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Priming is a learning process that refers to behavioral changes caused by previous 
exposure to a similar stimulus. Motor imagery (MI), which involves the mental 
rehearsal of action representations in working memory without engaging in 
actual execution, could be a strategy for priming the motor system. This study 
investigates whether MI primes action execution in Multiple Sclerosis (MS). Here, 
17 people with MS (PwMS) and 19 healthy subjects (HS), all right-handed and good 
imaginers, performed as accurately and quickly as possible, with a pencil, actual 
or mental pointing movements between targets of small (1.0  ×  1.0  cm) or large 
(1.5  ×  1.5  cm) size. In actual trials, they completed five pointing cycles between 
the left and right targets, whereas in mental trials, the first 4 cycles were imagined 
while the fifth was actually executed. The fifth cycle was introduced to assess 
the MI priming effect on actual execution. All conditions, presented randomly, 
were performed with both dominant (i.e., right) and non-dominant arms. Analysis 
of the duration of the first 4 cycles in both actual and mental trials confirmed 
previous findings, showing isochrony in HS with both arms and significantly 
faster mental than actual movements (anisochrony) in PwMS (p  <  0.01) [time (s); 
HS right: actual: 4.23  ±  0.15, mental: 4.36  ±  0.16; left: actual: 4.32  ±  0.15, mental: 
4.43  ±  0.18; PwMS right: actual: 5.85  ±  0.16, mental: 5.99  ±  0.21; left: actual: 
6.68  ±  0.20, mental: 5.94  ±  0.23]; anisochrony in PwMS was present when the 
task was performed with the non-dominant arm. Of note, temporal analysis of 
the fifth actual cycle showed no differences between actual and mental trials 
for HS with both arms, whereas in PwMS the fifth actual cycle was significantly 
faster after the four actual cycles for the non-dominant arm (p  <  0.05) [time (s); 
HS right: actual: 1.03  ±  0.04, mental: 1.03  ±  0.03; left: actual: 1.08  ±  0.04, mental: 
1.05  ±  0.03; PwMS right: actual: 1.48  ±  0.04, mental: 1.48  ±  0.06; left: actual: 
1.66  ±  0.05, mental: 1.48  ±  0.06]. These results seem to suggest that a few mental 
repetitions of an action might be sufficient to exert a priming effect on the actual 
execution of the same action in PwMS. This would indicate further investigation of 
the potential use of MI as a new motor-cognitive tool for MS neurorehabilitation.
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Introduction

Priming is a learning process that refers to behavioral changes in 
the identification, production, or classification of a stimulus caused by 
previous exposure to the same or a similar stimulus (Tulving and 
Schacter, 1990). Priming, which often occurs after a single learning 
episode, is a type of implicit learning such as skill learning, which is 
an incremental process that usually depends on multiple repetitions 
(Hauptmann and Karni, 2002).

Psychologists have long studied various types of priming (e.g., 
perceptual and conceptual), and priming targeting the motor cortex 
is an interesting research topic in the field of motor control (Stoykov 
et al., 2017). This interest has been fueled primarily by its potential 
therapeutic role in improving motor behavior (Ward and Cohen, 
2004); in fact, it could be part of a restorative rehabilitation approach, 
a therapeutic strategy aiming to improve function by targeting 
underlying neural mechanisms (e.g., increased excitability and 
normalization of inhibition) that vary depending on the priming 
method (Pomeroy et al., 2011). The most relevant motor priming 
methods for neurorehabilitation include stimulation-based priming 
(Dafotakis et al., 2008; Bolognini et al., 2011; Nair et al., 2011), action 
observation (Fadiga et  al., 1995), manipulation of sensory inputs 
(Muellbacher et  al., 2002; Beekhuizen and Field-Fote, 2008), 
movement-based priming (Jeannerod, 1995; Stinear and Byblow, 
2004; Stinear et  al., 2008, 2014; Stoykov and Stinear, 2010), and 
pharmacology-based priming (Martinsson et al., 2007).

Motor imagery (MI) is another promising strategy for priming the 
motor system (Facchini et al., 2002; Lotze and Cohen, 2006; Simmons 
et al., 2008; Li et al., 2009). MI is a mental process during which a 
subject rehearses the representation of a given motor act in working 
memory without engaging in its actual execution (Decety and Grèzes, 
1999; Frank and Schack, 2017). Neuroimaging studies have shown 
that the neural mechanisms of MI overlap substantially with the 
mechanisms of actual execution (Grèzes and Decety, 2000; Jeannerod, 
2001; Ehrsson et al., 2003; Munzert et al., 2009; Hardwick et al., 2018).

