functional connectivity metrics
(Raut et al., 2021).

What are the neural pathways that might support this
invoked mode of work? Despite the evidence outlined above,
few models have been proposed or experimentally studied. We
suggest that at least two pathways may participate: a direct and
indirect path (Figure 3). In the indirect path, certain patterns of
neural activity, driven by biologically significant neuronal signals,
modify background activity levels by up- or down-regulating local
hemodynamic parameters. Specifically, brainstem and subcortical
structures, which are tuned to biological context and are already
known to mediate systemic and autonomic changes in arousal,
are also known to mediate changes in regional brain metabolism
and blood flow (Bekar et al., 2012; Toussay et al., 2013; Turchi
et al., 2018; Özbay et al., 2019). Cortical afferents arising from
the locus coeruleus and the basal forebrain have been found to
shape low-dimensional energy landscapes, slow potentials and
changes in awareness (Munn et al., 2021). Changes in the regional
distribution of blood flow by arousal may, in turn, alter background
activity patterns which will make the background activity in those
regions more or less responsive to extrinsic input. This model is
an extension of the explanation proposed by Elbau et al. (2018)
to explain stress induced delays in metabolic coupling. In order
to assay these subcortical and brainstem mechanisms, high field
strength MRI is needed (Priovoulos et al., 2018). Emerging work
suggests that simultaneous EEG-fMRI can be accomplished at this
field strength (Jorge et al., 2015), offering an approach to test for
evidence of an indirect path mediating cerebral blood flow via

brainstem nuclei. In addition to this indirect (neural path), a direct
(non-neural) path may also be of relevance, whereby peripheral or
central metabolic factors, circulating in blood or in glial networks,
might trigger changes in background neural activity (Ma et al.,
2016).

Combining EEG with fMRI is a promising method to address
the complexity of neurovascular and neurometabolic coupling.

However, there are important limitations to this approach. EEG-
fMRI is both technically and computationally challenging, given
the artifacts generated by the magnetic field on EEG recordings
(Allen et al., 1998, 2000; Fellner et al., 2016; Abreu et al., 2018).
Moreover, EEG-fMRI has largely been focused on electrical-
BOLD relationships. Measures of cerebral blood volume and
flow, including distinguishing between arterial supply and venous
drainage, are necessary to probe neurovascular coupling directly
(Gao et al., 2017). Modeling the interrelationships between these
vascular processes and neural activity is not straightforward,
modulated by changes in behavior and at times, vascular physiology
that is independent of neural activity (Drew, 2019; Das et al.,
2021). Future studies might include EEG combined with arterial
spin labeling, to examine electrical coupling to arterial supply
(Mullinger et al., 2017; Zhu et al., 2017) or to changes in cerebral
blood volume, as can be accomplished bymeasurement of Vascular-
Space-Occupancy fMRI (Lu and van Zijl, 2012). Simultaneous
studies of EEG and cerebral blood volume may be relevant in
light of animal studies that have found a role for the locus
coeruleus arousal system in mediating the coupling of cerebral
blood volume with oxygen demand (Bekar et al., 2012). This
finding is of relevance to our proposed hypothesis and for clinical
conditions given evidence that acute and chronic stress impacts
the molecular and cellular mechanisms of neurovascular coupling
(Longden et al., 2014; Menard et al., 2017; Han et al., 2019, 2020).
This basic work on neurovascular coupling may underpin clinical
evidence for direct effects of metabolism on neuropsychiatric
function (discussed below). Ultimately, convergent methods will
be needed to examine neurovascular coupling from multiple
hemodynamic measures including oxygen, flow, and volume to
examine neurovascular coupling in human populations.

