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EEG-based clinical decision
support system for Alzheimer’s
disorders diagnosis using EMD
and deep learning techniques

Khalil AlSharabi*, Yasser Bin Salamah, Majid Aljalal,

Akram M. Abdurraqeeb and Fahd A. Alturki

Electrical Engineering Department, College of Engineering, King Saud University, Riyadh, Saudi Arabia

Introduction: Despite the existence of numerous clinical techniques

for identifying neurological brain disorders in their early stages,

Electroencephalogram (EEG) data shows great promise as a means of detecting

Alzheimer’s disease (AD) at an early stage. The main goal of this research is to

create a reliable and accurate clinical decision support system leveraging EEG

signal processing to detect AD in its initial phases.

Methods: The research utilized a dataset consisting of 35 neurotypical individuals,

31 patients with mild AD, and 22 patients with moderate AD. Data were collected

while participants were at rest. To extract features from the EEG signals, a band-

pass filter was applied to the dataset and the Empirical ModeDecomposition (EMD)

technique was employed to decompose the filtered signals. The EMD technique

was then leveraged to generate feature vectors by combining multiple signal

features, thereby enhancing diagnostic performance. Various artificial intelligence

approaches were also explored and compared to identify features of the extracted

EEG signals distinguishing mild AD, moderate AD, and neurotypical cases. The

performance of the classifiers was evaluated using k-fold cross-validation and

leave-one-subject-out (LOSO) cross-validation methods.

Results: The results of this study provided valuable insights into potential

avenues for the early diagnosis of AD. The performance of the various o�ered

methodologies has been compared and evaluated by computing the overall

diagnosis precision, recall, and accuracy. The proposed methodologies achieved

a maximum classification accuracy of 99.9 and 94.8% for k-fold and LOSO

cross-validation techniques, respectively.

Conclusion: The study aims to assess and compare di�erent proposed

methodologies and determine the most e�ective combination approach for

the early detection of AD. Our research findings strongly suggest that the

proposed diagnostic support technique is a highly promising supplementary tool

for discovering prospective diagnostic biomarkers that can greatly aid in the early

clinical diagnosis of AD.

KEYWORDS

Alzheimer’s disease, artificial neural network, convolutional neural network, deep
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1. Introduction

The term “neurological brain disorders” refers to any

conditions that affect the brain or another area of the nervous

system, and AD is one of the most prevalent neurological brain

disorders worldwide. AD is a type of neurodegenerative disease

characterized by a progressive loss of neurological, mental, and

cognitive functions, including memory, changes in judgment,

behavior, and emotions (Fonteijn et al., 2012; Ghanemi, 2015;

Caruso et al., 2018). It also represents the primary cause of

dementia because it damages brain neurons, especially the axons,

by destroying neurotransmitters crucial for memory storage and

message transmission to the brain (Miltiadous et al., 2021).

Neurological illnesses affect hundreds of millions of individuals

globally, and they pose a threat to global public health. In 2005,

World Health Organization (WHO) estimated that 0.379% of the

global population was predicted to have dementia, and by 2030, that

number was projected to rise to 0.556% (WHO, 2006). According

to their most recent data (fact sheet December, 2017), there are 47.5

million instances of dementia, with AD possibly being a factor in

60–70% of those cases. According to Lipton et al. (2016), there were

29.8 million people worldwide with Alzheimer’s disease in 2015.

From a prognostic and therapeutic standpoint, diagnosing the

various stages of AD is crucial, and clinically speaking, it is crucial

to distinguish them (Shimizu et al., 2005). However, the diagnosis

of neurological brain disorders is still primarily done manually by

neurologists or other medical specialists, who are scarcely available.

Neurologists may need many hours in some circumstances to make

a final diagnosis for a single patient.

Aa a result, there is an urgent need for a biomarker that is

reliable, ubiquitous, specific, and cost-effective for diagnosing AD

types and tracking disease progression and treatment response

because early identification is crucial for commencing treatment

that can reduce disease progression. In recent years, researchers in

the multidisciplinary fields of bioengineering and neurology have

made significant attempts to construct a clinical decision-support

system capable of swiftly and accurately diagnosing the early stages

of AD. For this, the researchers employ all of the information

offered by EEG signals since they are simple, relatively inexpensive,

and generally available. Several EEG signal characteristics enable

EEG to have greater potential to find AD early. For example,

studies have shown that individuals with AD exhibit abnormalities

in their EEG signal power and coherence, particularly in the

alpha and theta frequency bands. These abnormalities can be

detected even in the early stages of the disease, making EEG a

promising tool for early detection (Jeong, 2004; Babiloni et al.,

2016). Individuals with AD often exhibit changes in their EEG

spectral density, particularly in the so-called delta, theta, and

alpha frequency bands. These changes have been observed in the

early stages of the disease before a significant cognitive decline

occurs (Jeong, 2004; Babiloni et al., 2016). Other studies have

identified specific EEG biomarkers that are associated with AD,

such as reduced alpha power, increased theta power, and reduced

coherence between brain regions. These biomarkers can be used to

differentiate individuals with AD from healthy controls and may

have the potential to predict the onset of AD in asymptomatic

individuals (Poil et al., 2013). Moreover, EEG has a high temporal

resolution, which means that it can detect changes in brain activity

with millisecond precision. This high temporal resolution makes

it possible to detect subtle changes in brain function that may be

indicative of early AD (Babiloni et al., 2016). Overall, these EEG

characteristics make it a promising tool for the early detection of

AD and monitoring disease progression, and EEG data processing

is thought to be effective for discriminating between distinct types

of AD and for making early diagnoses of those types (AlSharabi

et al., 2022).

Accordingly, the study focused on how to employ EEG

signal processing to identify and distinguishing between mild AD,

moderate AD, and neurotypical signals to aid medical practitioners

in early AD diagnosis. Recently, various signal processing and

artificial intelligence techniques have been developed for EEG

feature extraction and classification. These techniques have been

explored to create a Computer-Aided Diagnosis (CAD) system.

The objective of this system is to automate the analysis of

brain signals and support neurologists in diagnosing various

neurological disorders, including were presented and discussed for

the development of a Computer-Aided Diagnosis (CAD) system

capable of automatically analyzing brain signals and assisting

neurologists in diagnosing neurological disorders such as Autism

spectrum disorder (ASD) (Djemal et al., 2017), epilepsy disorders

(ED) (AlSharabi et al., 2016), both Autism spectrum disorder

and epilepsy disorders (Alturki et al., 2019, 2020, 2021), and

Parkinson disease (Aljalal et al., 2022a,b). As a result, numerous

academics have been working on clinical decision support systems

to diagnose the phases of AD by studying brain signals from

patients. Morabito et al. (2016) proposed using Convolutional

Neural Networks (CNN) in deep learning to build acceptable sets

of EEG signal features. The proposed system employed a series

of convolutional subsampling layers to generate a multivariate

assembly of unique patterns for classifying sets of EEG from

different subject classes. The system achieved an accuracy of

85%, which was not considered encouraging. On the other hand,

Cassani et al. (2017) developed an automated EEG-based (AD)

diagnostic system based on an automated artifact removal (AAR)

algorithm and a low-density EEG setup (seven channels). The

system computed common EEG parameters, including spectral

power and coherence, as well as amplitude-modulation properties,

and used Support Vector Machine (SVM) for classification. The

maximum accuracy achieved by the system was 91.4%. However,

the study’s fundamental limitation was the low-density EEG setup,

which did not record all brain activities.

Ieracitano et al. (2020) developed a multi-modal machine

learning-based approach for automatically classifying EEG

recordings in dementia. The approach used features extracted

using the Continuous Wavelet Transform (CWT) and bispectrum

(BiS) features, as well as Multi-Layer Perceptron (MLP) and

SVM classifiers. The proposed approach achieved an accuracy

of 96.95%. Trambaiolli et al. (2017) achieved an accuracy of

91.18% in EEG spectrum measurements and classification using

eight distinct feature selection algorithms and an SVM classifier.

Simons et al. (2015) investigated the quadratic sample entropy

(QSE) to detect changes in EEG signals and classified them

using linear discriminant analysis (LDA). However, the proposed

approach had a diagnostic accuracy of only 77.27%, which was
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considered the main disadvantage of the study. Bevilacqua et al.

(2015) tested various classifiers for discriminating between normal

and AD patients using EEG data. They used three approaches

to reduce feature dimensionality, including Support Vector

Machines Recursive Features Elimination (SVMRFE), Principal

Component Analysis (PCA), and a correlation-based method.

