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Background: Brain-computer interface (BCI) systems based on motor imagery 
(MI) have been widely used in neurorehabilitation. Feature extraction applied 
by the common spatial pattern (CSP) is very popular in MI classification. The 
effectiveness of CSP is highly affected by the frequency band and time window of 
electroencephalogram (EEG) segments and channels selected.

Objective: In this study, the multi-domain feature joint optimization (MDFJO) 
based on the multi-view learning method is proposed, which aims to select the 
discriminative features enhancing the classification performance.

Method: The channel patterns are divided using the Fisher discriminant criterion 
(FDC). Furthermore, the raw EEG is intercepted for multiple sub-bands and time 
interval signals. The high-dimensional features are constructed by extracting features 
from CSP on each EEG segment. Specifically, the multi-view learning method is 
used to select the optimal features, and the proposed feature sparsification strategy 
on the time level is proposed to further refine the optimal features.

Results: Two public EEG datasets are employed to validate the proposed MDFJO 
method. The average classification accuracy of the MDFJO in Data 1 and Data 
2 is 88.29 and 87.21%, respectively. The classification result of MDFJO was 
significantly better than MSO (p  <  0.05), FBCSP32 (p  <  0.01), and other competing 
methods (p  <  0.001).

Conclusion: Compared with the CSP, sparse filter band common spatial pattern 
(SFBCSP), and filter bank common spatial pattern (FBCSP) methods with channel 
numbers 16, 32 and all channels as well as MSO, the MDFJO significantly improves 
the test accuracy. The feature sparsification strategy proposed in this article can 
effectively enhance classification accuracy. The proposed method could improve 
the practicability and effectiveness of the BCI system.
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1 Introduction

Brain–computer interface (BCI) technology realizes direct communication and control between 
the brain and electronic devices based on cortex electrical signals. By not relying on conventional 
brain output pathways, BCI opens up entirely new ways for the human brain to communicate and 
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control information with the outside world (Maslova et al., 2023). There 
are many patterns of brain electrical signals in BCI: electroencephalogram 
(EEG), electrocorticography (ECoG), functional magnetic resonance 
imaging (fMRI), and positron emission tomography (PET) (Sharma 
et al., 2023). The EEG is extensively applied to collect brain signals in BCI 
systems since it is inexpensive, portable, and non-invasive, and has 
relatively high temporal resolution (McFarland and Wolpaw, 2017; 
Padfield et al., 2019). Common EEG-BCI systems include steady-state 
visual evoked potential (SSVEP), event-related P300, N400, motor 
imagery (MI), and slow cortical potential.

Over the past 2 decades, many researchers have focused on the 
research of BCI based on motor imagery (MI) (Pfurtscheller and 
Neuper, 2001; Chepurova et  al., 2022) and have confirmed its 
application as neurorehabilitation (Brusini et al., 2021; Choy et al., 
2023), neuroprosthetics (Neuper et al., 2006), and gaming (Laar et al., 
2010). Motor imagery might be seen as a mental rehearsal of a motor 
act without any overt motor output and could activate certain brain 
regions (Pfurtscheller and Neuper, 2001). Sensory stimulation, motor 
behavior, and mental imagery could change the functional connectivity 
within the cortex and result in an amplitude suppression [event-related 
desynchronization (ERD)] or in an amplitude enhancement [event-
related synchronization (ERS)] of mu and beta rhythms. Mu rhythm is 
in the range of 7–13 Hz, and the beta rhythm is in the range of 13–30 Hz, 
both originating in the sensorimotor cortex (Blankertz, 2008).

The classical EEG-BCI system mainly consists of signal acquisition, 
signal processing, classification recognition, and feedback/application. 
The signal processing includes signal preprocessing, feature extraction, 
and feature selection. The main purpose of signal preprocessing is to 
remove artifacts. Feature extraction means extracting features from clean 
EEG signals and common extraction methods include discrete wavelet 
transform (DWT) (Zhou et al., 2018), empirical mode decomposition 
(EMD) (Mohamed et al., 2018), power spectral density (PSD) (Rodríguez-
Bermúdez and García-Laencina, 2012), Hilbert transform (Zhou et al., 
2018), and common spatial pattern (CSP). Feature selection could 
eliminate irrelevant or redundant features so as to reduce the number of 
features, improve model accuracy, and reduce running time.

The basic principle of the CSP algorithm is to use the 
diagonalization of the matrix to find a set of optimal spatial filters for 
projection so as to maximize the difference between the variance 
values of the two types of signals and obtain a feature vector with a 
high degree of differentiation (Blankertz et  al., 2007; Benjamin 
Blankertz et al., 2008; Blankertz, 2008; Vidaurre et al., 2009). The CSP 
is widely used to extract features (Blankertz et al., 2007; Li et al., 2011; 
Tangermann et al., 2012; Baig et al., 2017; Li et al., 2017). For the 
MI-BCI system, the effectiveness of CSP is highly affected by the 
frequency band and time window of EEG segments and channels 
selected (Blankertz, 2008; Miao et al., 2017a,b).

