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This paper explores memory from a cognitive neuroscience perspective and

examines associated neural mechanisms. It examines the different types of

memory: working, declarative, and non-declarative, and the brain regions

involved in each type. The paper highlights the role of different brain regions,

such as the prefrontal cortex in working memory and the hippocampus in

declarative memory. The paper also examines the mechanisms that underlie

the formation and consolidation of memory, including the importance of

sleep in the consolidation of memory and the role of the hippocampus in

linking new memories to existing cognitive schemata. The paper highlights two

types of memory consolidation processes: cellular consolidation and system

consolidation. Cellular consolidation is the process of stabilizing information by

strengthening synaptic connections. System consolidation models suggest that

memories are initially stored in the hippocampus and are gradually consolidated

into the neocortex over time. The consolidation process involves a hippocampal-

neocortical binding process incorporating newly acquired information into

existing cognitive schemata. The paper highlights the role of the medial

temporal lobe and its involvement in autobiographical memory. Further, the

paper discusses the relationship between episodic and semantic memory and

the role of the hippocampus. Finally, the paper underscores the need for

further research into the neurobiological mechanisms underlying non-declarative

memory, particularly conditioning. Overall, the paper provides a comprehensive

overview from a cognitive neuroscience perspective of the different processes

involved in memory consolidation of different types of memory.
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Introduction

Memory is an essential cognitive function that permits individuals to acquire, retain,
and recover data that defines a person’s identity (Zlotnik and Vansintjan, 2019). Memory
is a multifaceted cognitive process that involves different stages: encoding, consolidation,
recovery, and reconsolidation. Encoding involves acquiring and processing information that
is transformed into a neuronal representation suitable for storage (Liu et al., 2021; Panzeri
et al., 2023). The information can be acquired through various channels, such as visual,
auditory, olfactory, or tactile inputs. The acquired sensory stimuli are converted into a format
the brain can process and retain. Different factors such as attention, emotional significance,
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and repetition can influence the encoding process and determine
the strength and durability of the resulting memory (Squire et al.,
2004; Lee et al., 2016; Serences, 2016).

Consolidation includes the stabilization and integration
of memory into long-term storage to increase resistance to
interference and decay (Goedert and Willingham, 2002). This
process creates enduring structural modification in the brain and
thereby has consequential effects on the function by reorganizing
and strengthening neural connections. Diverse sources like
sleep and stress and the release of neurotransmitters can
influence memory consolidation. Many researchers have noted the
importance of sleep due to its critical role in enabling a smooth
transition of information from transient repositories into more
stable engrams (memory traces) (McGaugh, 2000; Clawson et al.,
2021; Rakowska et al., 2022).

Retrieval involves accessing, selecting, and reactivating or
reconstructing the stored memory to allow conscious access
to previously encoded information (Dudai, 2002). Retrieving
memories depends on activating relevant neural pathways while
reconstructing encoded information. Factors like contextual or
retrieval cues and familiarity with the material can affect this
process. Forgetting becomes a possibility if there are inadequate
triggers for associated memory traces to activate upon recall.
Luckily, mnemonic strategies and retrieval practice offer effective
tools to enhance recovery rates and benefit overall memory
performance (Roediger and Butler, 2011).

Previous research implied that once a memory has been
consolidated, it becomes permanent (McGaugh, 2000; Robins,
2020). However, recent studies have found an additional phase
called "reconsolidation," during which stored memories, when
reactivated, enter a fragile or liable state and become susceptible to
modification or update (Schiller et al., 2009; Asthana et al., 2015).
The process highlights the notion that memory is not static but a
dynamic system influenced by subsequent encounters. The concept
of reconsolidation has much significance in memory modification
therapies and interventions, as it offers a promising opportunity
to target maladaptive or traumatic memories for modification
specifically. However, more thorough investigations are needed
to gain insight into the mechanisms and concrete implications
of employing memory reconsolidation within therapeutic settings
(Bellfy and Kwapis, 2020).

The concept of memory is not reducible to a single unitary
phenomenon; instead, evidence suggests that it can be subdivided
into several distinct but interrelated constituent processes and
systems (Richter-Levin and Akirav, 2003). There are three
major types of human memory: working memory, declarative
memory (explicit), and non-declarative memory (implicit). All
these types of memories involve different neural systems in
the brain. Working memory is a unique transient active store
capable of manipulating information essential for many complex
cognitive operations, including language processing, reasoning,
and judgment (Atkinson and Shiffrin, 1968; Baddeley and Logie,
1999; Funahashi, 2017; Quentin et al., 2019). Previous models
suggest the existence of three components that make up the
working memory (Baddeley and Hitch, 1974; Baddeley, 1986).
One master component, the central executive, controls the two
dependent components, the phonological loop (speech perception
and language comprehension) and the visuospatial sketchpad
(visual images and spatial impressions processing). Some models

mention a third component known as the episodic buffer. It is
theorized that the episodic buffer serves as an intermediary between
perception, long-term memory, and two components of working
memory (the phonological loop and visuospatial sketchpad) by
storing integrated episodes or chunks from both sources (Baddeley,
2000). Declarative memory (explicit memory) can be recalled
consciously, including facts and events that took place in one’s life
or information learned from books. It encompasses memories of
both autobiographical experiences and memories associated with
general knowledge. It is usually associated with the hippocampus–
medial temporal lobe system (Thompson and Kim, 1996; Ober,
2014). Non-declarative memory (implicit memory) refers to
unconscious forms of learning such as skills, habits, and priming
effects; this type of implicit learning does not involve conscious
recollection but can include motor skill tasks that often require no
thought prior to execution nor later recall upon completion. This
type of memory usually involves the amygdala and other systems
(Thompson and Kim, 1996; Ober, 2014).

Working memory

Working memory is primarily associated with the prefrontal
and posterior parietal cortex (Sarnthein et al., 1998; Todd and
Marois, 2005). Working memory is not localized to a single brain
region, and research suggests that it is an emergent property
arising from functional interactions between the prefrontal cortex
(PFC) and the rest of the brain (D’Esposito, 2007). Neuroimaging
studies have explored the neural basis for the three components
proposed by Baddeley and Hitch (1974), the Central executive,
the phonological loop, and the visuospatial sketch pad; there is
evidence for the existence of a fourth component called the episodic
buffer (Baddeley, 2000).