The study compared two distinct SVM setups, three Error-Back

Propagation Multi-Layer Perceptron Artificial Neural Network

(ANN) configurations, and five classifiers MLP-ANN. Despite

using three feature extraction strategies and five classifiers, the

accuracy was not considered promising, but their method achieved

a diagnostic accuracy of 86%. Fiscon et al. (2018a,b) developed a

diagnostic system for AD that used Fourier and wavelet analysis for

feature extraction and a tree-based classifier (J48). The proposed

approach achieved a maximum diagnostic accuracy of 80.2%.

Simons et al. (2018) used Fuzzy Entropy (FuzzyEn) to analyze

EEG AD data to reach a maximum diagnostic accuracy of 86.36%.

The biggest problem with this study is the minimal number

of individuals used. Ruiz-Gómez et al. (2018a) processed EEG

signals using the relative and median frequency, individual

alpha frequency, spectral entropy, Lempel-Ziv complexity,

central tendency measure, sample entropy, fuzzy entropy,

and automutual information to diagnose AD. The study used

LDA, quadratic discriminant analysis (QDA), and MLP-ANN

classifiers and achieved a maximum diagnostic accuracy of

78.43%. However, the classification accuracy was not considered

promising. Another study (Ruiz-Gómez et al., 2018b) estimated

the Cross-Approximate Entropy (Cross-ApEn) and Cross-Sample

Entropy (Cross-SampEn) of EEG data and used QDA, SVM, and

Decision Tree (DT) as classifiers. The proposed method achieved

a maximum diagnostic accuracy of 82.35%. Triggiani et al. (2017)

used exact low-resolution brain electromagnetic tomography

(eLORETA) to quantify the power and functional connectivity of

cortical sources in various brain areas and an ANN classifier to

achieve 76.7% diagnostic accuracy. The study analyzed the brain

areas individually, which was a benefit, but the precision was not

considered encouraging. Houmani et al. (2018) used epoch-based

entropy and bump modeling to extract features from EEG signals

and classify them using an SVM classifier. The proposed diagnostic

method achieved an accuracy of 91.6%. Maturana-Candelas

et al. (2019) estimated the multiscale sample entropy (MSE) and

refined the multiscale spectral entropy (rMSSE) from EEG signals

to demonstrate their irregularity and complexity. They used a

QDA classifier and achieved a maximum diagnostic accuracy of

79.1%. However, the study’s main issue was its significant gender

imbalance, with 177 females and only 76 males included.

Amezquita-Sanchez et al. (2019) proposed an EEG-based CAD

system for AD using integrated multiple signal classification and

empirical wavelet transforms, nonlinear features from chaos theory

such as fractality dimension (FD), and the enhanced probabilistic

neural network (EPNN) model for classification. The proposed

approach achieved a maximum diagnosis accuracy of 90.3%.

Rodrigues et al. (2016) developed a classification methodology for

EEG signals to improve discrimination amongst patients at varying

stages of the illness, Mild Cognitive Impairment (MCI) patients,

and non-patients. They used the Discrete Wavelet Transform

(DWT) for feature extraction and surrogate DT for classification.

Their proposed system achieved a maximum accuracy of 95.45

and 94.88% for k-fold and LOSO cross-validation, respectively.

Cura et al. (2021) utilized EMD, Ensemble EMD, and DWT for

feature extraction and employed DT, SVM, k-Nearest Neighbor

(kNN), and Random Forests (RF) for classification. Their proposed

system achieved a maximum accuracy of 96.5%. Miltiadous et al.

(2021) developed a classification system for diagnosing AD and

Frontotemporal Dementia using EEG signals. They extracted

features using the Fast Fourier Transform (FFT) and classified them

using six machine-learning approaches. The suggested approach

achieved a classification accuracy of 86.3%. However, the study used

a small clinical sample of 18 or 20 patients for each classification

task. Recently, Safi and Safi (2021) utilizedHjorth parameters, along

with other common features, to enhance the detection accuracy

of AD in the early stages from EEG signals. They employed

DWT and EMD for feature extraction and SVM, KNN, and LDA

for classification. Their proposed system achieved a maximum

accuracy of 97.64 and 81.08% for k-fold and LOSO cross-validation,

respectively. Pirrone et al. (2022) developed a simple and effective

method to extract features using a Finite Response Filter (FRF)

and PCA to distinguish between patients with AD, mild cognitive

impairment (MCI), and healthy controls (HC). They calculated the

power intensity for high and low-frequency bands and used RNN

for classification. Their proposed system achieved a maximum

accuracy of 97%. Alessandrini et al. (2022) developed an automatic

classification method that can effectively handle EEG data affected

by artifacts. The study employed the robust principal component

analysis (RPCA) algorithm for filtering and PCA for feature

extraction, while the RNN technique was utilized for classification.

Their proposed system achieved a maximum accuracy of 97.9%.

Finally, Tsai et al. (2012) researched the relationship between

changes in the complexity of EEG signals and dementia. They

demonstrated that quantitative EEG analysis, which involved

a combination of the EMD detrending procedure and sample

entropy, can reveal a correlation between changes in the complexity

of EEG signals and the severity of dementia. This may offer

a non-invasive, low-cost, and objective tool for the clinical

evaluation and follow-up of dementia patients. As a result, the

method’s universality cannot be established. It is important to

note that developing an optimal clinical decision support system

for the early diagnosis of AD is crucial for the later therapeutic

and healthcare stages. However, AD diagnosis is still primarily

performed manually by neurologists or medical experts, who are

limited in number, and it is a time-consuming process. Most of

the literature reviewed has employed traditional approaches with

low accuracy in diagnosis. To date, no study has yet utilized

EEG signal decomposition, feature extraction, and classification to

construct a reliable and effective clinical decision support system

for identifying the stages of AD. Therefore, this study aims to

address these limitations by combining and integrating optimal

techniques for EEG signal decomposition, feature extraction,

cross-validation, and classification. The key goal is to improve

the diagnosis and detection of various stages of AD (mild and

moderate) from neurotypical signals, or to distinguish between two

or three classes of AD stages.

The present study aims to develop a clinical decision support

system for neurologists to diagnose AD automatically, quickly, and
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reliably using EEG data processing. The proposed approach was

validated using datasets from mild and moderate AD patients, as

well as neurotypical individuals. The pre-processing stage involved

filtering the EEG datasets using a band-pass elliptic filter. The

filtered signal was then decomposed into intrinsic mode functions

and residual using the EMD method. Several signal features, such

as approximate entropy, signal energy, logarithmic band power,

mean frequency, Norm, peak-to-peak value, and zero-crossing

rate, were extracted from the EMD output to construct a feature

matrix and improve diagnostic accuracy. Five classification issues

were addressed using the extracted features from three datasets:

neurotypical individuals vs. mild AD, neurotypical individuals vs.

moderate AD, mild AD vs. moderate AD, neurotypical individuals

vs. mild and moderate AD, and neurotypical individuals vs. mild

AD vs. moderate AD. Two types of artificial intelligence approaches

were used: machine learning (LDA, SVM, and RF) and deep

learning (ANN, RNN, andCNN). The performance of the proposed

approaches was evaluated using five classification issues and two

cross-validation techniques: k-fold and leave-one-subject-out. The

goal of these studies was to assess the proposed methodologies and

identify the optimal combination strategy for establishing clinical

decision support systems for the diagnosis and early detection of

AD. The results of the suggested diagnostic system are presented

and further explored below in the subsequent sections.

The remainder of this study is organized as follows: Section

2 describes the utilized dataset, pre-processing, feature extraction,

and classification algorithms. Section 3 is dedicated to presenting

the results and discussing them. The advantages and benefits have

been discussed in section 4. Section 5 has been dedicated to

discussing the limits, and future research prospects. Lastly, Section

6 is dedicated to presenting the conclusions.

2. Materials and methods

This section provides a detailed account of the employed

EEG dataset as well as the proposed pre-processing, feature

extraction, and classification methods. MATLAB simulation tools

were utilized to validate these approaches. Figure 1 illustrates

the proposed approaches, which involved reading different EEG

datasets (neurotypical, mild AD, and moderate AD) and using

a band-pass filter to reduce noise and interference and improve

the signal-to-noise ratio (SNR). The filtered EEG signal was then

processed using the EMD algorithm to decompose the signal into

its features, and the feature vectors were obtained by computing

various signal features for EMD outputs, including approximate

entropy (ApEn), signal energy (Energy), logarithmic band power

(LBP), mean frequency (MF), Norm (Norm), peak-to-peak value

(PPV), and zero crossing rate (ZCR). These features were then

utilized to address five classification issues, and each issue has been

evaluated by k-fold and LOSO cross-validation techniques. Finally,

different machine learning techniques such as LDA, SVM, and

RF and deep learning approaches such as ANN, RNN, and CNN

have been used to help the neurologists in support the diagnosis

decision. All possible combinations of the proposed methodologies

were implemented and validated using MATLAB simulation tools.