Interestingly, MI and action execution have a direct influence on 
each other (Yágüez et  al., 1998; Boschker et  al., 2000; Sirigu and 
Duhamel, 2001; Allami et al., 2007; Louis et al., 2008) and mentally 
rehearsing specific actions could lead to improved actual execution of 
the same actions even after a few repetitions of MI (Persichetti et al., 
2020). These findings indicate that MI is able to prime a subsequent 
actual action (Li et al., 2005, 2009; Ramsey et al., 2010; Anwar et al., 
2011) and, in line with other recent studies (Senders et al., 2012; Braun 
et al., 2013; Hanson and Concialdi, 2019; Gil-Bermejo-Bernardez-
Zerpa et al., 2021), support the interest of clinicians in MI as a priming 
method and treatment strategy for neurological diseases such as 
Multiple Sclerosis (MS) (Seebacher et al., 2019; Kahraman et al., 2020).

MS is a chronic disease characterized by motor and cognitive 
symptoms (Compston and Coles, 2008) due to demyelination and 
axonal damage leading to loss of neuronal synchronization and 
functional disconnection between brain relays. People with MS 
(PwMS) show anisochrony (i.e., temporal uncoupling) between actual 
and mental movements of both upper and lower limbs (Tacchino 
et al., 2013, 2018; Podda et al., 2020) and dependence on fatigue, 
cognitive deficits, mood disorders, and disease severity (Heremans 
et  al., 2012; Tabrizi et  al., 2014; Tacchino et  al., 2018). Although 
promising findings seem to indicate that MI improves walking, 
balance, fatigue, mood, and quality of life in MS (Seebacher et al., 

2018, 2019; Kahraman et al., 2020), there is still limited knowledge on 
how MI primes actual movements in PwMS.

The present study aims to investigate whether MI primes action 
execution in MS. As movement speed is one of the main targets of 
treatment in MS (Steens et al., 2012), here we explore whether MI is 
able to speed up actual movements in PwMS (Avanzino et al., 2009). 
Adopting a modified version of the pointing task used in Tacchino 
et al. (2013), we ascertain the dependence on both dominant and 
non-dominant arms. Specifically, we expect that if MI is performed 
faster than the actual execution (Tacchino et al., 2013), the actual 
movements executed after MI will be faster in PwMS. This would shed 
new light on the potential role of MI practice as a skill-learning 
method for rehabilitative interventions in MS (Hauptmann and Karni, 
2002; Seebacher et al., 2023).

Materials and methods

Participants

The sample size was determined from the study by Tacchino et al. 
(2013) using the values of the Index of Performance (IP) (a 
dimensionless measure of the participants’ mental movement ability) 
of the left arm (PwMS: N = 14, mean IP = 1.245, standard 
deviation = 0.280; healthy subjects, HS: N = 19, mean IP = 0.975, 
standard deviation = 0.235). Assuming 80% power and a 5% 
(two-sided) level of significance, the planned sample size was at least 
14 PwMS and 18 HS. Here, 17 PwMS and 19 HS took part in the study. 
PwMS were recruited among the outpatients of the Genoa 
Rehabilitation Service of the Italian Multiple Sclerosis Society (AISM). 
Inclusion criteria for PwMS were clinically defined MS according to 
the McDonald criteria (Thompson et al., 2018), a disease-stable phase 
without relapses in the last 3 months, all disease courses, and an 
Expanded Disability Status Scale (EDSS) ≤ 6.5 (Kurtzke, 1983).

Subjects were included if they were right-handed as determined 
by the Edinburgh Handedness Inventory (Oldfield, 1971) and had no 
upper limb impairment or cognitive disorders as evaluated through 
an Ashworth scale score < 1 in both arms (Bohannon and Smith, 1987) 
or a Mini-Mental State Examination (MMSE) score < 24 (Folstein 
et al., 1975), respectively. Subjects with a history of severe psychiatric 
disorders as indicated by the Diagnostic and Statistical Manual of 
Mental Disorders, Fifth Edition (DSM-5) criteria (American 
Psychiatric Association, 2013), blurred vision, or cardiovascular and 
respiratory disorders were excluded. The Kinaesthetic and Visual 
Imagery Questionnaire (KVIQ) was administered to assess the 
vividness of MI (Malouin et al., 2007). PwMS were also assessed with 
the Modified Fatigue Impact Scale (MFIS) (Flachenecker et al., 2002) 
to gather information on the level of fatigue perception.