The central executive plays a significant role in working
memory by acting as the control center (Shallice, 2002). It facilitates
critical functions like attention allocation and coordination
between the phonological loop and the visuospatial sketchpad
(Yu et al., 2023). Recent findings have illuminated the dual-
functional network regulation, the cingulo-opercular network
(CON) and the frontoparietal network (FPN), that underpins the
central executive system (Yu et al., 2023). The CON comprises
the dorsal anterior cingulate cortex (dACC) and anterior insula
(AI). In contrast, the FPN encompasses various regions, such as
the dorsolateral prefrontal cortex (DLPFC) and frontal eye field
(FEF), along with the intraparietal sulcus (IPS) (Yu et al., 2023).
Neuroimaging research has found evidence that elucidates the
neural underpinnings of the executive attention control system
to the dorsolateral prefrontal cortex (DLPFC) and the anterior
cingulate cortex (ACC) (Jung et al., 2022). The activation patterns
indicate that the CON may have a broader top-down control
function across the working memory process. At the same time,
the FPN could be more heavily implicated in momentary control
or processing at the trial level (Yu et al., 2023). Evidence suggests
that the central executive interacts with the phonological loop
and visuospatial sketchpad to support working memory processes
(Baddeley, 2003; Buchsbaum, 2010; Menon and D’Esposito, 2021).
The function, localization, and neural basis of this interaction are
thought to involve the activation of specific brain regions associated
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with each component of working memory, as discussed in detail
below.

The phonological loop is divided into two components: a
storage system that maintains information (a few seconds) and
a component involving subvocal rehearsal—which maintains and
refreshes information in the working memory. Neuroanatomically,
the phonological loop is represented in the Brodmann area (BA)
40 in the parietal cortex and the rehearsal components in BA 44
and 6, both situated in the frontal cortex (Osaka et al., 2007).
The left inferior frontal gyrus (Broca’s area) and the left posterior
superior temporal gyrus (Wernicke’s area) has been proposed to
play a critical role in supporting phonological and verbal working
memory tasks, specifically the subvocal rehearsal system of the
articulatory loop (Paulesu et al., 1993; Buchsbaum et al., 2001;
Perrachione et al., 2017). The phonological store in verbal short-
term memory has been localized at the left supramarginal gyrus
(Graves et al., 2008; Perrachione et al., 2017).

Studies utilizing neuroimaging techniques have consistently
yielded results indicating notable activation in these brain
regions during phonological activities like recalling non-words
and maintaining verbal information in memory (Awh et al.,
1996; Graves et al., 2008). During tasks that require phonological
rehearsal, there was an increase in activation in the left inferior
frontal gyrus (Paulesu et al., 1993). Researchers have noted an
increase in activity within the superior temporal gyrus-which
plays a significant role in auditory processing-in individuals
performing tasks that necessitate verbal information maintenance
and manipulation (Smith et al., 1998; Chein et al., 2003).

Additionally, lesion studies have provided further confirmation
regarding the importance of these regions. These investigations
have revealed that impairment in performing phonological working
memory tasks can transpire following damage inflicted upon the
left hemisphere, particularly on perisylvian language areas (Koenigs
et al., 2011). It is common for individuals with lesions affecting
regions associated with the phonological loop, such as the left
inferior frontal gyrus and superior temporal gyrus, to have difficulty
performing verbal working memory tasks. Clinical cases involving
patients diagnosed with aphasia and specific language impairments
have highlighted challenges related to retaining and manipulating
auditory information. For example, those who sustain damage
specifically within their left inferior frontal gyrus often struggle
with tasks involving phonological rehearsal and verbal working
memory activities, and therefore, they tend to perform poorly
in tasks that require manipulation or repetition of verbal stimuli
(Saffran, 1997; Caplan and Waters, 2005).

The visuospatial sketchpad is engaged in the temporary
retention and manipulation of visuospatial facts, including mental
pictures, spatial associations, and object placements (Miyake
et al., 2001). The visuospatial sketchpad is localized to the right
hemisphere, including the occipital lobe, parietal and frontal areas
(Osaka et al., 2007). Ren et al. (2019) identified the localization
of the visuospatial sketchpad, and these areas were the right
infero-lateral prefrontal cortex, lateral pre-motor cortices, right
inferior parietal cortex, and the dorsolateral occipital cortices
(Burbaud et al., 1999; Salvato et al., 2021). Moreover, the posterior
parietal cortex and the intraparietal sulcus have been implicated
in spatial working memory (Xu and Chun, 2006). Additionally,
some evidence is available for an increase in brain regions
associated with the visuospatial sketchpad during tasks involving

mental imagery and spatial processing. Neuroimaging studies
have revealed increased neural activation in some regions of
the parietal cortex, mainly the superior and posterior parietal
cortex, while performing mental rotation tasks (Cohen et al., 1996;
Kosslyn et al., 1997). However, further research is needed to better
understand the visuospatial working memory and its integration
with other cognitive processes (Baddeley, 2003). Lesions to the
regions involving the visuospatial sketchpad can have detrimental
effects on visuospatial working memory tasks. Individuals with
lesions to the posterior parietal cortex may exhibit deficits in mental
rotation tasks and may be unable to mentally manipulate the
visuospatial representation (Buiatti et al., 2011). Moreover, studies
concerning lesions have shown that damage to the parietal cortex
can result in short-term deficits in visuospatial memory (Shafritz
et al., 2002). Damage to the occipital cortex can lead to performance
impairments in tasks that require the generation and manipulation
of mental visual images (Moro et al., 2008).

The fourth component of the working memory, termed
episodic buffer, was proposed by Baddeley (2000). The episodic
buffer is a multidimensional but essentially passive store that can
hold a limited number of chunks, store bound features, and make
them available to conscious awareness (Baddeley et al., 2010; Hitch
et al., 2019). Although research has suggested that episodic buffer
is localized to the hippocampus (Berlingeri et al., 2008) or the
inferior lateral parietal cortex, it is thought to be not dependent
on a single anatomical structure but instead can be influenced
by the subsystems of working memory, long term memory, and
even through perception (Vilberg and Rugg, 2008; Baddeley et al.,
2010). The episodic buffer provides a crucial link between the
attentional central executive and the multidimensional information
necessary for the operation of working memory (Baddeley et al.,
2011; Gelastopoulos et al., 2019).