Each stage, from data description to the classification procedure, is

discussed in further detail in the subsequent subparts.

2.1. Description of the dataset

2.1.1. Participants
The datasets of AD patients and neurotypical participants for

this investigation were collected by the Behavioral and Cognitive

Neurology Section of the Department of Neurology and the

Reference Center for Cognitive Disorders at the Hospital das

Clinicas in São Paulo, Brazil. All AD patients and neurotypical

participants were diagnosed, and the datasets were recorded

by expert neurologists using the Brazilian version of the

Clinical Dementia Rating (CDR) scale and the Mini-Mental State

Examination (MMSE) (Brucki et al., 2003). The multi-channel EEG

datasets were collected from 86 participants, divided into three

groups. The first group consists of 35 neurotypical participants

(NP), 16 men and 19 women (mean age 66.89 years, 8.18 SD).

The inclusion criteria for the cognitively normal group were a

CDR score of 0 and an MMSE ≥ 25, with a mean MMSE of 28

and a standard deviation of 2.2, as well as no sign of functional

cognitive deterioration before enrollment based on an interview

with the participants. The second group includes 31 mild-AD

patients based on NINCDS-ADRDA (McKhann et al., 1984) and

DSM-IVTR (Association et al., 1996) criteria, including 12 men

and 19 women (mean age 75.23 years, 5.55 SD). Additional

inclusion criteria for mild AD patients were 0.5 ≤ CDR ≤ 1

and MMSE ≤ 24, with a mean MMSE of 19.48 and a standard

deviation of 3.16. The third group consists of 22 moderate AD

patients (DSM-IV-TR), seven men and 15 women (mean age

73.77 years, 10.16 SD). The inclusion criteria for moderate AD

patients were a CDR score of 2 and an MMSE score of ≤20, with

a mean MMSE of 14.18 and a standard deviation of 3.69. An

additional criterion for inclusion in both AD cohorts (AD1 and

AD2) was the existence of functional and cognitive deterioration

during the previous twelve months, as determined by a lengthy

interview with a qualified informant. Diabetes mellitus, kidney

illness, thyroid disease, alcoholism, liver disease, lung disease,

or vitamin B12 insufficiency were also examined in both AD

groups (Fraga et al., 2013). The datasets wrer obtained from

1,426, 1,514, and 930 trials for neurotypical, Mild AD, and

Moderate AD participants, respectively. The datasets were recorded

for an estimated duration of 11,408, 12,112, and 7,440 s for

neurotypical, mild AD, andmoderate AD participants, respectively.

Table 1 summarized the statistical description of participants’

characteristics.

Figure 2 displays a sample of EEG signals, rainflow counting

matrix, electrode mappings, and EEG power spectrum density

with a logarithmic scale for three distinct datasets: neurotypical

EEG (Figure 2A), Mild AD EEG (Figure 2B), and Moderate

AD EEG (Figure 2C). The sample of EEG signals shows the

recording from the Fp1 electrode of three random subjects

from each of the three datasets. The rainflow counting matrix

illustrates the number of cycles extracted from the EEG signal,

and the plot of the rainflow matrix shows the number, range,

and average of cycles. The electrode mappings are presented

for three arbitrary frequencies: 10, 20, and 30 Hz, to highlight

the differences between the three datasets. The distribution of

EEG power across the EEG band is represented by the power

spectrum density pattern. Generally, the power density of the low-

frequency spectrum is greater than that of the high-frequency
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FIGURE 1

Block diagram of the proposed method based on EMD.

TABLE 1 The statistical description of participants characteristics.

Participants
characteristics

Neurotypical Mild AD Moderate
AD

No. of participants 35 31 20

Age 66.89 (52–83) 75.23 (63–89) 73.77 (48–87)

Gender (M:F) 16:19 12:19 7:13

Education level

(years)

8.77 (2–26) 4.81 (0–11) 4.73 (0–15)

Mini-mental state

examination

28 (20–31) 19.48 (14–24) 14.18 (4–20)

Clinical dementia

rating

0 ≥ 0.5& ≤ 1 2

No. of windows 1,426 1,514 930

Period (s) 11,408 12,112 7,440

spectrum. By comparing the EEG signals of three different

subjects, differences in amplitudes, rainflow plots, electrode

mappings, and power spectrum density patterns can be observed.

2.1.2. Data acquisition system
The Braintech 3.0 instrumentation collection system (EMSA

Medical Equipments Inc., Brazil) captured the EEG dataset at a

sample rate of 200 Hz and 12 bits of resolution. The International

10-20 System was used to install the electrodes for the EEG data-

collecting device. Twenty electrodes—Fp1, Fp2, F3, F4, F7, F8, C3,

C4, T3, T4, P3, P4, T5, T6—and two electrodes—A1 and A2 on the

subject’s left and right earlobes, respectively, were used to collect the

EEG dataset for this study. The participants were awake, at ease, and

had their eyes closed during the recording. EEG artifacts, such as

blinking and muscle movements, were manually eliminated from

the data by two expert neurophysiologists. Thereafter, 28 eight-

second epochs from each EEG signal were chosen by eye inspection

(Fraga et al., 2013).

2.2. Pre-processing

The artifacts, disturbances, and interferences were also

recorded together with the EEG dataset. These artifacts, sounds,

and interferences were produced by the electrodes, magnetic fields
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FIGURE 2

EEG signals sample, rainflow matrix histogram, electrodes maps, and power spectrum density pattern for (A) neurotypical EEG, (B) mild AD EEG, and

(C) moderate AD EEG.

of electronics, blood pressure, breathing, limb movements, eye

blinking, or other movements of human subjects (Müller-Gerking

et al., 1999). The interferences and noises created during the

EEG recording have been eliminated at the preprocessing stage

by filtering the EEG signals using a band-pass filter. There have

been numerous applications of infinite impulse response (IIR) and

finite impulse response (FIR) filters. This study has looked at the

band passes of an IIR elliptic digital filter with cutoff frequencies

of 0.1 and 60 Hz. Two knowledgeable neurophysiologists carefully

eliminated the EEG artifacts (such as blinking and muscle

movements) from the EEG recordings (Fraga et al., 2013).

2.3. EEG signal decomposition

For signal processing, especially with regards to EEG signals

and other biological signals, the feature extraction stage is crucial

for achieving the optimum results. To evaluate and break down

the EEG signal into its component features, a variety of feature

extraction techniques are used. A well-liked and widely utilized

method, EMD, was employed in the current investigation. EMD

is an adaptive technique for time series analysis. It was created

to be practical and appropriate for studying time series that are

complicated, non-stationary, and non-linear and contain a variety

of simple inherent oscillations. Using empirical analysis, these

inherent oscillatory patterns are found. The features of the data

time scales are used to deconstruct the time series data. It is possible

to reduce the majority of signal oscillations between a signal’s local

minima andmaxima points without a zero crossover. In an iterative

procedure known as the sifting process, the EMD algorithm divides

the signal x(t) into non-overlapping time scale components termed

Intrinsic Mode Functions (IMFs) and a residual (Zeiler et al.,

2010). IMFs have the following qualities: A single local minima and

maxima point, with a maximum one-point difference, separates

two following zero crossings in an IMF. The lower and upper

IMF envelopes at each position have an average that is zero. The

EEG signal x(t) has been split into i Intrinsic Mode Functions

IMFi(t) and residual function Rn(t) throughout the sifting process,

as shown by the subsequent steps (Huang et al., 1998; Wu and

Huang, 2009; Zheng et al., 2014):

Step 1: Finding all local maximum andminimum points in the

EEG signal x(t).

Step 2: Using cubic splines to create the higher E+(t) and lower

E−(t) envelopes from the local extremum points.

Step 3: Using the following equation, compute the meanMi(t)

envelope for the jth iteration

M(i,j)(t) =
E+(t)+ E−(t)

2
(1)

Step 4: Calculating the difference between the main signal and

the mean envelopeM(i,j)(t)

IMFi(t) = IMF(i−1)(t)−M(i,j)(t) (2)
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Where IMF(i−1)(t) = X(t) for the first iteration. Steps 1–

4 are performed with the new value of IMFi(t) and the result

IMFi(t) has been tested until the IMF conditions are satisfied.