Metabolism and embodied psychiatry

It is well known that psychiatric disorders suffer from so-called
metabolic comorbidities, such as metabolic syndrome and diabetes
(Penninx and Lange, 2018). These abnormalities are conventionally
attributed to lifestyle changes and use of pharmacotherapy with
metabolic side effects. However, genetic and “first-episode” studies
have identified unique risk factors that may be predisposing in
serious mental illness such as schizophrenia and bipolar disorder
(Nielsen et al., 2021). These findings suggest that the entanglement
between neural and metabolic factors may also unravel together
during psychiatric illness. It has been suggested that the capacity
and flexibility of human cognition comes at a high energetic
cost (Navarrete et al., 2011) and comes with new vulnerability to
energetic deficiency in the diet (Snodgrass et al., 2009). Given that
recently evolved genes that enable metabolic efficiency are altered
in serious mental illness (Khaitovich et al., 2008), neuropsychiatric
disease may be related to specific cellular deficits in bioenergetic
coupling and intermediary metabolism (Sullivan et al., 2018). In
addition to intracellular abnormalities, serious mental illness is
also linked to abnormal mitochondrial function and microvascular
abnormalities that could impair all classes of work discussed
above (Katsel et al., 2017; Whitehurst and Howes, 2022). Vascular
and metabolic abnormalities might also underlie non-canonical
hemodynamic responses seen across neuropsychiatric disorders
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FIGURE 3

Schematic diagram of a hypothetical indirect neurometabolic circuit. (A) Cortical activity is assigned valence by basal forebrain nuclei which in turn,

(B) modify the activity of neurons in midbrain-brainstem nuclei which in turn, (C) modify regional energy distribution in cortex.

(Ford et al., 2005; Hanlon et al., 2016; Lecrux and Hamel, 2016;
Rangaprakash et al., 2017; Sukumar et al., 2020). These findings
may complicate the use of resting-state paradigms that frequently
identify abnormalities in the DMN in neuropsychiatric illness
(Broyd et al., 2009; Whitfield-Gabrieli and Ford, 2012). New
simultaneous EEG-fMRI investigations are needed that focus on
neurometabolic coupling relationships, rather than studying neural
or metabolic processes in isolation, in order to parse the impact of
distinct neural and/or metabolic abnormalities.

In addition to clarifying the mechanisms of neural network
function in psychiatric disease, an entangled cognition framework
may enhance our understanding of novel interventions. Whereas,
most psychiatric psychopharmacotherapy targets neural function,
emerging approaches include dietary changes and initiation of
physical activity to target cerebral metabolism (Firth et al., 2020).
While glucose is normally considered to be the brain’s default fuel,
ketones bodies (derived from lipid metabolism) can provide an
alternative fuel to the brain that is 27% more free energy than
glucose (Sato et al., 1995). When individuals ingest a high-fat,
low-carbohydrate, and adequate protein diet, the brain defaults
to utilizing ketones for energy maintenance. There is a long
history of using the ketogenic diet for refractory and pediatric
epilepsy (Martin et al., 2016; D’Andrea Meira et al., 2019) and
more recently, this diet has been studied in serious mental illness
(Kraft and Westman, 2009; Bostock et al., 2017; Gilbert-Jaramillo
et al., 2018). Neuroimaging studies have found that the increased
neurometabolic efficiency of ketosis translates to greater network
stability, as measured by sustained functional communication
between regions from BOLD fMRI (Mujica-Parodi et al., 2020).

Neuropsychiatric conditions, including serious mental illness
and cognitive aging show inefficient use of cerebral resources;
hypermetabolism at rest and hypometabolism during cognitive
tasks (Potkin et al., 2009; Whitfield-Gabrieli et al., 2009; Oh
and Jagust, 2013). Inefficient brain function could undermine
maintenance work or the availability of resources for invoked
work and therefore might benefit from metabolic interventions
to improve efficiency. However, it can be difficult to ascertain
adherence and/or the specificity of metabolic interventions on
brain function given the wide range of dietary and exercise
approaches (Rothman and Sheeran, 2021). Although the ketogenic
diet can improve EEG markers of epileptiform abnormalities
(Kessler et al., 2011), simultaneous EEG-fMRI is needed to directly
assay neurovascular coupling and might be used to track the
specificity of metabolic interventions.