The interdependence of the working memory modules, namely
the phonological loop and visuospatial sketchpad, co-relates with
other cognitive processes, for instance, spatial cognition and
attention allocation (Repovs and Baddeley, 2006). It has been found
that the prefrontal cortex (PFC) and posterior parietal cortex (PPC)
have a crucial role in several aspects of spatial cognition, such as the
maintenance of spatially oriented attention and motor intentions
(Jerde and Curtis, 2013). The study by Sellers et al. (2016) and
the review by Ikkai and Curtis (2011) posits that other brain areas
could use the activity in PFC and PPC as a guide and manifest
outputs to guide attention allocation, spatial memory, and motor
planning. Moreover, research indicates that verbal information
elicits an activation response in the left ventrolateral prefrontal
cortex (VLPFC) when retained in the phonological loop, while
visuospatial information is represented by a corresponding level of
activity within the right homolog region (Narayanan et al., 2005;
Wolf et al., 2006; Emch et al., 2019). Specifically, the study by
Yang et al. (2022) investigated the roles of two regions in the
brain, the right inferior frontal gyrus (rIFG) and the right supra-
marginal gyrus (rSMG), as they relate to spatial congruency in
visual working memory tasks. A change detection task with online
repetitive transcranial magnetic stimulation applied concurrently at
both locations during high visual WM load conditions determined
that rIFG is involved in actively repositioning the location of
objects. At the same time, rSMG is engaged in passive perception
of the stability of the location of objects.
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Recent academic studies have found evidence to support the
development of a new working memory model known as the
state-based model (D’Esposito and Postle, 2015). This theoretical
model proposes that the allocation of attention toward internal
representations permits short-term retention within working
memory (Ghaleh et al., 2019). The state-based model consists
of two main categories: activated LTM models and sensorimotor
recruitment models; the former largely focuses upon symbolic
stimuli categorized under semantic aspects, while the latter has
typically been applied to more perceptual tasks in experiments. This
framework posits that prioritization through regulating cognitive
processes provides insight into various characteristics across
different activity types, including capacity limitations, proactive
interference, etcetera (D’Esposito and Postle, 2015). For example,
the paper by Ghaleh et al. (2019) provides evidence for two separate
mechanisms involved in maintenance of auditory information
in verbal working memory: an articulatory rehearsal mechanism
that relies more heavily on left sensorimotor areas and a non-
articulatory maintenance mechanism that critically relies on left
superior temporal gyrus (STG). These findings support the state-
based model’s proposal that attentional allocation is necessary for
short-term retention in working memory.

State-based models were found to be consistent with the
suggested storage mechanism as they do not require representation
transfer from one dedicated buffer type; research has demonstrated
that any population of neurons and synapses may serve as
such buffers (Maass and Markram, 2002; Postle, 2006; Avraham
et al., 2017). The review by D’Esposito and Postle (2015)
examined the evidence to determine whether a persistent neural
activity, synaptic mechanisms, or a combination thereof support
representations maintained during working memory. Numerous
neural mechanisms have been hypothesized to support the short-
term retention of information in working memory and likely
operate in parallel (Sreenivasan et al., 2014; Kamiński and
Rutishauser, 2019).

Persistent neural activity is the neural mechanism by which
information is temporarily maintained (Ikkai and Curtis, 2011;
Panzeri et al., 2023). Recent review by Curtis and Sprague (2021)
has focused on the notion that persistent neural activity is a
fundamental mechanism for memory storage and have provided
two main arcs of explanation. The first arc, mainly underpinned by
empirical evidence from prefrontal cortex (PFC) neurophysiology
experiments and computational models, posits that PFC neurons
exhibit sustained firing during working memory tasks, enabling
them to store representations in their active state (Thuault et al.,
2013). Intrinsic persistent firing in layer V neurons in the medial
PFC has been shown to be regulated by HCN1 channels, which
contribute to the executive function of the PFC during working
memory episodes (Thuault et al., 2013). Additionally, research
has also found that persistent neural firing could possibly interact
with theta periodic activity to sustain each other in the medial
temporal, prefrontal, and parietal regions (Düzel et al., 2010; Boran
et al., 2019). The second arc involves advanced neuroimaging
approaches which have, more recently, enabled researchers to
decode content stored within working memories across distributed
regions of the brain, including parts of the early visual cortex–
thus extending this framework beyond just isolated cortical areas
such as the PFC. There is evidence that suggests simple, stable,
persistent activity among neurons in stimulus-selective populations

may be a crucial mechanism for sustaining WM representations
(Mackey et al., 2016; Kamiński et al., 2017; Curtis and Sprague,
2021).

Badre (2008) discussed the functional organization of the
PFC. The paper hypothesized that the rostro-caudal gradient
of a function in PFC supported a control hierarchy, whereas
posterior to anterior PFC mediated progressively abstract, higher-
order controls (Badre, 2008). However, this outlook proposed
by Badre (2008) became outdated; the paper by Badre and
Nee (2018) presented an updated look at the literature on
hierarchical control. This paper supports neither a unitary model
of lateral frontal function nor a unidimensional abstraction
gradient. Instead, separate frontal networks interact via local and
global hierarchical structures to support diverse task demands.
This updated perspective is supported by recent studies on the
hierarchical organization of representations within the lateral
prefrontal cortex (LPFC) and the progressively rostral areas of
the LPFC that process/represent increasingly abstract information,
facilitating efficient and flexible cognition (Thomas Yeo et al.,
2011; Nee and D’Esposito, 2016). This structure allows the brain
to access increasingly abstract action representations as required
(Nee and D’Esposito, 2016). It is supported by fMRI studies
showing an anterior-to-posterior activation movement when tasks
become more complex. Anatomical connectivity between areas also
supports this theory, such as Area 10, which has projections back
down to Area 6 but not vice versa.

Finally, studies confirm that different regions serve different
roles along a hierarchy leading toward goal-directed behavior
(Badre and Nee, 2018). The paper by Postle (2015) exhibits
evidence of activity in the prefrontal cortex that reflects the
maintenance of high-level representations, which act as top-
down signals, and steer the circulation of neural pathways across
brain networks. The PFC is a source of top-down signals that
influence processing in the posterior and subcortical regions
(Braver et al., 2008; Friedman and Robbins, 2022). These signals
either enhance task-relevant information or suppress irrelevant
stimuli, allowing for efficient yet effective search (D’Esposito,
2007; D’Esposito and Postle, 2015; Kerzel and Burra, 2020).
The study by Ratcliffe et al. (2022) provides evidence of the
dynamic interplay between executive control mechanisms in the
frontal cortex and stimulus representations held in posterior
regions for working memory tasks. Moreover, the review by Herry
and Johansen (2014) discusses the neural mechanisms behind
actively maintaining task-relevant information in order for a
person to carry out tasks and goals effectively. This review of
data and research suggests that working memory is a multi-
component system allowing for both the storage and processing
of temporarily active representations. Neural activity throughout
the brain can be differentially enhanced or suppressed based on
context through top-down signals emanating from integrative
areas such as PFC, parietal cortex, or hippocampus to actively
maintain task-relevant information when it is not present in
the environment (Herry and Johansen, 2014; Kerzel and Burra,
2020).