In general, before feature extraction using CSP, EEG signals are 
filtered within a fixed broad frequency band, e.g., 8–30 Hz (Jin et al., 
2019; Jin J. et al., 2020) and 4–40 Hz (Zhang et al., 2015, 2021; Jiao 
et al., 2019, 2020). However, given the intrasubject variability in the 
frequency band of reactive components (Pfurtscheller et al., 2006), 
selecting subject-specific optimal frequency bands contributes to the 
extraction of discriminative features. The existing studies have 
confirmed that variants of CSP [SBCSP (Quadrianto Novi et al., 2007), 
FBCSP (Ang et al., 2008), DFBCSP (Thomas et al., 2009), and SFBCSP 
(Zhang et al., 2015)] could improve the classification rate of MI by 
optimizing the optimal frequency band using mathematical statistics.

Most existing studies utilize a fixed time segment to extract features 
by CSP, which results in suboptimal feature extraction since the time 
interval when the brain responses to the mental tasks occur may not 
be accurately detected. Therefore, an appropriate time window of EEG 
should be preselected to cover the interval when the EEG pattern is 
activated and remove those unrelated sampling points. The correlation-
based time window selection (CTWS) was developed for MI-based BCIs 
(Feng et al., 2018). The two Parzen window-based method was proposed 
to select the discriminative feature subset and subject-specific time 
segment (Wang et al., 2020). Furthermore, the effectiveness of CSP is 
highly affected by the frequency band and time interval of EEG segments.

The frequency band and time interval selection mainly include 
heuristic ways and the mathematical optimization method. On the one 
hand, some studies use the heuristic method to optimize features in 
multiple time windows and bandwidths (Ang et al., 2012; Zhang et al., 
2019; Miao et al., 2021; Yuan et al., 2021). The main purpose is to 
optimize the selection of the frequency band and time interval and then 
carry out feature extraction. On the other hand, the main idea of the 
mathematical optimization method is to divide time intervals and 
frequency bands, obtaining multiple sub-bands and time segments. 
Then, the high-dimensional feature sets are constructed by extracting 
features on sub-bands and time segments through the CSP algorithm 
and selecting features through mathematical optimization or statistical 
methods. Most commonly, the time-frequency feature selection by 
LASSO includes TSGSP (Zhang et al., 2019), CTFSP (Miao et al., 2021), 
and mutual information (Ang et al., 2012).

Apart from frequency band and time window optimization, another 
important issue to consider is the determination of an appropriate EEG 
channel combination for the spatial pattern. Channel selection can 
improve performance and user comfort while reducing the cost of the 
system (Xu et al., 2021). Recently, numerous channel selection methods, 
working toward either selecting the most effective channels or eliminating 
noisy channels, have been proposed for motor imagery EEG applications 
(Jin et al., 2019; Jin J. et al., 2020; Qi et al., 2021; Faye and Islam, 2022).

The above-mentioned methods are targeted at frequency band, 
time interval, time-frequency feature optimization, and channel 
selection to improve the performance of MI-BCI. Furthermore, there 
are also studies to optimize the features of the spatial-frequency domain 
or time-frequency-spatial domain. Multi-view learning aims to 
improve the learning performance of target tasks by using the 
relationship or mutual learning between view data (Xu et al., 2013). 
According to different perspectives of specific learning tasks, it can 
be divided into the multi-view classification method (Yu et al., 2014; 
Bekker et al., 2016), multi-view clustering method (Zhao et al., 2014; 
Wang et al., 2016), and multi-view feature selection/dimensionality 
reduction method (Yuan et al., 2021; Qiang et al., 2022). The multi-
scale optimization (MSO) method was proposed by introducing multi-
view feature selection to optimize filter bands over multiple channel 
sets within CSPs (Jiao et  al., 2020). Moreover, a novel framework 
termed the time window filter bank common spatial pattern with 
multi-view optimization was proposed (Huang et al., 2021).

Likewise, some studies have been mainly centered around 
investigating either frequency band and time window selection or 
spatial-frequency optimization. Few studies focus on joint 
optimization of time-frequency-spatial features. In this study, a novel 
framework termed multi-domain feature joint optimization (MDFJO) 
based on multi-view learning is proposed to select the discriminative 
features. Our contributions are summarized as follows:
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 1 We investigated the joint optimization of the filter bands and 
time intervals over multiple channel sets within CSPs by multi-
view learning.

 2 On the basis of selecting features, the feature sparsification 
strategy was studied to reduce the feature dimensionality.

 3 Two public motor imagery EEG databases were used, and the 
performance of the proposed method was compared with 
existing methods to verify its effectiveness.

The rest of the article is organized as follows. The proposed 
MDFJO method is illustrated in the Method section. The experimental 
results are described in detail in the Results section. In the Discussion 
section, we  analyzed the parameters and discussed the potential 
extensions of our method for future studies. Finally, a summary of this 
study is given in Section 5.

2 Method

In this part, EEG data, channel selection, and feature extraction 
methods are described, followed by a detailed presentation of the 
proposed method MDFJO. Furthermore, the parameters of the 
proposed method and the comparison method are selected. First, two 
EEG public datasets for validation of the method are described below.

2.1 EEG Data

 1 Data 1: The dataset is derived from BCI Competition IV dataset 
1 (Tangermann et  al., 2012). The EEG signals of seven 

participants (“a,” “b,” “c,” “d,” “e,” “f,” and “g”) were recorded, and 
the number of channels was 59. The data of each participant 
included calibration data for 200 trials and test data for 200 
trials, and the calibration data were used in this study. In each 
trial, each participant performed a pre-set motor imagery task 
(right hand and left hand or foot) for 4 s. For subjects “a” and 
“f,” the motor imagery task involved the left hand and foot. 
Other subjects performed left- and right-handed motor 
imagery tasks. The sampling frequency is 100 Hz. The timing 
scheme of the paradigm and channel arrangement are shown 
in Figure 1A.