Step 5: Subtract the ith IMF from the previous residual signal

to obtain the new residual signal.

Ri(t) = R(i−1)(t)− IMFi(t) (3)

Step 6: Calculating N intrinsic mode functions for the

remaining signal Ri(t) as the main signal, all the above steps

are repeated N times. In this case, the original signal is

represented as:

X(t) =

N
∑

i=1

IMFi(t)+ RN(t) (4)

The study employed EMD to process filtered EEG signals to extract

the features of the signals. For a specific trial, EMD is applied

to the recorded signal from the first electrode to decompose the

signal into eight components, consisting of seven IMFs and residual

components. This process is repeated for all the recorded signals

from all electrodes, then for all trials with one participant, and then

for all participants in the three groups (neurotypical, mild AD, and

moderate AD). Figure 3 displays the Extracted IMFs and residuals

by the EMD technique as an example of the decomposition of

one of the trials for the Fp1 electrode from three different EEG

classes (neurotypical, mild AD, and moderate AD). Figure 3A

displays the IMFs and residual extracted from the neurotypical

EEG signal, while Figure 3B shows those extracted from the Mild

AD EEG signal, and Figure 3C displays those extracted from the

Moderate AD EEG signal. As noted, the frequency and amplitude

contents of the displayed IMFs and residual decreased from the

first IMF to the seventh IMF and the residual component. For

a thorough understanding of EMD outputs, it is essential to

investigate some features, including their spectral, magnitude,

and statistical features. Appendix 1 presents a summary of some

spectral, magnitude, and statistical details for the displayed IMFs

and residuals.

2.4. Feature extraction

In this study, seven significant features (parameters) were

combined with the EMD technique to generate feature vectors

and improve AD system performance diagnosis. To construct

the feature vectors, the significant features were computed for

all extracted components, which included both the IMFs and the

residual, from all signals of a certain trial. These feature vectors

were then processed individually through the classifiers in order to

reduce the proposed system complexity and simplify the training

process. The performance of each classifier has been evaluated for

each significant feature (parameter). This will also be discussed

in Section 3. This part provides a brief discussion of selected

significant signal aspects as well as the rationale for their use in

signal analysis. The feature vectors were constructed using the

following significant features for a given discrete signal x(n) with

mean µ and standard deviation σ , where n = 1,2,....,N, andN is the

number of signal samples; the feature vectors were formed using

the following significant features:

• Approximate entropy (ApEn)

Approximate entropy (ApEn) is a pattern-based approach

for estimating the regularity of a set of discrete-time signals.

ApEn’s computation seeks to estimate the randomness of a

series of discrete time signals without prior knowledge of

the source providing the dataset. As a result, ApEn can be

calculated as follows:

XApEn(e,r,N) =
1

N − e+ 1

N−e+1
∑

i−1

log

Ce
i (r)−

1

N − e

N−e
∑

i−1

logCe+1
i (r) (5)

where a series of patterns of length e (called the embedding

dimension, which is the smallest integer for which the patterns

do not intersect with each other) is derived from x(n),

the index r is a fixed parameter that sets the tolerance of

the comparison, and Ce
i (r) is the correlation integral. The

Correlation integral is given by:

Ce
i (r) =

1

N − e+ 1

N−e+1
∑

j−1

φ(r − ||Xi − Xj||) (6)

where Xi,Xj are the points of the trajectory in the phase space,

r is the radial distance around each reference point Xp and φ()

is the Heaviside function (Acharya et al., 2012).

• Energy (Energy)

Estimating the total energy of the EEG signal is critical

for EEG signal classification. The energy of an EEG signal is

defined as the sum of the signal’s squared magnitude. This

statistic is used to calculate the amount of energy dispersed

over the signal. The EEG signal is complex, non-linear,

and non-stationary, with information in both the time and

frequency domains. With machine-learning systems, the

assessment of total energy dispersed across the EEG signal

may be a helpful indicator (Boashash et al., 2016).

XEnergy =

N
∑

n=1

|x(n)|2 (7)

• Logarithmic band power (LBP)

In EEG spectrum analysis, it is usual to take the magnitude-

squared of the EEG signal’s absolute value, denoted by (µV),

or the logarithm of the magnitude-squared of the EEG

signal’s absolute value, denoted by (db). The logarithmic

band power is composed of variations in EEG frequency

band activities at various periods of life that can summarize

the frequency band’s contribution to the overall power of

the signal. This contribution may be valuable in machine-

learning methodologies and may be the key parameter for AD
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FIGURE 3

Decomposed intrinsic mode functions and residual for (A) neurotypical EEG, (B) mild AD EEG, and (C) moderate AD EEG.

researchers to differentiate between the various stages of AD

(Xiao et al., 2018).

XLBP = log(
1

N

N
∑

n=1

|x(n)|2 (8)

• Mean frequency (MF)

The mean frequency is an average frequency, which is

defined as the sum of the product of the signal power spectrum

and the frequency divided by the total sum of the power

spectrum. In addition, themean frequency is also referred to as

mean power frequency and mean spectral frequency in several

works. The following is a definition of mean frequency:

XMF =

∑M
j=1 fjPj

∑M
j=1 Pj

(9)

where fj is the frequency value of the signal power spectrum

at the frequency bin j, Pj is the signal power spectrum at

the frequency bin j, and M is the length of frequency bin

(Phinyomark et al., 2012).

• Norm (Norm)

Norm is one of the most commonly encountered concepts for

signal energy and intensity. When the strength of EEG signals

varies in relation to AD phases, the norm is defined as the

square root of the sum of the squares of the signal. As a result,

the signal norm may be a valuable machine and deep-learning

statistic (Knott et al., 2000).

XNorm =

√

√

√

√

N
∑

n=1

|x(n)|2 (10)

• Peak-to-peak value (PPV)

Peak-to-peak amplitude is the difference between the

highest and lowest values in a waveform. It is also a measure

of the dispersion of outcomes, known in statistics as the range

(Knopp, 2013).

XPPV = |max(x(n))−min(x(n))| (11)

• Zero-crossing rate (ZCR)

In the context of discrete-time signals, a zero crossing is

said to occur when successive samples have different algebraic

signs. It is the number of sign shifts between successive signal

values that are positive to zero to negative or negative to

zero to positive, divided by the total number of values. Zero

crossing rates are an easy way to determine the frequency

content of a signal. The zero-crossing rate is the number
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of times the amplitude of signals crosses through zero in a

given time period or frame. It is feasible to get reasonable

estimates of the spectrum properties of an EEG signal using a

representation based on the zero-crossing rate (Chen, 1988).

XZCR =
1

N

N
∑

n=1

|sgn(x(n))− sgn(x(n− 1))| (12)

where sgn(.) is the sign function, i.e.,

sgn(x(n)) =

{

1, if x(n) ≥ 0

−1, otherwise
(13)

2.5. Cross-validation and classification

Before beginning the classification process, two separate cross-

validation techniques were used to assess the robustness of

the proposed approaches: k-fold and LOSO cross-validation. k-

fold and LOSO cross-validation are two different techniques

used to estimate the generalization performance of a machine

learning model. Despite their differences, both techniques share

the common goal of evaluating a model’s ability to generalize to

new data. As such, comparing a model’s performance using both

techniques can provide valuable insights into its generalization

ability, identify potential issues with the model, and provide

guidance on how to improve it under different conditions. For

instance, if a model performs poorly on leave-one-subject-out

cross-validation, it may indicate that the model is overfitting to the

training data and is not able to generalize well to new subjects. To

address this, one could consider collecting more data or improving

themodel’s ability to generalize to new subjects. If amodel performs

poorly on k-fold cross-validation, it may indicate that the model

is not able to capture the variability in the data due to random

sampling and may not generalize well to new (unseen) data. In this

case, using more advanced regularization techniques or increasing

the model’s complexity could be considered. If a model performs

well on both techniques, it suggests that the model is robust and

can generalize well to new data and new subjects.

2.5.1. K-fold cross-validation
The k-fold cross-validation technique randomly divides all EEG

features into k-equal subsets. One subset is chosen for testing, while

the others are used for training. This strategy has been tested k times

(k-fold), with each subgroup tested once (Refaeilzadeh et al., 2009).

In this study, we employed 10-fold cross-validation to load all of

the EEG signal features from the feature vector generated by the

feature extraction techniques and submit them to the 10-fold cross-

validation. Following that, these features were divided into a 90%

subset for training and a 10% subset for testing. Each time, a vector

was sent into the testing classifier. The test classifier result was then

validated using the cross-validation technique by comparing it to

the state of the original test features. This procedure was repeated

ten times, one vector being placed into the testing classifier each

time. Finally, the results were averaged to get one overall diagnostic

accuracy.