In addition, Yu et al. (2022) examined how brain regions from
the ventral stream pathway to the prefrontal cortex were activated
during working memory (WM) gate opening and closing. They
defined gate opening as the switch from maintenance to updating
and gate closing as the switch from updating to maintenance.
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The data suggested that cognitive branching increases during the
WM gating process, thus correlating the gating process and an
information approach to the PFC function. The temporal cortices,
lingual gyrus (BA19), superior frontal gyri including frontopolar
cortices, and middle and inferior parietal regions are involved
in processes of estimating whether a response option available
will be helpful for each case. During gate closing, on the other
hand, medial and superior frontal regions, which have been
associated with conflict monitoring, come into play, as well as
orbitofrontal and dorsolateral prefrontal processing at later times
when decreasing activity resembling stopping or downregulating
cognitive branching has occurred, confirming earlier theories about
these areas being essential for estimation of usefulness already
stored within long-term memories (Yu et al., 2022).

Declarative and non-declarative
memory

The distinctions between declarative and non-declarative
memory are often based on the anatomical features of
medial temporal lobe regions, specifically those involving the
hippocampus (Squire and Zola, 1996; Squire and Wixted, 2011).
In the investigation of systems implicated in the process of
learning and memory formation, it has been posited that the
participation of the hippocampus is essential for the acquisition of
declarative memories (Eichenbaum and Cohen, 2014). In contrast,
a comparatively reduced level of hippocampal involvement may
suffice for non-declarative memories (Squire and Zola, 1996;
Williams, 2020).

Declarative memory (explicit) pertains to knowledge about
facts and events. This type of information can be consciously
retrieved with effort or spontaneously recollected without
conscious intention (Dew and Cabeza, 2011). There are two types
of declarative memory: Episodic and Semantic. Episodic memory
is associated with the recollection of personal experiences. It
involves detailed information about events that happened in one’s
life. Semantic memory refers to knowledge stored in the brain as
facts, concepts, ideas, and objects; this includes language-related
information like meanings of words and mathematical symbol
values along with general world knowledge (e.g., capitals of
countries) (Binder and Desai, 2011). The difference between
episodic and semantic memory is that when one retrieves episodic
memory, the experience is known as “remembering”; when one
retrieves information from semantic memory, the experience is
known as “knowing” (Tulving, 1985; Dew and Cabeza, 2011).
The hippocampus, medial temporal lobe, and the areas in the
diencephalon are implicated in declarative memory (Richter-Levin
and Akirav, 2003; Derner et al., 2020). The ventral parietal cortex
(VPC) is involved in declarative memory processes, specifically
episodic memory retrieval (Henson et al., 1999; Davis et al., 2018).
The evidence suggests that VPC and hippocampus is involved in
the retrieval of contextual details, such as the location and timing
of the event, and the information is critical for the formation
of episodic memory (Daselaar, 2009; Hutchinson et al., 2009;
Wiltgen et al., 2010). The prefrontal cortex (PFC) is involved in the
encoding (medial PFC) and retrieval (lateral PFC) of declarative
memories, specifically in the integration of information across

different sensory modalities (Blumenfeld and Ranganath, 2007;
Li et al., 2010). Research also suggests that the amygdala may
modulate other brain regions involved with memory processing,
thus, contributing to an enhanced recall of negative or positive
experiences (Hamann, 2001; Ritchey et al., 2008; Sendi et al.,
2020). Maintenance of the integrity of hippocampal circuitry is
essential for ensuring that episodic memory, along with spatial
and temporal context information, can be retained in short-
term or long-term working memory beyond 15 min (Ito et al.,
2003; Rasch and Born, 2013). Moreover, studies have suggested
that the amygdala plays a vital role in encoding and retrieving
explicit memories, particularly those related to emotionally
charged stimuli which are supported by evidence of correlations
between hippocampal activity and amygdala modulation during
memory formation (Richter-Levin and Akirav, 2003; Qasim et al.,
2023).

Current findings in neuroimaging studies assert that a vast
array of interconnected brain regions support semantic memory
(Binder and Desai, 2011). This network merges information
sourced from multiple senses alongside different cognitive faculties
necessary for generating abstract supramodal views on various
topics stored within our consciousness. Modality-specific sensory,
motor, and emotional system within these brain regions serve
specialized tasks like language comprehension, while larger areas
of the brain, such as the inferior parietal lobe and most of the
temporal lobe, participate in more generalized interpretation tasks
(Binder and Desai, 2011; Kuhnke et al., 2020). These regions lie at
convergences of multiple perceptual processing streams, enabling
increasingly abstract, supramodal representations of perceptual
experience that support a variety of conceptual functions, including
object recognition, social cognition, language, and the remarkable
human capacity to remember the past and imagine the future
(Binder and Desai, 2011; Binney et al., 2016). The following section
will discuss the processes underlying memory consolidation and
storage within declarative memory.

Non-declarative (implicit) memories refer to unconscious
learning through experience, such as habits and skills formed
from practice rather than memorizing facts; these are typically
acquired slowly and automatically in response to sensory input
associated with reward structures or prior exposure within our
daily lives (Kesner, 2017). Non-declarative memory is a collection
of different phenomena with different neural substrates rather
than a single coherent system (Camina and Güell, 2017). It
operates by similar principles, depending on local changes to
a circumscribed brain region, and the representation of these
changes is unavailable to awareness (Reber, 2008). Non-declarative
memory encompasses a heterogenous collection of abilities, such
as associative learning, skills, and habits (procedural memory),
priming, and non-associative learning (Squire and Zola, 1996;
Camina and Güell, 2017). Studies have concluded that procedural
memory for motor skills depends upon activity in diverse
set areas such as the motor cortex, striatum, limbic system,
and cerebellum; similarly, perceptual skill learning is thought
to be associated with sensory cortical activation (Karni et al.,
1998; Mayes, 2002). Research suggests that mutual connections
between brain regions that are active together recruit special
cells called associative memory cells (Wang et al., 2016; Wang
and Cui, 2018). These cells help integrate, store, and remember
related information. When activated, these cells trigger the recall
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of memories, leading to behaviors and emotional responses.
This suggests that co-activated brain regions with these mutual
connections are where associative memories are formed (Wang
et al., 2016; Wang and Cui, 2018). Additionally, observational data
reveals that priming mechanisms within distinct networks, such
as the “repetition suppression” effect observed in visual cortical
areas associated with sensory processing and in the prefrontal
cortex for semantic priming, are believed to be responsible for
certain forms of conditioning and implicit knowledge transfer
experiences exhibited by individuals throughout their daily lives
(Reber, 2008; Wig et al., 2009; Camina and Güell, 2017). However,
further research is needed to better understand the mechanisms
of consolidation in non-declarative memory (Camina and Güell,
2017).