An entangled metabolic cognition perspective may also
help link findings of resting-state neurometabolic inefficiency to
psychiatric symptoms, potentially related to the lived experience
of being a self-in-context. One category of relevant psychiatric
symptoms is the experience of “disembodiment” that may be
present across a range of conditions and schizophrenia in particular
(Fuchs and Schlimme, 2009). Symptoms of disembodiment include
a disruption of self-recognition of bodily actions and ownership
that undermines emotional expression and comprises social
communication (Tschacher et al., 2017). While these findings have
largely been interpreted with respect to neural dysfunction, findings
of disembodiment in psychiatry may benefit from models that
consider metabolism as playing a more than just a supporting
role. For example, biopsychosocial models of cognition (Seery,
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2011) as well as studies of cognitive effort (Westbrook and
Braver, 2015) emphasize that information processing depends on
the perception of cognitive resources and energetic availability.
Despite robust relationships between predictive appraisal of
cognitive resources and cardiovascular function (Seery, 2011),
the effect of energetic resource distribution on brain function
is less commonly studied. If the experience of “stress” is linked
to changes in the dynamics of neurometabolic coupling (Elbau
et al., 2018) similar changes may occur more broadly across
emotional states or in psychiatric disorders whereby direct or
indirect shifts in regionally available metabolism may modify
neural activation. In this manner, stress may prove to be a
particularly pronounced example of basic arousal and emotional
phenomena, invoking metabolic work to meet the demands of
anticipated behavior. The second-by-second time-scale of slow
cortical potentials and the BOLD response is well matched to the
intensity of emotional dynamics over time (Verduyn et al., 2009,
2015). More speculatively, studies of entangled neurometabolic
coupling and invoked work may provide a framework to
investigate the background “emotional feel” of the altered
embodied experience associated with the suffering characteristic of
psychiatric illness.

Conclusion

We conclude that studies of information processing in
biological systems must include special attention to embodiment,
energetics and metabolism. We’ve shown that the significance of
biological information must necessarily be processed in reference
to a self-in-context. This contextual information must be reliably
present in the background of ongoing neural activity, at both
cellular and systems levels. Further, this context can be significantly
modulated by metabolic activity. Emerging evidence suggests
that metabolic and hemodynamic activity may be invoked to
modulate self-in-context and that disruptions in this process may
be undermined in psychiatric illness.

In our presentation of this model, we have glossed over
important details relevant to cellular and systems neuroscience,
such as the biophysics of neurovascular coupling and the
relevance of dynamical systems in describing the far-from-
equilibrium dynamics of neural processes. Future studies might
examine interactions between EEG and BOLD activity from
the perspective of nonlinear coupling dynamics (He, 2011),
which may be of particular relevance because of the energetic
cost/savings of far-from-equilibrium dynamics. Computational
work has identified that metabolic constraints may be necessary
for dynamical maintenance and state changes (Roberts et al.,
2014; Burroni et al., 2017). Despite these important avenues
for future work, significant limitations remain regarding how
to model the effects of maintenance and invoked brain activity
in neuroimaging paradigms. Moreover, new approaches will be
needed to consider effects of background dynamics on traditionally
evoked paradigms.

Ultimately, we suggest that the dynamics of neurometabolic
coupling offers a new frontier for studying the biological
foundations of cognition. Rather than viewing metabolism as a

surrogate or passive support, it can be considered as an active
signal in its own right. For this reason, neuroimaging paradigms,
particularly resting-state fMRI that rely on changes in blood oxygen
to infer neural stimulus processing and spontaneous cognition, are
enhanced by including direct measures of neural activity from EEG.
Despite the difficulty of implementation, we hope these technical
and conceptual implications inspire further work integrating EEG
with fMRI.
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