All subjects provided written, informed consent. The local ethics 
committee approved the study. All procedures were carried out in 
accordance with relevant guidelines and regulations (World Medical 
Association, 2013).

Experimental protocol

We adopted a modified version of the task previously proposed 
by Tacchino et  al. (2013). The experiment took place in a 
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sound-attenuated room. The participants were seated comfortably 
in an adjustable chair in front of a table on which an A4-sized 
sheet of paper was placed at a distance of 20 cm from the 
participant’s chest. As previously described in Tacchino et  al. 
(2013), three identical black square targets formed a hypothetical 
equilateral triangle with a side length of 20 cm. The vertex (start 
target, ST) was positioned toward the subject, while the base was 
located on the opposite side (left target, LT; right target, RT). On 
each trial, the target size could be  small (1.0 × 1.0 cm) or large 
(1.5 × 1.5 cm).

The participants were asked to perform actual or imagined 
movements of pointing between targets with a pencil as accurately and 
quickly as possible (Maruff et al., 1999; Tacchino et al., 2013). Each 
trial started with the tip of the pencil positioned at the center of the 
ST. In all trials, at the “go” signal, the subjects performed an actual 
pointing movement toward LT; then, before returning to the ST, they 
completed actual (A) or mental (M) cycles of pointing movements 
between LT and RT (each cycle: LT-RT-LT), depending on the trial 
type. Specifically (Figure 1; Supplementary materials S1, S2):

 − actual trials consisted of three phases: (1) initiation of actual 
movement (ST-LT), (2) five actual cycles (LT-RT-LT) and (3) 
return of actual movement (LT-ST).

 − mental trials consisted of four phases: (1) initiation of actual 
movement (ST-LT), (2) four mental cycles (LT-RT-LT), (3) one 
actual cycle (LT-RT-LT), and (4) return of actual movement 
(LT-ST).

For the mental trials, we  asked participants to feel themselves 
performing the task from a first-person perspective (kinesthetic internal 
imagery) rather than imagining that they were watching themselves do 
it (visual external imagery), as this has been demonstrated to 
be necessary for motor system engagement (Stinear et al., 2006).

The fifth cycle, which was actually executed in both actual and 
mental trials, was introduced to evaluate whether MI exerts a priming 
effect on actual execution.

Before the experiment, the participants were given complete 
information about the experimental procedures. Then, they 
familiarized themselves with all conditions: arm (right, left), type 
(actual, mental), and target size (small, large). The aim of the study 
was explained at the end of the experiment in order to prevent 
bias effects.

After 15 min of rest, the experiment started, and participants 
performed one trial for each condition (e.g., arm: right; type: mental; 
target size: small) for a total of eight trials, with 45 s of rest between 
two consecutive trials. All conditions were presented randomly to 
the subjects.

No feedback regarding their performance was given to the 
participants during the familiarization or experimental trials.

Data analysis

The duration of pointing movements was calculated from the 
trajectory of a retroreflective spherical marker placed on the tip of the 
pencil. The kinematics of the marker were recorded by a system of six 
optoelectronic cameras (SMART, BTS Bioengineering; Milan, Italy, 
100 Hz). Pointing movements were considered precise if the pen hit 
the target.

For the actual trials, the duration of each cycle was calculated 
based on the trajectory of the retroreflective spherical marker. 
However, for the mental trials, only the total duration of the first four 
mental cycles and the duration of the fifth actual cycle were calculated, 
because it was not possible to record mental time cycle by cycle.

In addition, as in Tacchino et al. (2013), an index of performance 
(IP) measuring isochrony (i.e., temporal equivalence) between actual 
and mental pointing movements was calculated as the ratio between the 
durations of the first 4 cycles in actual trials (A1–4) and the four mental 
cycles in mental trials (M1–4) (IP1-4 = A1–4/M1–4) (Table 1; Figure 1).

A second index of performance, measuring whether MI sped up 
actual movements, was calculated as the ratio between the durations 
of the fifth cycle in actual trials (A5) and the fifth cycle in mental trials 
(M5) (IP5 = A5/M5) (Table 1; Figure 1).