 2 Data 2: BCI Competition III dataset IVa (Blankertz et al., 2006) 
was used for experimental method validation in this study. The 
EEG signals of five subjects (“aa,” “al,” “av,” “aw,” and “ay”) were 
included, and the number of channels was 118. The raw data 
are downsampled to 100 Hz. Each participant performed 280 
trials. In each trial, each subject performed a pre-set motor 
imagery task (right hand and right foot) for 3.5 s. The timing 
scheme of the paradigm and channel arrangement are shown 
in Figure 1B. Both channel arrangement conforms to the 10–20 
international standard lead system.

2.2 Channel selection and feature 
extraction

The continuous EEG data for each dataset are segmented into 
single-trial data, and then common average reference (CAR) is applied 
for the spatial filter to enhance the signal-to-noise ratio (McFarland 
et al., 1997). Furthermore, a fifth-order Butterworth band-pass filter 

FIGURE 1

(A) Experimental paradigm and channel arrangement for BCI Competition IV dataset 1. Arrows pointing left, right, or down have been presented as 
cues for imagining left hand, right hand, or foot movements. After a fixation cross was presented for 2  s, the directional cue was overlaid for 4  s. Then, 
the screen was blank for 2  s. The number of channels is 59. (B) Experimental paradigm and channel arrangement for BCI Competition III dataset IVa. 
Within 3.5  s of the visual cues display, the subjects performed the right hand or right foot motor imagery according to the cue. The presentation of 
target cues is intermitted by periods of random length, 1.75 to 2.25  s, in which the subject could relax. The number of channels is 118. The channel 
arrangement of Data 1 and Data 2 follows the 10–20 international standard lead system.
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(4–40 Hz) is used for filtering the EEG signal (Jiao et al., 2019, 2020). 
Channel selection aims to select the channel combination with the 
most feature difference for a specific subject to obtain better 
classification performance. The FDC is regarded as the channel 
selection method. The discriminative power of each channel is 
calculated by the FDC value between the two classes. First of all, time 
segmentation is conducted by using rectangular time windows (100 
points) and the length of signal (250 points) for Data 1 (100 Hz × 4 s) 
and Dataset IVa (100 Hz × 3.5 s), respectively. The 50% overlapping is 
used in neighboring t-segments for two datasets. 
P xch t ch t, ,log var= ( )( )  is calculated as the feature of each segment, 
where xch t,  is signal data of the t-segment for channel ch. Pch t,  denotes 
log-power. Then, the FDC value between two classes is 
fch t ch t ch tm m P P, , ,

/ var var= -( ) ( ) + ( )( )1 2
2 1 2 , where m1 and m2 are 

means of Pch t,  of all trials in two classes, Pch t,
1  and Pch t,

2  denote 
log-power of two classes, respectively. Finally, the maximum FDC of 
all t-segments is taken as the FDC value of each channel. The FDC 
values of all channels are arranged in descending order, and the 
channels corresponding to the first FDC values are selected in 
this study.

The common spatial pattern (CSP) is an efficient feature extraction 
algorithm that has been widely utilized in MI-based BCI systems. CSP 
is realized by the simultaneous diagonalization of two classes of signal-
covariance matrices. After removing the mean value of the 
preprocessing data, the single-trial EEG data were represented as a 
matrix X Rd

M TÎ ´ , where M is the number of channels and T is the 
time point for each channel. X dd , Î{ }1 2,  represents the EEG signal 
of class d. CSP seeks projection vectors by maximizing the ratio of the 
transformed data variance between two classes. The optimal spatial 
filters W w w Rm

M m= ¼[ ]Î ´
1 2

2
, ,  were formed with the first and last 

m projection vectors. Finally, the EEG data of each trial X were 
projected by W to obtain the new signal Z W XT= . In this study, 
m = 1. Feature vector f p is expressed as follows:

 f Z p mp p= ( )( ) = ¼log var , , ,1 2  (1)

The two types of features were obtained by the CSP algorithm, and 
the features and corresponding labels were imported into the 
classification algorithm to train the classifier. A support vector 
machine (SVM) classification method with a radial basis function 
kernel is applied (Chang and Lin, 2007).

2.3 Multi-domain feature joint optimization

The proposed MDFJO method mainly includes a channel pattern 
division based on FDC, sub-band division, and time interval division, 
which is feature selection based on multi-view learning and feature 
sparsification strategy and MDFJO method implementation steps.

2.3.1 Channel pattern division based on FDC
The FDC was used to compute the channel weights and sort the 

channel in descending order. The subject b from Data 1 is taken as an 
example, and its FDC value is shown in Figure 2. All channels were 
decomposed into a three-channel mode. More specifically, the first 16 
channels are selected in descending order as a channel combination 
mode, namely, channels CFC3 to CCP1. According to the above 
principle, we get a combination mode of 32 channels, namely, channels 
CFC3 to CP2. Furthermore, all channels are regarded as in a 
combination mode. In this study, there were three modes, s1 = 16 and 
s2 = 32. The third mode is to use all the channels, for Data 1, s3 = 59, 
and Data 2, s3 = 118.