2.5.2. Leave-one-subject-out cross-validation
This method is used to evaluate machine learning algorithms

when they are used to make predictions on data that was not used

to train the model (Vehtari et al., 2017). LOSO cross-validation

was utilized in this investigation, one person was excluded in the

first iteration. Except for the features taken from the left subject,

which are used for testing, all features extracted from all subjects

are used for training. The cross-validation technique then validated

the test classifier result by comparing it to the state of the original

test features. Another subject was left out for testing in the second

iteration, and this process was repeated N times, where N is

the number of participants left out. In the current study, 20%

of the participants in each group were left out for testing. One

vector was sent to the testing classifier each time. The findings

were then averaged to provide a single overall diagnostic accuracy.

The classification procedure was used after the cross-validation

technique.

Various classifiers were employed and analyzed to achieve

the best classification accuracy and diagnosis performance.

The following techniques were utilized in this study: linear

discrimination analysis (LDA), support vector machine (SVM),

random forest (RF), artificial neural network (ANN), recurrent

neural network (RNN), and convolutional neural network (CNN).

In the current study, the diagnosis system has been evaluated

using three key evaluation metrics: classifier precision, recall, and

accuracy. The formulas used to calculate these essential evaluation

metrics are as follows Raschka (2015):

Precision % =
TP

TP + FP
∗ 100 (14)

Recall % =
TP

TP + FN
∗ 100 (15)

Accuracy % =
TP + TN

TP + FP + TN + FN
∗ 100 (16)

where TP, FP denote the number of true and false positive

diagnoses that mean EEG features extracted from class I are

correctly and incorrectly diagnosed, respectively, and TN, FN

denote the number of true and false negative diagnoses that mean

EEG features extracted from class II are correctly and incorrectly

diagnosed, respectively. Table 2 describes the utilized parameters in

the classification techniques.

3. Results and discussion

As previously stated, the EEG datasets used in this investigation

were separated into three groups. The EEG datasets were collected

from 35 neurotypical participants, 31 mild AD patients, and 22

moderate AD patients in the first, second, and third groups,

respectively. The EEG datasets were filtered using a band-pass

elliptic filter with cut-off frequencies of 0.1 and 60 Hz to remove

noise and increase the signal-to-noise ratio. Following that, the

filtered signal was fed into the EMD approach to decompose the

EEG-filtered signal into its features (IMFs and residual). The EMD

technique was then integrated with a variety of signal properties

such as ApEn, energy, LBP, etc. to create EEG feature vectors
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TABLE 2 The parameters description of the classifiers.

Classifier Parameters

LDA Discriminant type: “linear”, prior probabilities: “empirical”, score

transformation: “none”

SVM Kernel function: “linear”, cache size: “1000”, prior probabilities:

“empirical”, score transformation: “none”, number of iteration:

“1000”, method: “least square”

RF Method: “AdaBoostM”, prior probabilities: “empirical”, learner:

“decision tree”, learning rate: “0.01”, no. of learners: “100”

ANN No. of hidden layers: “1”, no. of nodes: “10”, hideen layer transfer

function: “logsig”, output layer transfer function: “softmax”,

performance function: “mae”, train function: “trainbr”, no. of

epochs: “100”, learning rate: “0.01”

RNN Layer delays, “1:2”, no. of hidden layers: “1”, no. of nodes: “10”,

hidden layer transfer function: “tanh”, output layer transfer

function: “linear”, performance function: “mae”, train function:

“trainbr”, no. of epochs: “100”, learning rate: “0.01”

CNN Convolutional layers: “2”, dropout layers: “2”, batch

normalization layers: “2”, leaky relu layers: “2”, fully connected

layers: “2”, dropout value: “0.25”, filter size: “11*11”, no. of filters:

“96”, minimum batch size: “64”, no. of epochs: “100”, softmax

layer: “1”, output layer=“classification”, learning function:

“adam”, schedule: “piecewise”, learning rate drop period: “125”,

learn rate drop factor: “0.2”

and increase diagnosis performance. Ultimately, multiple types of

classifiers were used to discriminate EEG features belonging to

their classes, and the classification accuracy was computed and

compared. Two alternative cross-validation techniques, k-fold and

LOSO cross-validation, were employed to further evaluate the

proposed methodologies. The classification accuracy demonstrates

the classifier’s capacity to distinguish between neurotypical and AD

subjects, AD stage patients and neurotypical subjects, and mild

and moderate AD patients. Five classification issues have been

examined based on the number of EEG dataset groups, as follows:

1. Neurotypical vs. mild AD features (2-class)

2. Neurotypical vs. moderate AD features (2-class)

3. Mild AD vs. moderate AD features (2-class)

4. Neurotypical vs. mild AD and moderate AD features (2-class)

5. Neurotypical vs. mild AD vs. moderate AD features (3-class)

The classification results for the five classification issues have been

presented from Sections 3.1–3.5.

3.1. Neurotypical vs. mild AD features
(2-class)

In this part, the EEG features extracted from 35 neurotypical

subjects (class: “Neurotypical”) have been joined with the EEG

features extracted from 31 mild AD patients (class: “mild AD”).

The result of this combination forms the first classification issue

(neurotypical vs. mild AD). The proposed approaches’ performance

was assessed using 10-fold and LOSO cross-validation techniques.

Tables 3, 4 present the total average classification precision,

recall, and accuracy of six classifiers for the first classification issue

based on EMD outputs and different signal feature combinations,

using 10-fold and LOSO cross-validation approaches, respectively. T
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Based on k-fold and LOSO cross-validation procedures,

Tables 3, 4 show that RF, ANN, RNN, and CNN classifiers achieve

the highest classification accuracy. The proposed techniques

attained an average accuracy of 94.2, 94.7, 99.7, and 99.8% based

on k-fold and 87.4, 87.4, 93.4, and 93.9% based on LOSO. LBP,

MF, and Norm are the retrieved features that provide the highest

classification accuracy. When we compare our results in this part

to those published in similar previous studies, we see that our

approach produced greater diagnostic accuracy. Morabito et al.

(2016) used a CNN classifier and attained a maximum accuracy of

85% utilizing the k-fold cross-validation technique. We achieved

a maximum classification accuracy of 99.8% using EMD + LBP

and CNN classifiers. Furthermore, we discover that our study

outperforms (Ieracitano et al., 2020) in terms of classification

accuracy. By combining a continuous wavelet transform with

a bispectrum feature for feature extraction and a multi-layer

perceptron classifier, Ieracitano et al. (2020) achieved a maximum

accuracy of 96.24%. Our methods outperformed Fiscon et al.

(2018a,b) investigations in terms of classification accuracy. Fiscon

et al. (2018a,b) achieved 93.3% maximum classification accuracy

by combining Fourier transform and WT feature extraction with

the J48 classifier. Regarding this section, our study outperformed

Pirrone et al. (2022) study. Their study used FRF and PCA for

feature extraction and DT, SVM, and KNN for classification. Their

study achieved a maximum diagnosis accuracy of 97% based on

k-fold cross-validation.

3.2. Neurotypical vs. moderate AD features
(2-class)

In this part, the EEG features extracted from 35 neurotypical

subjects (class: “Neurotypical”) have been joined with the EEG

features extracted from 22 moderate AD patients (class: “moderate

AD”). The result of this combination forms the second classification

issue (neurotypical vs. moderate AD). The performance of the

proposed approaches has been assessed using 10-fold and LOSO

cross-validation techniques. The average classification precision,

recall, and accuracy of six classifiers for the second classification

issue based on EMD outputs and different combinations of signal

features are presented in Tables 5, 6. The classification performance

was evaluated using 10-fold and LOSO cross-validation techniques.

Tables 5, 6 show that the features classified by RF, ANN,

RNN, and CNN classifiers produced the best results using k-fold

and LOSO cross-validation procedures, respectively. The proposed

approaches provided an average accuracy of 97.8, 99.4, 99.7, and

99.9% based on k-fold. According to LOSO, the best results

were produced by ANN, RNN, and CNN classifiers, with average

accuracy of 94.3, 94.1, and 94.8%. LBP, MF, and ZCR are the best

features with the highest classification accuracy. When we compare

our results to those of other research in this part, we discover that

our study achieved an overall classification accuracy reach of 99.9%

higher than the other studies using the 10-fold cross-validation

technique. Morabito et al. (2016) used a CNN classifier to reach

a maximum accuracy of 85%. By combining a continuous wavelet

transform with a bispectrum feature for feature extraction and a T
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TABLE 5 Classification precision, recall, and accuracy for neurotypical vs. Moderate AD features based on k-fold cross-validation techniques.