Statistical analysis

All the variables considered were normally distributed (Shapiro–
Wilk W test), and their variance was equivalent (Levene’s test). The 
statistical analysis consisted of three steps.

In the first step, we performed a repeated measure analysis of 
variance (RM-ANOVA) on the 5 cycles of the actual trials in order to 
evaluate their temporal consistency and exclude fatigue or learning 
effects. A RM-ANOVA was carried out for group (PwMS, HS), arm 
(right, left), and target size (small, large) conditions. A similar analysis 
could not be performed for imagined movements.

FIGURE 1

Mental and actual tasks of the experimental protocol. Subjects were 
asked to actually point or to imagine pointing between the three 
targets (ST, LT, and RT) while holding a pencil with their dominant or 
non-dominant arm. The targets were placed at the vertices of a 
hypothetical equilateral triangle (side: 20  cm). Before beginning the 
actual and mental trials, the subjects positioned the tip of the pencil 
in the center of the ST and waited for the go signal. The actual trials 
consisted of three phases: (1) start of the actual movement (ST-LT), 
(2) five actual cycles LT-RT-LT, and (3) return of actual movement 
(LT-ST); the mental trials consisted of four phases: (1) start of the 
actual movement (ST-LT), (2) four mental cycles LT-RT-LT, (3) one 
actual cycle LT-RT-LT, and (4) return of actual movement (LT-ST). 
Two indices of performance were calculated based on the first four 
cycles (IP1-4  =  A1-4/M1-4) and the fifth cycle (IP5  =  A5/M5) respectively.
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Second, we tested whether the total duration of the first 4 cycles in 
both actual and mental trials was modulated as a function of the arm, 
type (actual, mental), and target size; an ANOVA with group as a 
between-subjects factor and arm, type, and target size as within-subjects 
factors was performed. To better examine participants’ mental 
movement ability, an ANOVA with group as a between-subjects factor 
and arm and target size as within-subjects factors was performed on IP1-4.

Third, we tested whether the duration of the fifth cycle in both 
actual and mental trials was modulated as a function of arm, type, and 
target size; an ANOVA with group as a between-subjects factor and 
arm, type, and target size as within-subjects factors was performed. To 
better examine the potential MI priming effect on actual execution, an 
ANOVA with group as a between-subjects factor and arm and target 
size as within-subjects factors was performed on IP5.

Post hoc differences were assessed using the Newman–Keuls test, 
and significance was accepted at p < 0.05.

Statistical and descriptive analyses (mean, standard deviation, and 
standard errors) were run using STATISTICA 7.1.

Results

Participants

The PwMS group (six men and 11 women; 13 with a relapsing–
remitting disease course and four with a secondary progressive disease 
course) had a mean age of 51.06 ± 12.24 years, a mean EDSS of 
4.06 ± 1.50, and a mean disease duration of 10.76 ± 7.14 years. The HS 
group (11 men and eight women) had a mean age of 47.05 ± 7.31 years. 
No significant differences were found between the groups for age 
(t = 1.21, p = 0.24) and KVIQ (PwMS: 129.65 ± 23.23; HS: 133.63 ± 20.87; 
t = 7.12; p = 0.09); the KVIQ indicated that the participants were good 
imaginers. All the subjects were right-handed and had an Ashworth 
scale score of less than 1  in both arms and an MMSE score > 26. 
Moreover, PwMS reported a low level of fatigue (MFIS = 29.24 ± 12.37).

Spatial precision and temporal consistency 
in actual trials

The analysis of spatial accuracy and temporal consistency within 
the cycles composing a trial was possible only for actual movements. 

PwMS and HS met the task requirements concerning spatial precision, 
as they missed an insignificant number of targets (<0.3%; the total 
number of actual movements = 1,440; i.e., 36 participants × 2 target 
sizes × 2 arms × 10 movements within each trial).

RM-ANOVA revealed temporal consistency through the five 
cycles of the actual trials for group, arm, and target size. As expected 
(Tacchino et al., 2013), only main effects were found for group [PwMS: 
1.58 ± 0.02 s; HS: 1.07 ± 0.01 s; F (1,136) = 154.90, p < 0.001], arm [right: 
1.26 ± 0.02 s; left: 1.36 ± 0.02 s; F (1,136) = 6.33, p < 0.05] and target size 
[small: 1.35 ± 0.02 s; large: 1.25 ± 0.02 s; F (1,136) = 5.66, p < 0.05]; no 
significant interactions were found.