2.3.2 Sub-band and time interval division
The EEG signals in each channel mode are divided into time 

interval with a time window length of 2 s and an overlap time length 
of 0.5 s. For Data 1, each channel mode has five time intervals, namely, 
t1 = 0–2 s, t2 = 0.5–2.5 s, t3 = 1–3 s, t4 = 1.5–3.5 s, and tT = 2–4 s. For Data 
2, there are only four time intervals, namely, 0–2 s, 0.5–2.5 s, 1–3 s, and 
1.5–3.5 s because the length of motor imagery time is 3.5 s. After that, 
the EEG signals in the 4 to 40 Hz frequency band in each time window 
were filtered by 4 Hz bandwidth and 2 Hz overlap frequency width. 

FIGURE 2

FDC value of subject b from Data 1. Channel labels are displayed on each bar.
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Thus, 17 filtering sub-bands are obtained. The frequency band of 
4–40 Hz is divided, the bandwidth is 4 Hz, the overlap rate is 50%, that 
is, 4–8 Hz, 6–10 Hz, 8–12 Hz…, 36–40 Hz, totaling 17 sub-bands. 
Subsequently, the CSP features were extracted from each sub-band 
EEG signal.

2.3.3 Feature selection based on multi-view 
learning

In the real world, an object is often described by multiple views. 
For example, an image has various heterogeneous features through 
different descriptors, such as RGB, LBP, HOG, and SURF. Different 
views represent different aspects of an object and can provide more 
information than a single view. In the past decades, according to 
different perspectives of specific learning tasks, it can be divided into 
multi-view classification method (Yu et al., 2014; Bekker et al., 2016), 
multi-view clustering method (Zhao et al., 2014; Wang et al., 2016), 
and multi-view feature selection/dimensionality reduction method 
(Yuan et  al., 2021; Qiang et  al., 2022). In the multi-view learning 
process, the collected multi-view dataset is apt to be high-dimensional, 
which is prone to dimension disasters. Hence, it is necessary to remove 
redundant features in multi-view data. Therefore, the multi-view 
feature selection has received wide attention.

The multi-view learning-based sparse optimization was proposed 
to jointly extract robust CSP features with L2,1-norm regularization, 
aiming to capture the shared salient information across multiple 
related spatial patterns. The method is termed as the multi-scale 
optimization (MSO) (Jiao et  al., 2020). The MSO considers the 
optimization of the CSP feature set extracted from the spatial pattern 
and sub-band group and does not consider the influence of time 
window division on the multi-view learning model. The characteristics 
of CSP are affected by spatial pattern, frequency band, and time 
interval. On the basis of the MSO method, we consider time factors 

to optimize filter bands and time intervals over multiple channel sets 
within CSPs by multi-view learning. The novel framework is termed 
multi-domain feature joint optimization (MDFJO).

The multi-view model architecture based on L2,1 is shown in 
Figure 3. Suppose V Rs t

N mk
, Î

´2  represents the CSP feature matrix in 
the t-th time interval over s-th channel mode. The number of filters is 
m = 1, and k = 17 is the number of sub-bands. N is the total number of 
trials N = [N1; N2], where N1 is the total number of class 1 trials and N2 
is the total number of class 2 trials. The channel mode is s = 1,2,…,S. The 
number of time intervals t = 1,2,…,T. The proposed multi-view 
learning model with L2,1-norm regularization is represented as follows:

 
U argmin V u y U

U

S T

= - +
= =
åå1

2
1 1

2

2
2 1

s t
s t s t s t|| || || ||, , , ,l

 
(2)

where us t mkR, Î
2 represents the weight vector obtained in a 

single view with s and t. U u , ,u ,u , ,u ,u , ,uT T S S T= ¼ ¼ ¼éë ùû11 1 2 1 2 1, , , , , ,  
is weight matrix obtained from all views. y N

s t R, Î  is denoted as a 
class label with spatial pattern s-th and time window t-th. It should 
be noted that since each view in this study shares a common class label 
vector, the above convex optimization problem could be solved by the 
accelerated gradient descent method. The MATLAB toolkit 
“MALSAR” was developed to solve the above convex optimization 
problem and used the subfunction “mtleastR.m” to solve the above 
model (Zhou et al., 2011). U

2 1,
 is obtained by first computing the 

L2-norms of the rows us t,  and then the L1-norms of vector 
|| || || || ., , , || ||u u uT1 2 2 2 2…( ) This encourages some rows of U to 

be zeros, thereby ensuring that CSP features corresponding to the 
non-zero rows will be  selected across multiple views. Finally, the 
sparse weight matrix is obtained after the matrix U is regularized by 
L2,1-norm regularization.