LDA SVM RF ANN RNN CNN

Features Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc.

EMD + ApEn 87.0 80.1 87.4 87.2 80.1 87.5 93.4 88.3 92.9 98.4 95.4 97.6 98.9 97.3 98.5 99.8 99.5 99.7

EMD + energy 89.5 83.2 89.5 53.2 56.6 63.2 98.8 95.3 97.7 88.4 83.2 88.2 98.8 95.9 97.9 83.1 64.8 80.9

EMD + LBP 96.7 93.4 96.1 97.4 94.4 96.8 99.0 95.5 97.8 93.7 89.4 93.4 99.8 99.5 99.7 99.9 99.8 99.9

EMD +MF 90.1 83.4 89.9 91.6 85.4 91.1 95.3 91.1 94.7 98.2 95.1 97.4 99.0 97.7 98.7 99.9 99.8 99.9

EMD + norm 93.7 89.4 93.4 82.7 76.8 84.5 98.6 95.6 97.7 99.0 95.5 97.8 99.4 98.9 99.3 99.4 98.9 99.3

EMD + PPV 90.5 84.8 90.5 53.1 57.6 63.2 96.7 93.1 96.0 89.3 90.0 91.8 97.6 94.5 96.9 85.9 83.0 87.9

EMD + ZCR 92.8 87.5 92.4 86.9 79.7 87.2 96.3 92.4 95.6 99.4 99.1 99.4 99.1 98.8 99.2 99.7 99.4 99.6

The bold values represent the highest classification precision, recall, and accuracy achieved by each classifier.

TABLE 6 Classification precision, recall, and accuracy for neurotypical vs. moderate AD features based on LOSO cross-validation techniques.

LDA SVM RF ANN RNN CNN

Features Pre Rec Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc.

EMD + ApEn 77.4 73.7 81.1 77.5 74.2 81.2 84.0 79.0 85.6 93.6 86.0 92.1 95.3 88.2 93.6 96.0 90.3 94.7

EMD + energy 79.4 74.7 82.3 47.2 59.7 57.7 92.5 86.1 91.8 89.0 66.1 83.3 94.7 87.1 92.9 72.9 56.5 74.5

EMD + LBP 94.6 85.0 92.1 93.7 87.9 92.8 92.5 86.1 91.8 92.9 77.4 88.7 95.4 89.4 94.1 96.0 90.8 94.8

EMD +MF 69.9 74.7 82.6 85.5 79.6 86.5 89.7 84.4 89.9 94.0 86.6 92.5 95.3 88.2 93.6 95.4 89.8 94.2

EMD + norm 85.6 80.1 86.8 85.3 56.5 78.9 92.0 86.0 91.5 94.1 86.6 92.6 95.8 89.2 94.1 94.8 88.7 93.6

EMD + PPV 83.9 78.5 85.5 47.7 60.8 58.1 90.8 85.0 90.6 89.8 66.7 83.9 94.2 87.1 92.8 94.1 87.1 92.7

EMD + ZCR 83.3 78.0 85.2 79.0 74.5 82.1 90.7 84.4 90.1 99.9 89.8 94.3 95.3 88.7 93.7 95.4 89.7 94.1

The bold values represent the highest classification precision, recall, and accuracy achieved by each classifier.
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multi-layer perceptron classifier, Ieracitano et al. (2020) achieved a

maximum accuracy of 96.95%.

Triggiani et al. (2017) achieved a maximum diagnosis

accuracy of 76.7% using Exact low-resolution brain electromagnetic

tomography and an ANN classifier. Our methods outperformed

Fiscon et al. (2018a,b) in terms of classification accuracy study.

Their method attained amaximum classification accuracy of 80.6%.

Simons et al. (2015) employed quadratic sample entropy for feature

extraction and a linear discrimination analysis classifier to reach

a maximum accuracy of 77.27% when using the LOSO cross-

validation technique. In the study conducted by Houmani et al.

(2018), epoch-based entropy and bump modeling were utilized

to extract features from EEG signals, which were then classified

using an SVM classifier. The proposed diagnosis system was 91.6%

accurate. Regarding this section, our study outperformed Pirrone

et al. (2022) study. Their study used FRF and PCA for feature

extraction and DT, SVM, and KNN for classification. Their study

achieved a maximum diagnosis accuracy of 96% based on k-fold

cross-validation.

3.3. Mild AD vs. moderate AD features
(2-class)

In this part, the EEG features extracted from 31 mild AD

patients (class: “mild AD”) have beenmerged with the EEG features

extracted from 22 moderate AD patients (class: “moderate AD”).

The result of this combination is the third classification issue

(mild AD vs. moderate AD). With the use of 10-fold and LOSO

cross-validation methodologies, the performance of the suggested

methods has been evaluated. Using EMD outputs and various

signal features combinations, Tables 7, 8 provide the overall average

classification precision, recall, and accuracy of six classifiers for the

third classification issue.

According to Tables 7, 8, which were created using k-fold and

LOSO cross-validation procedures, the features classified by ANN,

RNN, and CNN classifiers produced higher results. The suggested

methods, based on k-fold, had an average accuracy of 92.2, 93.1,

and 93.6%, respectively. The best results, according to LOSO, were

attained by ANN, RNN, and CNN classifiers, which had an average

accuracy of 85.6, 86.7, and 88.6%, respectively. LBP, Norm, and

ZCR are the top extracted features that offer the most accurate

classification. When we compare the results from this part to those

from previous research, we discover that our approach produced an

overall classification accuracy that was 93.6% higher.

Morabito et al. (2016) used a CNN classifier and attained a

maximum accuracy of 78% utilizing the k-fold cross-validation

procedure. Ieracitano et al. (2020) used a continuous wavelet

transform with a bispectrum feature for feature extraction and a

multi-layer perceptron classifier to reach a maximum accuracy of

90.24%. Fiscon et al. (2018a,b) utilized the Fourier transform and

WT feature extraction with the J48 classifier to get up to 66.7%

classification accuracy. Amezquita-Sanchez et al. (2019) employed

multiple signal identification, an empirical wavelet transform, and

a probabilistic neural network model that was upgraded. The

proposed method has a maximum diagnostic accuracy of 90.3%.

Regarding this section, our study outperformed Pirrone et al.
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(2022) study. Their study used FRF and PCA for feature extraction

and DT, SVM, and KNN for classification. Their study achieved

a maximum diagnosis accuracy of 83% based on k-fold cross-

validation.

3.4. Neurotypical vs. mild and moderate AD
features (2-class)

In this part, the EEG features extracted from 35 neurotypical

subjects (class: “Neurotypical”) have been merged with the EEG

features extracted from both groups of 31mild AD and 22moderate

AD patients (class: “mild & moderate AD”). The result of this

combination is the fourth classification issue (neurotypical vs.

mild & moderate AD). The suggested methodologies’ performance

was assessed using 10-fold and LOSO cross-validation techniques.

Tables 9, 10 show the total average classification precision, recall,

and accuracy of six classifiers for the fourth classification issue using

EMD output and different feature combinations based on 10-fold

and LOSO cross-validation approaches, respectively.

Tables 9, 10 show that the features classified by ANN, RNN,

and CNN classifiers produced superior results using k-fold and

LOSO cross-validation procedures, respectively. The proposed

approaches obtained an average accuracy of 98.5, 99.6, and 99.9%

based on k-fold. According to LOSO, the best results were produced

by ANN, RNN, and CNN classifiers, with an average accuracy of

92.6, 93.5, and 93.9%, respectively. LBP and Norm are the best-

extracted features that offer the highest classification accuracy.

When we compare our results in this part to those of other research,

we see that our work offered overall classification accuracy that

was greater than that reported in previous studies, reaching 99.9

and 93.9% for 10-fold and LOSO cross-validation procedures,

respectively. Cassani et al. (2017) employed an automated artifact

removal approach utilizing common EEG features, spectral power,

and coherence to extract the amplitude-modulation features using

the k-fold cross-validation technique. To reach a maximum

accuracy of 91.1%, use an SVM classifier.

Trambaiolli et al. (2017) employed Wavelet and visibility

graphs for feature extraction with an SVM classifier to get up to

91.18% classification accuracy. Fiscon et al. (2018a,b) utilized the

Fourier transform andWT feature extraction with the J48 classifier

to get up to 84.4% classification accuracy. Kanda et al. (2014)

employed a Morlet wavelet filter for feature extraction and an SVM

algorithm for classification to achieve up to 83.95% classification

accuracy. Cassani et al. (2017) reached a maximum accuracy of

81.4% using the LOSO cross-validation approach. Trambaiolli et al.