The process of transforming memory into stable, long-
lasting from a temporary, labile memory is known as memory
consolidation (McGaugh, 2000). Memory formation is based on
the change in synaptic connections of neurons representing the
memory. Encoding causes synaptic Long-Term potentiation (LTP)
or Long-Term depression (LTD) and induces two consolidation
processes. The first is synaptic or cellular consolidation which
involves remodeling synapses to produce enduring changes.
Cellular consolidation is a short-term process that involves
stabilizing the neural trace shortly after learning via structural
brain changes in the hippocampus (Lynch, 2004). The second
is system consolidation, which builds on synaptic consolidation
where reverberating activity leads to redistribution for long-
term storage (Mednick et al., 2011; Squire et al., 2015). System
consolidation is a long-term process during which memories are
gradually transferred to and integrated with cortical neurons, thus
promoting their stability over time. In this way, memories are
rendered less susceptible to forgetting. Hebb postulated that when
two neurons are repeatedly activated simultaneously, they become
more likely to exhibit a coordinated firing pattern of activity in
the future (Langille, 2019). This proposed enduring change in
synchronized neuronal activation was consequently termed cellular
consolidation (Bermudez-Rattoni, 2010).

The following sections of this paper incorporate a more
comprehensive investigation into various essential procedures
connected with memory consolidation- namely: long-term
potentiation (LTP), long-term depression (LTD), system
consolidation, and cellular consolidation. Although these
mechanisms have been presented briefly before this paragraph,
the paper aims to offer greater insight into each process’s function
within the individual capacity and their collective contribution
toward memory consolidation.

Synaptic plasticity mechanisms
implicated in memory stabilization

Long-Term Potentiation (LTP) and Long-Term Depression
(LTP) are mechanisms that have been implicated in memory
stabilization. LTP is an increase in synaptic strength, whereas LTD
is a decrease in synaptic strength (Ivanco, 2015; Abraham et al.,
2019).

Long-Term Potentiation (LTP) is a phenomenon wherein
synaptic strength increases persistently due to brief exposures to

high-frequency stimulation (Lynch, 2004). Studies of Long-Term
Potentiation (LTP) have led to an understanding of the mechanisms
behind synaptic strengthening phenomena and have provided a
basis for explaining how and why strong connections between
neurons form over time in response to stimuli.

The NMDA receptor-dependent LTP is the most commonly
described LTP (Bliss and Collingridge, 1993; Luscher and
Malenka, 2012). In this type of LTP, when there is high-
frequency stimulation, the presynaptic neuron releases glutamate,
an excitatory neurotransmitter. Glutamate binds to the AMPA
receptor on the postsynaptic neuron, which causes the neuron to
fire while opening the NMDA receptor channel. The opening of an
NMDA channel elicits a calcium ion influx into the postsynaptic
neuron, thus initiating a series of phosphorylation events as part
of the ensuing molecular cascade. Autonomously phosphorylated
CaMKII and PKC, both actively functional through such a process,
have been demonstrated to increase the conductance of pre-existing
AMPA receptors in synaptic networks. Additionally, this has been
shown to stimulate the introduction of additional AMPA receptors
into synapses (Malenka and Nicoll, 1999; Lynch, 2004; Luscher and
Malenka, 2012; Bailey et al., 2015).

There are two phases of LTP: the early phase and the late
phase. It has been established that the early phase LTP (E-LTP)
does not require RNA or protein synthesis; therefore, its synaptic
strength will dissipate in minutes if late LTP does not stabilize it.
On the contrary, late-phase LTP (L-LTP) can sustain itself over a
more extended period, from several hours to multiple days, with
gene transcription and protein synthesis in the postsynaptic cell
(Frey and Morris, 1998; Orsini and Maren, 2012). The strength
of presynaptic tetanic stimulation has been demonstrated to be a
necessary condition for the activation of processes leading to late
LTP (Luscher and Malenka, 2012; Bailey et al., 2015). This finding
is supported by research examining synaptic plasticity, notably
Eric Kandel’s discovery that CREB–a transcription factor–among
other cytoplasmic and nuclear molecules, are vital components
in mediating molecular changes culminating in protein synthesis
during this process (Kaleem et al., 2011; Kandel et al., 2014).
Further studies have shown how these shifts ultimately lead to
AMPA receptor stabilization at post-synapses facilitating long-term
potentiation within neurons (Luscher and Malenka, 2012; Bailey
et al., 2015).

The “synaptic tagging and capture hypothesis” explains how a
weak event of tetanization at synapse A can transform to late-LTP
if followed shortly by the strong tetanization of a different, nearby
synapse on the same neuron (Frey and Morris, 1998; Redondo and
Morris, 2011; Okuda et al., 2020; Park et al., 2021). During this
process, critical plasticity-related proteins (PRPs) are synthesized,
which stabilize their own “tag” and that from the weaker synaptic
activity (Moncada et al., 2015). Recent evidence suggests that
calcium-permeable AMPA receptors (CP-AMPARs) are involved
in this form of heterosynaptic metaplasticity (Park et al., 2018).
The authors propose that the synaptic activation of CP-AMPARs
triggers the synthesis of PRPs, which are then engaged by the
weak induction protocol to facilitate LTP on the independent input.
The paper also suggests that CP-AMPARs are required during the
induction of LTP by the weak input for the full heterosynaptic
metaplastic effect to be observed (Park et al., 2021). Additionally, it
has been further established that catecholamines such as dopamine
plays an integral part in memory persistence by inducing PRP
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synthesis (Redondo and Morris, 2011; Vishnoi et al., 2018). Studies
have found that dopamine release in the hippocampus can enhance
LTP and improve memory consolidation (Lisman and Grace, 2005;
Speranza et al., 2021).

Investigations into neuronal plasticity have indicated that
synaptic strength alterations associated with certain forms of
learning and memory may be analogous to those underlying Long-
Term Potentiation (LTP). Research has corroborated this notion,
demonstrating a correlation between these two phenomena (Lynch,
2004). The three essential properties of Long-Term Potentiation
(LTP) that have been identified are associativity, synapse specificity,
and cooperativity (Kandel and Mack, 2013). These characteristics
provide empirical evidence for the potential role of LTP in
memory formation processes. Specifically, associativity denotes the
amplification of connections when weak stimulus input is paired
with a powerful one; synapse specificity posits that this potentiating
effect only manifests on synaptic locations exhibiting coincidental
activity within postsynaptic neurons, while cooperativity suggests
stimulated neuron needs to attain an adequate threshold of
depolarization before LTP can be induced again (Orsini and Maren,
2012).