FIGURE 3

Multi-view model architecture based on L2,1. S and T represent the number of channel mode and time intervals, respectively. Vs t,  represents the CSP 
feature matrix in the t-th time interval over s-th channel mode. U is obtained from all views by a solving model. The sparse weight matrix is obtained 
after the matrix U is regularized by L2,1-norm regularization.
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2.3.4 Feature sparsification strategy
We propose a feature sparsification strategy to further reduce the 

feature dimension. The demonstration of the feature sparsification 
strategy is shown in Figure 4. First, the non-zero row coefficients are 
extracted from the sparse weight matrix. Suppose that the matrix of 
all real values corresponding to X in the non-zero row coefficients is 
Q. Second, the weight vector of each row in Q is sorted according to 
the absolute value, forming a matrix R, and then it takes Ns times to 
calculate the test accuracy by extracting the corresponding feature set 
with column-by-column superposition. Finally, the corresponding 
features of the maximum test accuracy are calculated. For example, 
the features corresponding to the first three columns of coefficients 
(the red area coefficient in Figure 4) have the highest test accuracy. The 
sparse row coefficient matrix is obtained by keeping the coefficient 
corresponding to the maximum test accuracy and other coefficients 
set to 0.

The feature sparsification strategy will further sparsify the 
frequency band features on the time scale to reduce redundant 
information and computational cost. The most discriminative features 
are selected to improve the classification accuracy.

2.3.5 Implementation steps of the MDFJO 
method

Figure 5 shows the overall block diagram of the proposed method. 
The proposed method can be described in detail as follows:

Step (1) The FDC was used for the preprocessing EEG data to 
rank the channel weights and divide channels into S 
channel combinations.

Step (2) According to the 5-fold cross-validation method, the 
EEG signals were divided into five parts, four of which were used as 
training samples, and the remaining one was used as test samples.

Step (3) For each channel combination mode, the CSP features of 
EEG signals in k sub-bands are calculated for each time window and 
the feature matrix V Rs t

N mk
, Î

´2  is obtained.
Step (4) The multi-view learning problem is solved by the 

accelerated gradient descent method to get U, and each non-zero row 
is sorted according to feature weight value.

Step (5) The optimal CSP feature set is obtained by the feature 
sparsification strategy.

Step (6) The features selected by all views are collected to train the 
SVM classifier and identify the class labels of the test samples.

Step (7) Repeat steps 3–6 until the 5-fold cross-validation is 
complete and output the average accuracy of the 5-fold test samples.

Algorithm 1 is the multi-domain feature joint optimization 
(MDFJO) based on multi-view learning for motor imagery 
EEG classification.

Algorithm 1: MDFJO

Input: Original samples, the hyperparameter l.

Output: 5-fold cross-validation test accuracy.

1: Channel pattern division based on FDC.

2: Divide the training samples and test samples.

3: Calculate CSP features in k sub-bands for each time window.

4: Form the feature matrix V Rs t N
, Î

´2mk .

5: Solve the multi-view learning problem in (2) to get U.

6: Sort each non-zero row according to feature weight value.

7: Obtain the optimal CSP feature set by the feature sparsification strategy.

8: Train the SVM classifier by the features selected by all views and identify the test 

labels.

9: Repeat 3–8 until the 5-fold cross-validation is complete and output the average 

accuracy.

2.4 Comparative methods

The methods proposed in this article are compared with the 
following methods:

 1 CSPs (s = 16, 32, and full channels): The CSP algorithm is used 
for feature extraction in three different channel modes of EEG, 
respectively. The frequency band was 4–40 Hz, and the time 
length was 0–4 s for Data 1 and 0–3.5 s for Data 2.

 2 FBCSPs (s = 16, 32, and full channels): The time length is the 
same as CSP, and the sub-frequency bands are divided into 
4–8 Hz, 6–10 Hz, 8–12 Hz…,36–40 Hz. CSP features are 

FIGURE 4

Feature sparsity strategy demonstration. Q represents the true value of X in a non-zero row coefficient matrix. R means by descending each row in Q.
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extracted for the whole-time interval in each sub-frequency 
band in different spatial patterns, and there is no time 
interval decomposition in this method. Then, the mutual 
information-based best individual feature (MIBIF) selection 
algorithm is used. CSP features of the frequency band are 
automatically selected. Based on the descending order 
arrangement of the mutual information value of the whole 
feature vector, the feature vectors corresponding to the first 
four sub-frequency bands are selected for subsequent 
training and testing.

 3 SFBCSPs (s = 16, 32, and full channels): The time length and 
sub-band division are the same as FBCSP, and the Lasso is used 
for feature optimization in the fixed channel mode.

 4 DFBCSP: The time and frequency band divisions are the same 
as FBCSP, and C3 is used to calculate Fisher’s score on each 
sub-band. Fisher’s score is sorted in descending order, and the 
corresponding features of the first four sub-bands are selected 
for subsequent training and testing.

 5 MSO: The channel mode is consistent in Jiao et al. (2020). For 
the two datasets, the time is 0.5–2.5 s. The sub-band division is 
consistent with FBCSP. Multi-view learning is used to select the 
sub-band features in different spatial patterns.

The Wilcoxon signed-rank test is a non-parametric statistical test 
used to compare the difference between two correlated or paired 
samples, with the advantage that it does not require the assumption of 
a normal distribution of the data and is suitable for small samples and 
discontinuous data. Therefore, the Wilcoxon signed rank test is often 
used to calculate the differences between two EEG processing methods 
(Jin J. et al., 2020; Qi et al., 2021). Given the small sample size in this 
study, the statistical significance of each method versus MDFJO is 
assessed via the Wilcoxon signed-rank test.

It should be noted that the test results of the comparative methods 
in this article are based on the principles and parameters of the above 
methods and are not directly compared with the results of 
the literature.