(2017) reached up to 85.29% classification accuracy. Ruiz-Gómez

et al. (2018b) extracted features using spectral and non-linear

features and classified them using a multi-layer perceptron. This

proposed method has a maximum accuracy of 78.43%. Also, our

study outperformed Maturana-Candelas et al. (2019). Maturana-

Candelas et al. (2019) achieved a maximum accuracy of 79.1%

using MSE and rMSSE for feature extraction and a QDA classifier.

Kanda et al. (2014) achieved an accuracy of up to 84.56% in

classification. In another work, Cassani et al. (2014) estimated

three EEG signal features: spectral, coherence, and amplitude

modulation, and then utilized a SVM to obtain an accuracy of
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84.7%. Upon comparing the outcomes of our study with those of

Cura et al. (2021) study, we observed that our study outperformed

theirs. Their study employed EMD, Ensemble EMD, and DWT

for feature extraction and utilized DT, SVM, KNN, and RF for

classification. Their study achieved a diagnostic accuracy of 96.5%

based on k-fold cross-validation. Regarding this section, our study

outperformed Pirrone et al. (2022) study. Their study used FRF

and PCA for feature extraction and DT, SVM, and KNN for

classification. Their study achieved a maximum diagnosis accuracy

of 89% based on k-fold cross-validation. By comparing our study

results with the result of Alessandrini et al. (2022) study, we find

that our study outperformed theirs, which used RPCA and PCA

for feature extraction and RNN technique for classification. Their

study achieved a maximum diagnosis accuracy of 97.9% based on

k-fold cross-validation.

3.5. Neurotypical vs. mild AD vs. moderate
AD features (3-class)

In this part, the EEG features extracted from 35 neurotypical

subjects (first class: “Neurotypical”) have been merged with the

EEG features extracted from 31 mild AD patients (second class:

“mild AD”) and merged with the EEG features extracted from

22 moderate AD patients (Third class: “moderate AD”) resulting

in the fifth classification issue (neurotypical vs. mild AD vs.

moderate AD). The suggested methodologies’ performance was

evaluated using 10-fold and LOSO cross-validation techniques.

Tables 11, 12 show the total average classification precision, recall,

and accuracy of six classifiers for the fifth classification issue using

EMD output and different signal features using 10-fold and LOSO

cross-validation approaches, respectively.

Based on k-fold and LOSO cross-validation procedures,

Tables 11, 12 show that features classified by RF, ANN, RNN, and

CNN classifiers produced better results. Based on the k-fold cross-

validation, the proposed techniques obtained an average accuracy

of 94.1, 92.7, 92.1, and 99.9% using RF, ANN, RNN, and CNN

classifiers, respectively. According to LOSO, the best results were

produced by RF, ANN, RNN, and CNN classifiers, which reached

an average accuracy of 86.7, 83.7, 87.4, and 88.2%, respectively.

LBP and Norm are the extracted features that offer the maximum

classification accuracy. When we compare our results in this part

to those of other research, we find that our work produced greater

overall classification accuracy than those published in previous

publications, reaching 95.2 and 88.2% for 10-fold and LOSO cross-

validation procedures, respectively. Morabito et al. (2016) used a

CNN classifier and attained a maximum accuracy of 82% using

a 10-fold cross-validation procedure. By combining a continuous

wavelet transform with a bispectrum feature for feature extraction

and a multi-layer perceptron classifier, Ieracitano et al. (2020)

obtained a maximum accuracy of 89.22%. Our study achieved

better results than Rodrigues et al. (2016) study in this aspect. The

latter study employed DWT and surrogate DT, as demonstrated

by k-fold cross-validation, where our study achieved a diagnostic

accuracy of 95.7%, while Rodrigues et al. (2016) study achieved

up to 95.45%. On the other hand, Rodrigues et al. (2016) study

outperformed our study in LOSO cross-validation, where their
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TABLE 10 Classification precision, recall, and accuracy for neurotypical vs. mild and moderate AD features based on LOSO cross-validation techniques.

LDA SVM RF ANN RNN CNN

Features Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc.

EMD + ApEn 80.4 78.5 74.3 80.2 77.9 73.9 86.0 76.8 77.5 91.9 90.8 89.1 93.8 93.2 91.8 94.4 93.9 92.6

EMD + energy 79.4 77.5 73.1 65.9 55.1 53.8 90.8 90.6 88.2 82.2 80.3 76.7 88.3 86.7 84.3 88.8 87.7 85.3

EMD + LBP 85.5 85.7 81.8 91.2 80.9 83.1 91.0 90.8 88.5 86.0 85.7 82.2 95.1 94.7 93.5 95.5 94.9 93.9

EMD +MF 80.3 87.9 74.1 81.4 79.7 75.7 84.8 84.6 80.7 90.8 90.8 88.3 93.4 93.0 91.5 94.8 94.3 93.1

EMD + norm 84.3 84.6 80.4 85.0 63.1 69.8 90.8 90.8 88.4 94.4 93.9 92.6 94.4 94.1 92.8 95.1 94.5 93.4

EMD + PPV 80.4 78.3 74.2 66.3 55.9 54.3 88.3 86.3 84.1 82.0 80.1 76.4 89.2 89.3 86.4 91.3 90.8 88.7

EMD + ZCR 82.2 80.5 76.8 80.0 77.7 73.6 82.2 84.4 78.7 91.0 91.2 88.7 93.4 92.6 91.2 95.3 94.7 93.6

The bold values represent the highest classification precision, recall, and accuracy achieved by each classifier.

TABLE 11 Classification precision, recall, and accuracy for neurotypical vs. mild AD vs. moderate AD features based on k-fold cross-validation techniques.

LDA SVM RF ANN RNN CNN

Features Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc. Pre. Rec. Acc.

EMD + ApEn 72.2 71.6 72.4 73.6 73.1 73.8 84.7 84.3 84.8 88.0 88.0 88.5 88.9 88.9 89.4 94.7 94.1 94.8

EMD + energy 73.2 72.6 73.4 51.9 52.2 52.5 94.0 93.3 94.1 74.0 72.9 74.1 82.6 82.1 82.7 89.3 89.2 89.8

EMD + LBP 81.3 81.0 81.5 85.6 85.5 86.1 93.3 93.1 93.8 80.0 87.6 80.1 94.3 93.8 94.4 94.7 95.1 95.2

EMD +MF 71.9 71.3 72.2 75.9 74.9 75.9 87.6 87.6 88.1 83.7 83.3 83.8 90.0 89.9 90.2 94.5 95.0 95.1

EMD + norm 79.5 77.1 78.5 66.5 66.7 67.6 94.0 93.4 94.1 92.4 92.3 92.7 91.8 91.8 92.1 94.6 95.1 95.2

EMD + PPV 72.1 71.6 72.4 50.3 50.7 50.7 91.5 91.3 91.6 74.1 73.1 74.2 86.3 86.0 86.6 90.3 90.0 90.4

EMD + ZCR 74.7 73.3 74.4 66.8 67.1 67.9 88.4 88.4 88.9 90.0 90.0 90.2 89.3 89.2 89.8 95.2 95.7 95.7

The bold values represent the highest classification precision, recall, and accuracy achieved by each classifier.
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study achieved a diagnostic accuracy of up to 94.89%. Upon

combining our study with Safi and Safi (2021) work, we observed

that our study outperformed their work based on LOSO cross-

validation, while their study outperformed ours based on k-fold

cross-validation. Safi and Safi (2021) work achieved a maximum

diagnosis accuracy of 97.64 and 81.08% based on k-fold and LOSO

cross-validation, respectively.

Finally, our study outperformed Pirrone et al. (2022) study,

which utilized FRF and PCA for feature extraction, and DT, SVM,

and KNN for classification. Their study achieved a diagnostic

accuracy of 86% based on k-fold cross-validation.

The value of this study may be evaluated by comparing

the findings of the suggested approaches to the results of other

researches that have been done similarly. Figures 4, 5 show

the maximum classification accuracy for all classification issues

(issues 1–5) utilizing all classifiers using 10-fold and LOSO cross-

validation approaches, respectively. Figures 4, 5 demonstrate that

deep learning techniques, namely ANN, RNN, and CNN, achieved

higher accuracy than machine learning techniques such as LDA,

SVM, and RF in all classification issues except for the fifth

issue, where RF outperformed ANN. Overall, RNN and CNN

provided the highest accuracy in all five cases. A comparison of the

classification issues reveals that the third and fifth issues yielded

lower classification accuracy compared to the first, second, and

fourth issues. This is likely due to the proposed system having

difficulty classifying Alzheimer’s signs with each other (mild AD

and moderate AD) in the third case and also having difficulty

distinguishing between three different types in the fifth case. Lastly,

it is important to note that the classification accuracy based on

LOSO was lower than that based on k-fold cross-validation because

the proposed systemwas not trained on signals similar to those used

in the test.