There is support for the idea that memories are encoded by
modification of synaptic strengths through cellular mechanisms
such as LTP and LTD (Nabavi et al., 2014). The paper by Nabavi
et al. (2014) shows that fear conditioning, a type of associative
memory, can be inactivated and reactivated by LTD and LTP,
respectively. The findings of the paper support a causal link
between these synaptic processes and memory. Moreover, the paper
suggests that LTP is used to form neuronal assemblies that represent
a memory, and LTD could be used to disassemble them and thereby
inactivate a memory (Nabavi et al., 2014). Hippocampal LTD has
been found to play an essential function in regulating synaptic
strength and forming memories, such as long-term spatial memory
(Ge et al., 2010). However, it is vital to bear in mind that studies
carried out on LTP exceed those done on LTD; hence the literature
on it needs to be more extensive (Malenka and Bear, 2004; Nabavi
et al., 2014).

Cellular consolidation and memory

For an event to be remembered, it must form physical
connections between neurons in the brain, which creates a
“memory trace.” This memory trace can then be stored as long-
term memory (Langille and Brown, 2018). The formation of
a memory engram is an intricate process requiring neuronal
depolarization and the influx of intracellular calcium (Mank and
Griesbeck, 2008; Josselyn et al., 2015; Xu et al., 2017). This initiation
leads to a cascade involving protein transcription, structural and
functional changes in neural networks, and stabilization during
the quiescence period, followed by complete consolidation for
its success. Interference from new learning events or disruption
caused due to inhibition can abort this cycle leading to incomplete
consolidation (Josselyn et al., 2015).

Cyclic-AMP response element binding protein (CREB) has
been identified as an essential transcription factor for memory
formation (Orsini and Maren, 2012). It regulates the expression of
PRPs and enhances neuronal excitability and plasticity, resulting in

changes to the structure of cells, including the growth of dendritic
spines and new synaptic connections. Blockage or enhancement
of CREB in certain areas can affect subsequent consolidation at
a systems level–decreasing it prevents this from occurring, while
aiding its presence allows even weak learning conditions to produce
successful memory formation (Orsini and Maren, 2012; Kandel
et al., 2014).

Strengthening weakly encoded memories through the synaptic
tagging and capture hypothesis may play an essential role in
cellular consolidation. Retroactive memory enhancement has also
been demonstrated in human studies, mainly when items are
initially encoded with low strength but later paired with shock
after consolidation (Dunsmoor et al., 2015). The synaptic tagging
and capture theory (STC) and its extension, the behavioral
tagging hypothesis (BT), have both been used to explain synaptic
specificity and the persistence of plasticity (Moncada et al., 2015).
STC proposed that electrophysiological activity can induce long-
term changes in synapses, while BT postulates similar effects of
behaviorally relevant neuronal events on learning and memory
models. This hypothesis proposes that memory consolidation relies
on combining two distinct processes: setting a “learning tag” and
synthesizing plasticity-related proteins (De novo protein synthesis,
increased CREB levels, and substantial inputs to nearby synapses) at
those tagged sites. BT explains how it is possible for event episodes
with low-strength inputs or engagements can be converted into
lasting memories (Lynch, 2004; Moncada et al., 2015). Similarly,
the emotional tagging hypothesis posits that the activation of the
amygdala in emotionally arousing events helps to mark experiences
as necessary, thus enhancing synaptic plasticity and facilitating
transformation from transient into more permanent forms for
encoding long-term memories (Richter-Levin and Akirav, 2003;
Zhu et al., 2022).

Cellular consolidation, the protein synthesis-dependent
processes observed in rodents that may underlie memory
formation and stabilization, has been challenging to characterize in
humans due to the limited ability to study it directly (Bermudez-
Rattoni, 2010). Additionally, multi-trial learning protocols
commonly used within human tests as opposed to single-trial
experiments conducted with non-human subjects suggest there
could be interference from subsequent information that impedes
individual memories from being consolidated reliably. This raises
important questions regarding how individuals can still form
strong and long-lasting memories when exposed to frequent
stimuli outside controlled laboratory conditions. Although this
phenomenon remains undiscovered by science, it is of utmost
significance for gaining a deeper understanding of our neural
capacities (Genzel and Wixted, 2017).

The establishment of distributed memory traces requires a
narrow temporal window following the initial encoding process,
during which cellular consolidation occurs (Nader and Hardt,
2009). Once this period ends and consolidation has been
completed, further protein synthesis inhibition or pharmacological
disruption will be less effective at altering pre-existing memories
and interfering with new learning due to the stabilization of the
trace in its new neuronal network connections (Nader and Hardt,
2009). Thus, systems consolidation appears critical for the long-
term maintenance of memory within broader brain networks over
extended periods after their formation (Bermudez-Rattoni, 2010).
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System consolidation and memory

Information is initially stored in both the hippocampus and
neocortex (Dudai et al., 2015). The hippocampus subsequently
guides a gradual process of reorganization and stabilization
whereby information present within the neocortex becomes
autonomous from that in the hippocampal store. Scholars have
termed this phenomenon “standard memory consolidation model”
or “system consolidation” (Squire et al., 2015).

The Standard Model suggests that information acquired during
learning is simultaneously stored in both the hippocampus and
multiple cortical modules. Subsequently, it posits that over a
period of time which may range from weeks to months or longer,
the hippocampal formation directs an integration process by
which these various elements become enclosed into single unified
structures within the cortex (Gilboa and Moscovitch, 2021; Howard
et al., 2022). These newly learned memories are then assimilated
into existing networks without interference or compression when
necessary (Frankland and Bontempi, 2005). It is important to
note that memory engrams already exist within cortical networks
during encoding. They only need strengthening through links
enabled by hippocampal assistance-overtime allowing remote
memory storage without reliance on the latter structure. Data
appears consistent across studies indicating that both AMPA-and
NMDA receptor-dependent “tagging” processes occurring within
the cortex are essential components of progressive rewiring, thus
enabling longer-term retention (Takeuchi et al., 2014; Takehara-
Nishiuchi, 2020).

Recent studies have additionally demonstrated that the rate of
system consolidation depends on an individual’s ability to relate
new information to existing networks made up of connected
neurons, popularly known as “schemas” (Robin and Moscovitch,
2017). In situations where prior knowledge is present and cortical
modules are already connected at the outset of learning, it has
been observed that a hippocampal-neocortical binding process
occurs similarly to when forming new memories (Schlichting
and Preston, 2015). The proposed framework involves the medial
temporal lobe (MTL), which is involved in acquiring new
information and binds different aspects of an experience into a
single memory trace. In contrast, the medial prefrontal cortex
(mPFC) integrates this information with the existing knowledge
(Zeithamova and Preston, 2010; van Kesteren et al., 2012).
During consolidation and retrieval, MTL is involved in replaying
memories to the neocortex, where they are gradually integrated
with existing knowledge and schemas and help retrieve memory
traces. During retrieval, the mPFC is thought to use existing
knowledge and schemas to guide retrieval and interpretation of
memory. This may involve the assimilation of newly acquired
information into existing cognitive schemata as opposed to
the comparatively slow progression of creating intercortical
connections (Zeithamova and Preston, 2010; van Kesteren et al.,
2012, 2016).