2.5 Selection of hyperparameters

In the process of data analysis, several hyperparameters need to 
be determined. Among them, there are the regularization term sparsity 
g  in SFBCSP, the regularization term r  of L2,1 norm in the multi-scale 
optimization method MSO. In this study, the regularization term l of 
L2,1 norm and the number of featured Ns at the time level. In order to 
construct a better model, 5-fold cross-validation is used to determine 
the value of the hyperparameter. For each hyperparameter value, the 
corresponding training feature subsets are divided into five equal parts 
of which four copies are used to train the classification model, and the 
remaining one is used as a test set to evaluate the performance of the 
model. This process is repeated five times, and a 5-fold cross-validation 
average accuracy is obtained. The optimal value of the hyperparameter 
is determined for the highest average accuracy. The alternative set of 
hyperparameters is specified as follows: For SFBCSP, g Î ¼{ }0 0 01 1, . , ,

. For the MSO, r Î ¼{ }0 0 1 1, . , , . For the MDFJO, 
l Î ¼{ }0 0 1 1, . , ,  and N , , ,S Ts Î ¼ ´{ }1 2 .

3 Results

3.1 Classification performance

The results of the proposed method MDFJO are compared with 
those of the traditional CSP, SFBCSP, FBCSP, DFBCSP, and MSO in 
different spatial patterns. Figure 6 shows the test results of MDFJO and 
all comparison methods in all subjects. The red circle and blue box 
represent the test results of all subjects in Data 1 and all subjects in Data 
2, respectively. The results obtained by each method applied to the 
subjects are the average accuracy of 5-fold cross-validation. The 
Wilcoxon signed-rank test was used to analyze the statistical differences 
between MDFJO and each method. Finally, the classification result of 
MDFJO was significantly better than MSO (p  < 0.05), FBCSP32 
(p < 0.01), and other methods (p < 0.001). It is concluded that the 
classification performance of MDFJO is better than other methods.

FIGURE 5

Framework diagram of the proposed MDFJO for the motor-imagery-related EEG classification. The method mainly includes channel pattern division, 
sub-band division, and time interval division, feature extracted by CSP and feature selection based on multi-view learning, feature sparsification 
strategy, and identification of test samples by SVM.

https://doi.org/10.3389/fnhum.2023.1292428
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Shi et al. 10.3389/fnhum.2023.1292428

Frontiers in Human Neuroscience 08 frontiersin.org

Table  1 shows the average classification accuracy (%) of the 
proposed MDFJO and the existing methods on each dataset. As can 
be  seen from Table  1, the average classification accuracy of the 
MDFJO in Data 1 and Data 2 is 88.29 and 87.21%, respectively. For 
Data 1 and data 2, the average classification accuracy of MDFJO is 
87.75%, which was, respectively, higher than that of CSP16, CSP32, 
CSPall, SFBCSP16, SFBCSP32, SFBCSPall, FBCSP16, FBCSP32, FBCSPall, 
DFBCSP, and MSO improved by 13.50, 11.71, 15.21, 7.60, 8.21, 11.00, 
6.50, 6.03, 8.10, 9.82, and 4.39%. These results indicate that the 
MDFJO could further improve the accuracy of the EEG classification 
in a motor imagery task.

Furthermore, it can be concluded from Table 1 that the average 
accuracy obtained by CSPall, SFBCSPall, and FBCSPall are, respectively, 
lower than the results obtained by the 16–32 channel mode of the 
corresponding methods. Specifically, the average test accuracy of 
CSPall (72.54%) was lower than that of CSP16 and CSP32 (1.71 and 
3.50%). For SFBCSPall, the average test accuracy of 76.75% was lower 
than that of SFBCSP16 and SFBCSP32, which were 3.40 and 2.79%, 
respectively. For the method FBCSPall, the average test accuracy was 
79.65%, which was lower than 1.60 and 2.07% for FBCSP16 and 
FBCSP32. The results show that channel selection of EEG can 
effectively improve classification accuracy.

In addition, the average test accuracy obtained by MDFJO on the 
two datasets is 4.39% higher than that obtained by MSO. One of the 
possible reasons is that MSO extracts sub-band features from the 

FIGURE 6

Test results of MDFJO and all comparison algorithms in all subjects (* p  <  0.05, ** denotes p  <  0.01, *** denotes p  <  0.001). The red circle and the blue 
box represent the test results of all subjects in Data 1 and all subjects in Data 2, respectively.

TABLE 1 Average classification accuracy of MDFJO and existing methods 
on each dataset (%).

Methods Data 1 Data 2 Mean

CSP16 73.00 ± 8.85 75.50 ± 16.11 74.25 ± 1.77

CSP32 75.14 ± 10.11 76.93 ± 12.68 76.04 ± 1.27

CSPall 69.71 ± 13.65 75.36 ± 15.59 72.54 ± 3.99

SFBCSP16 76.43 ± 10.79 83.86 ± 11.94 80.15 ± 5.25

SFBCSP32 75.00 ± 12.35 84.07 ± 11.28 79.54 ± 6.41

SFBCSPall 71.07 ± 11.14 82.43 ± 12.22 76.75 ± 8.03

FBCSP16 79.57 ± 11.49 82.93 ± 10.73 81.25 ± 2.38

FBCSP32 78.64 ± 11.34 84.79 ± 10.75 81.72 ± 4.34

FBCSPall 75.00 ± 12.35 84.29 ± 14.35 79.65 ± 6.57

DFBCSP 69.71 ± 17.18 86.14 ± 12.24 77.93 ± 11.62

MSO 80.29 ± 11.22 86.43 ± 11.24 83.36 ± 4.34

MDFJO 88.29 ± 9.62 87.21 ± 13.77 87.75 ± 0.76
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combined spatial pattern of multiple channels without using multiple 
time information. Therefore, the MDFJO can further improve the 
accuracy of motor imagery.