Appendix 2 presents the compression of our findings to

those of prior studies on determining AD stages. Similar earlier

investigations used EEG datasets for neurotypical, AD, and

moderate cognitive impairment (MCI) datasets caused by early-

stage AD (Mild AD), but omitted MCI datasets caused by other

conditions.

4. Benefits of the study

The main benefits and advantages of the present work can be

summarized as follows:

• Automatic diagnosis system: Development of an accurate

clinical decision support system capable of automatically

analyzing EEG signals to provide early diagnosis for Mild and

Moderate AD.

• Evaluation variety: Evaluation of the proposed system

using five classification issues and different cross-validation

techniques, including k-fold and LOSO cross-validation

techniques.

• Classification techniques variety: Use of two types of artificial

intelligence techniques, including machine and deep-learning

techniques, in the classification process.

• Promising accuracy: Promising results were obtained for two-

class diagnosis (neurotypical vs. mild AD, neurotypical vs. T
A
B
L
E
1
2

C
la
ss
ifi
c
a
ti
o
n
p
re
c
is
io
n
,
re
c
a
ll
,
a
n
d
a
c
c
u
ra
c
y
fo
r
n
e
u
ro
ty
p
ic
a
l
v
s.
m
il
d
A
D
v
s.
m
o
d
e
ra
te

A
D
fe
a
tu
re
s
b
a
se
d
o
n
L
O
S
O

c
ro
ss
-v
a
li
d
a
ti
o
n
te
c
h
n
iq
u
e
s.

L
D
A

S
V
M

R
F

A
N
N

R
N
N

C
N
N

F
e
a
tu
re
s

P
re
.

R
e
c
.

A
c
c
.

P
re
.

R
e
c
.

A
c
c
.

P
re
.

R
e
c
.

A
c
c
.

P
re
.

R
e
c
.

A
c
c
.

P
re
.

R
e
c
.

A
c
c
.

P
re
.

R
e
c
.

A
c
c
.

E
M
D
+
A
p
E
n

62
.6

62
.3

63
.7

63
.5

63
.2

64
.6

78
.2

75
.3

76
.8

81
.4

81
.5

81
.6

81
.5

81
.2

81
.7

87
.6

87
.4

87
.5

E
M
D
+
en
er
gy

64
.6

64
.3

65
.9

44
.0

44
.0

44
.9

85
.2

85
.1

85
.2

64
.5

64
.2

65
.8

75
.3

72
.6

74
.3

82
.2

82
.1

82
.4

E
M
D
+
L
B
P

7
5
.2

7
2
.5

7
4
.2

7
9
.3

7
7
.1

7
8
.2

85
.6

85
.5

85
.6

73
.2

72
.5

73
.4

8
7
.5

8
7
.4

8
7
.4

8
8
.2

8
8
.1

8
8
.2

E
M
D
+
M
F

63
.5

63
.2

64
.6

66
.3

66
.0

67
.4

80
.9

80
.9

81
.3

77
.5

74
.5

76
.1

83
.5

83
.4

83
.6

87
.7

87
.5

87
.6

E
M
D
+
n
o
rm

72
.1

70
.7

71
.9

57
.1

57
.1

58
.7

8
6
.6

8
6
.6

8
6
.7

8
3
.5

8
3
.5

8
3
.7

85
.1

84
.9

85
.1

87
.4

87
.2

87
.3

E
M
D
+
P
P
V

61
.5

61
.3

62
.7

40
.6

40
.6

41
.1

83
.5

83
.3

83
.5

64
.5

64
.2

65
.8

80
.3

78
.8

79
.3

83
.0

82
.8

83
.2

E
M
D
+
Z
C
R

65
.7

65
.4

66
.8

57
.0

56
.9

58
.5

81
.9

81
.9

82
.1

83
.4

83
.3

83
.6

82
.6

82
.5

82
.8

87
.8

87
.6

87
.7

T
h
e
b
o
ld

va
lu
es

re
p
re
se
n
t
th
e
h
ig
h
es
t
cl
as
si
fi
ca
ti
o
n
p
re
ci
si
o
n
,r
ec
al
l,
an
d
ac
cu
ra
cy

ac
h
ie
ve
d
b
y
ea
ch

cl
as
si
fi
er
.

Frontiers inHumanNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnhum.2023.1190203
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


AlSharabi et al. 10.3389/fnhum.2023.1190203

FIGURE 4

Maximum classification accuracy for all classification issues using all classifiers based on 10-fold cross-validation technique.

FIGURE 5

Maximum classification accuracy for all classification issues using all classifiers based on LOSO cross-validation technique.

moderate AD, mild AD vs. moderate AD, neurotypical vs.

mild AD and moderate AD) with superior performance and

greater accuracies than prior studies reported in the literature.

Likewise, the results for the three-class diagnosis (neurotypical

vs. mild vs. moderate AD) show higher performance than

similar earlier research.

• Clinical benefit: The proposed method has clinical benefits

as it can assist medical practitioners and clinicians in

diagnosing AD automatically, swiftly, conveniently, efficiently,

and accurately. The proposed solutions could potentially

reduce the limited number of neurologists, reduce diagnostic

time, and increase diagnosis accuracy.

5. Limitations and future work

Despite the fact that we demonstrated the use of

our proposed methodologies, some constraints must

be addressed:

• Dataset size: The size of the employed EEG biomedical dataset

is relatively small, consisting of 35 neurotypical individuals,

31 mild AD subjects, and 22 moderate AD subjects. A

larger, public dataset could be used to test the robustness

and universality of the proposed method for EEG signal

classification. Future research will include validation of this
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TABLE 13 A summary of the best results for AD diagnosis using the EMD technique for five classification issues.

Issue Feature Classifier CV Precision % Recall % Accuracy %

Issue I
LBP

CNN
k-fold 99.9 99.7 99.8

MF LOSO 98.2 89.7 93.9

Issue II
LBP&MF

CNN
k-fold 99.9 99.8 99.9

LBP LOSO 96.0 90.8 94.8

Issue III
ZCR

CNN
k-fold 94.0 92.8 93.6

ApEn& ZCR LOSO 90.2 91.4 88.6

Issue IV LBP CNN
k-fold 100 99.9 99.9

LOSO 95.5 94.9 93.9

Issue V
ZCR

CNN
k-fold 95.2 95.7 95.7

LBP LOSO 88.2 88.1 88.2

The bold values represent the highest classification precision, recall, and accuracy achieved by each classifier.

study with a larger dataset and adapting the methodology to

include input signals from various EEG recorders.

• Severe AD dataset: The proposed approaches were not

evaluated with a severe AD dataset. It would be beneficial

to identify various subtypes of AD and analyze the system’s

performance on different AD forms, including severe AD.

• Deep learning hyperparameters: Deep learning algorithms

require selecting several hyperparameters to learn the model,

but achieving the ideal values of those parameters can be

difficult. Therefore, automatic tuning techniques may be

necessary at times.

6. Conclusion

The current work focuses on the creation of an accurate

clinical decision support system for early AD diagnosis based

on EEG signal processing. In this study, the EEG datasets were

filtered using a band-pass filter and decomposed into their features

using the EMD approach. The EMD technique was then used to

generate feature vectors and increase diagnosis performance by

combining EMD output with numerous signal features. Following

that, machine and deep learning algorithms were examined and

compared for identifying extracted EEG signal aspects of mild AD,

moderate AD, and neurotypical cases in order to provide insights

into future methods of early AD detection.

K-fold and LOSO cross-validation procedures were also

examined as validationmethods, and classification precision, recall,

and accuracy were calculated for evaluating classifier performance.

This study intends to compare the offered methodologies and

identify the optimum combination method for the early detection

of AD. Five classification issues were studied, and the proposed

diagnosis system was evaluated in light of those issues. Table 13

presents the summary of the best results for AD diagnosis using

the EMD technique for five classification issues. In summary, the

study suggests that the most effective combination for developing a

reliable and precise diagnosis system to assist in detecting AD is the

integration of an elliptical filter for pre-processing, EMD with LBP

or ZCR for feature extraction, and CNN for classification.
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