Medial temporal lobe structures are essential for acquiring new
information and necessary for autobiographical (episodic) memory
(Brown et al., 2018). The consolidation of autobiographical
memories depends on a distributed network of cortical regions.
Brain areas such as entorhinal, perirhinal, and parahippocampal
cortices are essential for learning new information; however, they

have little impact on the recollection of the past (Squire et al.,
2015). The hippocampus is a region of the brain that forms
episodic memories by linking multiple events to create meaningful
experiences (Cooper and Ritchey, 2019). It receives information
from all areas of the association cortex and cingulate cortex,
subcortical regions via the fornix, as well as signals originating
within its entorhinal cortex (EC) and amygdala regarding
emotionally laden or potentially hazardous stimuli (Sorensen,
2009). Such widespread connectivity facilitates the construction
of an accurate narrative underpinning each remembered episode,
transforming short-term into long-term recollections (Richter-
Levin and Akirav, 2003).

Researchers have yet to establish a consensus regarding where
semantic memory information is localized within the brain
(Roldan-Valadez et al., 2012). Some proponents contend that
such knowledge is lodged within perceptual and motor systems,
triggered when we initially associate with a given object. This point
of view is supported by studies highlighting how neural activity
occurs initially in the occipital cortex, followed by left temporal
lobe involvement during processing and pertinent contributions to
word selection/retrieval via activation of left inferior frontal cortices
(Patterson et al., 2007). Moreover, research indicates elevated
levels of fusiform gyrus engagement (a ventral surface region
encompassing both temporal lobes) occurring concomitantly with
verbal comprehension initiatives, including reading and naming
tasks (Patterson et al., 2007).

Research suggests that the hippocampus is needed for a
few years after learning to support semantic memory (factual
information), yet, it is not needed for the long term (Squire et al.,
2015). However, some forms of memory remain dependent on the
hippocampus, such as the retrieval of spatial memory (Wiltgen
et al., 2010). Similarly, the Multiple-trace theory (Moscovitch et al.,
2006), also known as the transformation hypothesis (Winocur
and Moscovitch, 2011), posits that hippocampal engagement is
necessary for memories that retain contextual detail such as
episodic memories. Consolidation of memories into the neocortex
is theorized to involve a loss of specific finer details, such
as temporal and spatial information, in addition to contextual
elements. This transition ultimately results in an evolution from
episodic memory toward semantic memory, which consists mainly
of gist-based facts (Moscovitch et al., 2006).

Sleep and memory consolidation

Sleep is an essential physiological process crucial to memory
consolidation (Siegel, 2001). Sleep is divided into two stages: Non-
rapid Eye Movement (NREM) sleep and Rapid Eye Movement
(REM) sleep. NREM sleep is divided into three stages: N1, N2,
and N3 (AKA Slow Wave Sleep or SWS) (Rasch and Born, 2013).
Each stage displays unique oscillatory patterns and phenomena
responsible for consolidating memories in distinct ways. The first
stage, or N1 sleep, is when an individual transitions between
wakefulness and sleep. This type of sleep is characterized by low-
amplitude, mixed-frequency brain activity. N1 sleep is responsible
for the initial encoding of memories (Rasch and Born, 2013). The
second stage, or N2 sleep, is characterized by the occurrence of
distinct sleep spindles and K-complexes in EEG. N2 is responsible
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for the consolidation of declarative memories (Marshall and Born,
2007). The third stage of sleep N3, also known as slow wave
sleep (SWS), is characterized by low-frequency brain activity, slow
oscillations, and high amplitude. The slow oscillations which define
the deepest stage of sleep are trademark rhythms of NREM sleep.
These slow oscillations are delta waves combined to indicate slow
wave activity (SWA), which is implicated in memory consolidation
(Tononi and Cirelli, 2003; Stickgold, 2005; Kim et al., 2019). Sleep
spindles are another trademark defining NREM sleep (Stickgold,
2005). Ripples are high-frequency bursts, and when combined with
irregularly occurring sharp waves (high amplitude), they form the
sharp-wave ripple (SWR). These spindles and the SWRs coordinate
the reactivation and redistribution of hippocampus-dependent
memories to neocortical sites (Ngo et al., 2020; Girardeau and
Lopes-dos-Santos, 2021). The third stage is also responsible for the
consolidation of procedural memories, such as habits and motor
skills (Diekelmann and Born, 2010). During SWS, there is minimal
cholinergic activity and intermediate noradrenergic activity (Datta
and MacLean, 2007).

Finally, the fourth stage of sleep is REM sleep, characterized by
phasic REMs and muscle atonia (Reyes-Resina et al., 2021). During
REM sleep, there is high cholinergic activity, serotonergic and
noradrenergic activity are at a minimum, and high theta activity
(Datta and MacLean, 2007). REM sleep is also characterized by local
increases in plasticity-related immediate-early gene activity, which
might favor the subsequent synaptic consolidation of memories
in the cortex (Ribeiro, 2007; Diekelmann and Born, 2010; Reyes-
Resina et al., 2021). The fourth stage of sleep is responsible for
the consolidation of emotional memories and the integration
of newly acquired memories into existing knowledge structures
(Rasch and Born, 2013). Studies indicate that the cholinergic system
plays an imperative role in modifying these processes by toggling
the entire thalamo-cortico-hippocampal network between distinct
modes, namely high Ach encoding mode during active wakefulness
and REM sleep and low Ach consolidation mode during quiet
wakefulness and NREM sleep (Bergmann and Staresina, 2017; Li
et al., 2020). Consequently, improving neocortical hippocampal
communication results in efficient memory encoding/synaptic
plasticity, whereas hippocampo-neocortical interactions favor
better systemic memory consolidation (Diekelmann and Born,
2010).