We performed a comparison of the classification performance of 
MDFJO with convolutional neural networks (CNN), as shown in 
Table 2. For Data 1 (BCI Competition IV dataset 1), the classification 
accuracy of our proposed MDFJO is 88.29 ± 9.62%, while the results 
of Yang et al. (2020) and Zhang et al. (2020) are 86.4 and 83.2 ± 3.5, 
respectively. For Data 2 (BCI Competition III dataset Iva), as can 
be seen from Table 2, the classification performance of the proposed 
method MDFJO is smaller than Miao et  al. (2020) and Ortiz-
Echeverri et  al. (2019). A possible reason is that Data 2 has 118 
channels, while Data 1 has 59 channels. Furthermore, Data 2 has 280 
trials of the right hand and foot. The convolutional neural network 
(CNN) method is more suitable for data with a larger sample size and 
achieves better classification performance. However, the proposed 
MDFJO is more suitable for classification with a small number of 
trials for each subject.

3.2 Combination of selected channels

Table  3 shows the comparison of the average classification 
accuracy (%) of subjects “c,” “f,” “g,” and “ay” in the MDFJO and the 
existing method. The 5-fold cross-validation accuracies of the 
MDFJO in subjects “c,” “f,” “g,” and “ay” are 85.50, 87.50, 93.50, and 
94.64%, respectively. The three selected channel patterns obtained by 
using FDC are shown in Figure 7. For the subjects “c” and “g,” the 
motor imagery task involved the left and right hand. The chosen 16 
and 32 channel patterns are also located in the central zone region of 
the sensorimotor cortex. Similarly, for subject “f,” the motor imagery 
task involved the left hand and right foot, and the 16 and 32 channel 
patterns are mainly distributed in the central and right-center regions 
of the sensorimotor cortex. For the subject “ay,” the imagery task was 
the imagination of the right hand and foot, and the two selected 
channel modes are mainly located in the left-sided region. In 
summary, the selected channels roughly matched the cortical 
activation regions generated by the corresponding motor 
imagery task.

3.3 Results of different channel 
combination modes

In order to study the classification performance of 
three different channel combination patterns based on MDFJO 

on two datasets, a 5-fold cross-validation is performed for 
each method, as shown in Figure  8. For Data 1, the average 
test accuracy of MDFJO based on channel mode 16-32-all is 
much higher than that of other channel mode methods. 
For Data 2, the MDFJO method of 16-32-all is slightly lower 
than the channel combination method of 16-all. Although 
the performance of each channel combination method is different, 
the average test accuracy of the MDFJO method based on the 
16-32-all channel mode is larger than other combined 
channel modes.

4 Discussion

4.1 Parameter analysis

In the multi-view optimization model, the regularization 
coefficient l has a great influence on the feature selection and the 
5-fold cross-validation accuracy of the selected features. In this 
study, we  investigated the feature group corresponding to the 
optimal l so as to obtain the best test accuracy. Figure 9 shows the 
effect of l change on the selection number of sub-band features 
and the 5-fold cross-validation accuracy. l controls the number 
of selected features. Larger l values result in fewer non-zero rows 
of the sparse matrix U in (2). A smaller l value makes the sparse 

TABLE 2 Comparison of classification accuracy for MDFJO and CNN on each dataset.

Study Data Deep learning modality Strategy Accuracy (%)

Yang et al. (2020)
Data 1

BCI-C IV-1

CNN 8-fold 86.4

Zhang et al. (2020) CNN 10-fold 83.2 ± 3.5

MDFJO 5-fold 88.29 ± 9.62

Ortiz-Echeverri et al. (2019)
Data 2

BCI-C III-4a

CNN 10-fold 94.66

Miao et al. (2020) CNN 10-fold 90

MDFJO 5-fold 87.21 ± 13.77

TABLE 3 Comparison of average classification accuracy (%) of subjects c, 
f, g, and ay with the proposed method and the existing method.

Methods C f G ay

CSP16 65.50 78.00 80.00 82.86

CSP32 71.50 76.00 74.50 81.79

CSPall 76.00 73.50 55.00 83.57

SFBCSP16 61.50 75.50 85.00 88.57

SFBCSP32 67.00 62.50 81.00 87.50

SFBCSPall 58.50 70.50 74.00 87.50

FBCSP16 64.50 78.50 88.50 86.79

FBCSP32 68.00 68.50 82.00 88.57

FBCSPall 71.00 60.50 76.50 89.29

DFBCSP 43.00 75.50 70.00 87.14

MSO 68.50 83.50 92.50 93.21

MDFJO 85.50 87.50 93.50 94.64
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FIGURE 8

Classification accuracy comparison of MDFJO based on different 
combinations of channel patterns (16-all, 32-all, 16–32, and 
16-32-all).