The dual process hypothesis of memory consolidation posits
that SWS facilitates declarative, hippocampus-dependent memory,
whereas REM sleep facilitates non-declarative hippocampus-
independent memory (Maquet, 2001; Diekelmann and Born, 2010).
On the other hand, the sequential hypothesis states that different
sleep stages play a sequential role in memory consolidation.
Memories are encoded during wakefulness, consolidated during
NREM sleep, and further processed and integrated during REM
sleep (Rasch and Born, 2013). However, there is evidence present
that contradicts the sequential hypothesis. A study by Goerke
et al. (2013) found that declarative memories can be consolidated
during REM sleep, suggesting that the relationship between sleep
stages and memory consolidation is much more complex than a
sequential model. Moreover, other studies indicate the importance
of coordinating specific sleep phases with learning moments for
optimal memory retention. This indicates that the timing of sleep
has more influence than the specific sleep stages (Gais et al.,
2006). The active system consolidation theory suggests that an

active consolidation process results from the selective reactivation
of memories during sleep; the brain selectively reactivates newly
encoded memories during sleep, which enhances and integrates
them into the network of pre-existing long-term memories (Born
et al., 2006; Howard et al., 2022). Research has suggested that
slow-wave sleep (SWS) and rapid eye movement (REM) sleep
have complementary roles in memory consolidation. Declarative
and non-declarative memories benefiting differently depending
on which sleep stage they rely on (Bergmann and Staresina,
2017). Specifically, during SWS, the brain actively reactivates
and reorganizes hippocampo-neocortical memory traces as part
of system consolidation. Following this, REM sleep is crucial
for stabilizing these reactivated memory traces through synaptic
consolidation. While SWS may initiate early plastic processes
in hippocampo-neocortical memory traces by “tagging” relevant
neocortico-neocortical synapses for later consolidation (Frey and
Morris, 1998), long-term plasticity requires subsequent REM sleep
(Rasch and Born, 2007, 2013).

The active system consolidation hypothesis is not the only
mechanism proposed for memory consolidation during sleep.
The synaptic homeostasis hypothesis proposes that sleep is
necessary for restoring synaptic homeostasis, which is challenged
by synaptic strengthening triggered by learning during wake and
synaptogenesis during development (Tononi and Cirelli, 2014).
The synaptic homeostasis hypothesis assumes consolidation is
a by-product of the global synaptic downscaling during sleep
(Puentes-Mestril and Aton, 2017). The two models are not mutually
exclusive, and the hypothesized processes probably act in concert
to optimize the memory function of sleep (Diekelmann and Born,
2010).

Non-rapid eye movement sleep plays an essential role in the
systems consolidation of memories, with evidence showing that
different oscillations are involved in this process (Düzel et al., 2010).
With an oscillatory sequence initiated by a slow frontal cortex
oscillation (0.5–1 Hz) traveling to the medial temporal lobe and
followed by a sharp-wave ripple (SWR) in the hippocampus (100–
200 Hz). Replay activity of memories can be measured during this
oscillatory sequence across various regions, including the motor
cortex and visual cortex (Ji and Wilson, 2006; Eichenlaub et al.,
2020). Replay activity of memory refers to the phenomenon where
the hippocampus replays previously experienced events during
sharp wave ripples (SWRs) and theta oscillations (Zielinski et al.,
2018). During SWRs, short, transient bursts of high-frequency
oscillations occur in the hippocampus. During theta oscillations,
hippocampal spikes are ordered according to the locations of
their place fields during behavior. These sequential activities are
thought to play a role in memory consolidation and retrieval
(Zielinski et al., 2018). The paper by Zielinski et al. (2018) suggests
that coordinated hippocampal-prefrontal representations during
replay and theta sequences play complementary and overlapping
roles at different stages in learning, supporting memory encoding
and retrieval, deliberative decision-making, planning, and guiding
future actions.

Additionally, the high-frequency oscillations of SWR reactivate
groups of neurons attributed to spatial information encoding to
align synchronized activity across an array of neural structures,
which results in distributed memory creation (Swanson et al.,
2020; Girardeau and Lopes-dos-Santos, 2021). Parallel to
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this process is slow oscillation or slow-wave activity within cortical
regions, which reflects synced neural firing and allows regulation
of synaptic weights, which is in accordance with the synaptic
homeostasis hypothesis (SHY). The SHY posits that downscaling
synaptic strengths help incorporate new memories by avoiding
saturation of resources during extended periods–features validated
by discoveries where prolonged wakefulness boosts amplitude
while it diminishes during stretches of enhanced sleep (Girardeau
and Lopes-dos-Santos, 2021).

During REM sleep, the brain experiences "paradoxical" sleep
due to the similarity in activity to wakefulness. This stage plays
a significant role in memory processing. Theta oscillations which
are dominant during REM sleep, are primarily observed in the
hippocampus, and these are involved in memory consolidation
(Landmann et al., 2014). There has been evidence of coherence
between theta oscillations in the hippocampus, medial frontal
cortex, and amygdala, which support their involvement in memory
consolidation (Popa et al., 2010). During REM sleep, phasic
events such as ponto-geniculo-occipital waves originating from
the brainstem coordinate activity across various brain structures
and may contribute to memory consolidation processes (Rasch
and Born, 2013). Research has suggested that sleep-associated
consolidation may be mediated by the degree of overlap between
new and already known material whereby, if the acquired
information is similar to the information one has learned, it is more
easily consolidated during sleep (Tamminen et al., 2010; Sobczak,
2017).

In conclusion, understanding more about how the brains cycle
through different stages of sleep, including specific wave patterns,
offers valuable insight into the ability to store memories effectively.
While NREM sleep is associated with SWRs and slow oscillations,
facilitating memory consolidation and synaptic downscaling, REM
sleep, characterized by theta oscillations and phasic events,
contributes to memory reconsolidation and the coordination of
activity across brain regions. By exploring the interactions between
sleep stages, oscillations, and memory processes, one may learn
more about how sleep impacts brain function and cognition
in greater detail.

Conclusion

Century has passed since we addressed memory, and several
notable findings have moved from bench-to-bedside research.
Several cross-talks between multidiscipline have been encouraged.
Nevertheless, further research is needed into neurobiological
mechanisms of non-declarative memory, such as conditioning
(Gallistel and Balsam, 2014). Modern research indicates that
structural change that encodes information is likely at the level of
the synapse, and the computational mechanisms are implemented
at the level of neural circuitry. However, it also suggests that
intracellular mechanisms realized at the molecular level, such as
micro RNAs, should not be discounted as potential mechanisms.
However, further research is needed to study the molecular and
structural changes brought on by implicit memory (Gallistel and
Balsam, 2014).

The contribution of non-human animal studies toward our
understanding of memory processes cannot be understated; hence

recognizing their value is vital for moving forward. While this paper
predominantly focused on cognitive neuroscience perspectives,
some articles cited within this paper were sourced from non-
human animal studies providing fundamental groundwork and
identification of critical mechanisms relevant to human memories.
A need persists for further investigation—primarily with humans—
which can validate existing findings from non-human animals.
Moving forward, it is prudent for researchers to bridge the
gap between animal and human investigations done while
exploring parallels and exploring unique aspects of human memory
processes. By integrating findings from both domains, one can
gain a more comprehensive understanding of the complexities of
memory and its underlying neural mechanisms. Such investigations
will broaden the horizon of our memory process and answer the
complex nature of memory storage.

This paper attempted to provide an overview and summarize
memory and its processes. The paper focused on bringing the
cognitive neuroscience perspective on memory and its processes.
This may provide the readers with the understanding, limitations,
and research perspectives of memory mechanisms.
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