FIGURE 9

Effect of l change on the selection number of sub-band features 
and the 5-fold cross-validation accuracy. The left blue ordinate is 
the 5  ×  5 fold accuracy (%), and the right orange coordinate is the 
number of features. The blue curve and the orange curve, 
respectively, represent the change in 5  ×  5 fold accuracy and the 
number of features. The red vertical dashed line indicates that 
when l is 0.5, the accuracy is maximum and the number of 
features is small.

matrix U have more non-zero rows and thus more features. As can 
be  seen from Figure  9, as l  grows, the number of selected 
sub-band features decreases, and when l  is 1, the number of 
selected features is 0. Thus, the larger l value corresponding the 
higher classification accuracy should be selected as the optimal 
regular term l . In this way, the sparsity of feature selection can 
be maintained without loss of accuracy. For subject “f,” the optimal 
l  value is 0.5, and the corresponding number of sub-band 
features is 11.

Figure 10 shows the influence of Ns change on the accuracy 
of 5-fold crossing validation accuracy. Ns is the number of weights 
on 15-time segments of the three-channel patterns. The feature 

corresponding to the smaller Ns with the highest average accuracy 
is considered the optimal feature. When Ns is 5 and 11, the 5-fold 
crossing validation accuracy is the highest. Considering that 
when Ns is 5, the selected features are the least, so Ns is 5 for 
subject “f.” It should be noted that subject “f ” is only taken as an 
example to demonstrate the parameter selection method, and 
other subjects’ parameter selection methods are the same as 
subject “f.”

FIGURE 7

Three selected channel patterns obtained by using FDC, namely, the 16-32-all channel pattern mode.
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4.2 Analysis of corresponding features of 
sparse matrix

As for subject “f,” the sparse matrix obtained based on MDFJO 
is shown in the left subgraph of Figure  11. The highest weight 
values are mainly concentrated at 6–16 Hz. To verify the 
effectiveness of the selected sub-band features, the average power 
spectral density is yielded for the two classes of data of 80 training 
trials, as shown in the right subgraph of Figure 11. Orange and 
light green lines represent the average power spectral density 
curves of the two classes. In this study, r2 is used to represent the 
difference between the two classes of power. A larger r2 indicates a 
larger difference between the two classes of power spectrum values. 
For two classes of power spectrum vectors X1 and X2. The r2 can 
be expressed as follows:
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where L1 and L2 are, respectively, represented as the dimensions 
of two classes of power spectrum vectors. The color block at the 
bottom of the right subgraph of Figure  11 represents the size 
change of r2. It can be concluded that when the frequency is in the 
range of 8–20, there is a large difference in the spectral density of 
the two classes of power, which indirectly indicates the dilution 
validity of the selected sub-band features in the sparse matrix in 
Figure 11.

At the same time, this work investigated the differences of the 
two classes of features corresponding to sub-band indexes 4 and 
6  in each spatial pattern in each time interval, as shown in 
Figure  12. The red-labeled subgraph indicates that the feature 
difference is greater than other time intervals. The red circle and 
blue cross indicate two types of features. In addition, it can be seen 
that the high weight coefficient in the left subgraph of Figure 11 
corresponds to the relatively large feature difference in Figure 12. 
This also shows the effectiveness of optimizing time 
interval features.

4.3 Limitations and future work

The proposed MDFJO is mainly suitable for EEG classification 
based on MI-based BCI. In future studies, we will extend this method 
to other event-related cortical potential decoding. In addition, only 
two datasets were used to verify the effectiveness of our method and 
more datasets will be used to test the effectiveness of this method in 
the future.

In our experimental study, we  use an internal loop cross-
validation step to determine the optimal hyperparameters of the 
proposed method. However, this optimal hyperparameter selection 

FIGURE 10

Influence of Ns on the accuracy of 5-fold cross-validation.

FIGURE 11

Sparse matrix and average power spectral density of subject f. The left subgraph is a sparse matrix. The darker red color represents a higher weight 
value. The right subgraph is average power spectral density. Orange and light green lines represent the average power spectral density curves of the 
two classes. The bottom color bar represents a r2 value.
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FIGURE 12

Characteristic difference of each channel mode at each time interval. The red-labeled subgraph indicates that the feature difference is greater than the 
other time intervals. The red circle and blue cross indicate two types of features.

method is generally time-consuming, which would limit the 
application of the proposed method in BCI practice. The sparse 
Bayesian learning-based algorithm (Jin Z. et  al., 2020) has been 
developed for automatic optimization of model hyperparameters. 
Therefore, in future studies, the sparse Bayes algorithm could 
be  embedded into the proposed method to further improve the 
efficiency of hyperparameter selection.

5 Conclusion

In this study, the feature extraction method of the common 
spatial pattern is easy to be affected by time interval, bandpass 
filter, and channel selection. This results in weak feature 
differences and intention recognition accuracy. Therefore, the 
multi-domain feature joint optimization (MDFJO) based on the 
multi-view learning method was proposed. Compared with the 
CSP, SFBCSP, and FBCSP methods with 16-32-all channel mode 
as well as MSO, the MDFJO significantly improves the test 
accuracy. The feature sparsification strategy proposed in this 
article can effectively enhance classification accuracy. Future 
studies will investigate the performance of our proposed method 
on other types of BCI systems.
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