Temporal characteristics of actual and 
mental movements

A statistical analysis of the total duration of the first 4 cycles in 
both actual and mental trials confirmed previous findings (Tacchino 
et al., 2013). ANOVA revealed the main effects of the group, showing 
that PwMS were slower than HS [PwMS: 6.14 ± 0.11 s; HS: 4.34 ± 0.08 s; 
F (1,136) = 125.88, p < 0.001].

Moreover, we found a significant interaction between group and 
type [F (1,136) = 7.61, p < 0.01]. Post hoc analysis revealed a significant 
difference between PwMS and HS for both actual and mental 
durations (for both, p < 0.001); in addition, actual movements of 
PwMS were significantly longer than mental movements (PwMS 
actual: 6.32 ± 0.14 s, mental: 5.96 ± 0.15 s; HS actual: 4.28 ± 0.10 s, 
mental: 4.40 ± 0.12 s; p < 0.01).

There was also a significant interaction between type and arm [F 
(1,136) = 5.14, p < 0.05]. Post hoc analysis revealed a significant 
difference between actual and mental durations for the left arm, 
showing a temporal discrepancy between actual and mental 
movements only in the non-dominant arm (actual right: 5.05 ± 0.16 s, 
left: 5.44 ± 0.18 s; mental right: 5.13 ± 0.16 s, left: 5.14 ± 0.16 s; p < 0.05).

Finally, a significant interaction between group, type, and arm was 
found [F (1,136) = 6.17, p < 0.05]. Post hoc analysis revealed a significant 
difference between groups for all conditions considered (always 
p < 0.001); furthermore, significant differences were found for PwMS 
between actual and mental durations with the left arm (p < 0.001) and 
between actual durations with the left arm and both actual and mental 
durations with the right arm (p < 0.01) (PwMS actual right: 5.85 ± 0.16 s, 
actual left: 6.68 ± 0.20 s, mental right: 5.99 ± 0.21 s, mental left: 
5.94 ± 0.23 s; HS actual right: 4.23 ± 0.15 s, actual left: 4.32 ± 0.15 s, 
mental right: 4.36 ± 0.16 s, mental left: 4.43 ± 0.18 s) (Figure 2A).

The statistical analysis of IP1–4 provided valuable information 
about MI ability (Figure 3A). ANOVA revealed a main effect of group 
[PwMS: 1.09 ± 0.02; HS: 1.00 ± 0.02; F (1,136) = 4.71, p < 0.05] and a 
significant interaction effect between group and arm [F (1,136) = 5.11, 
p < 0.05]. Post hoc analysis showed that IP1–4 was significantly higher 
in the left arm of PwMS (1.16 ± 0.04) than in the right arm of PwMS 
(1.01 ± 0.02) (p < 0.05) and in the right and left arms of HS (1.02 ± 0.05 
and 1.00 ± 0.03, respectively, for both p < 0.01).

Effect of mental simulation on actual 
execution

A randomization of all conditions (i.e., arm, type, and target size) 
was introduced to control for the potential effect of the sequence 

TABLE 1 Indices of performance.

IP1–4 =  A1–4/M1–4

IP1–4 ~ 1 Isochrony: similar duration (i.e., correct estimation) between mental 

and actual trials

IP1–4 < 1 Anisochrony: longer (i.e., overestimation) mental than actual trials

IP1–4 > 1 Anisochrony: shorter (i.e., underestimation) mental than actual trials

IP5 = A5/M5

IP5 ~ 1 Isochrony: similar durations between the fifth cycle of mental and 

actual trials

IP5 < 1 Slowdown: longer fifth cycle in mental than actual trials

IP5 > 1 Speeding up: shorter fifth cycle in mental than actual trials

The table reports the definitions of the two indices of performance (IP1-4 = A1-4/M1-4, IP5 = A5/
M5) and the meaning of the associated values (i.e., IP1-4 =, < or > 1 and IP5 =, < or > 1).
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disposition of actual and mental trials on the performances shown in 
the fifth actual cycle.

On the fifth cycle of both actual and mental trials, ANOVA 
revealed main effects of group [PwMS: 1.53 ± 0.03 s; HS: 1.05 ± 0.02 s; 
F (1,136) = 147.90, p < 0.001], target size [small: 1.32 ± 0.03 s; large: 
1.22 ± 0.03 s; F (1,136) = 5.79, p < 0.05], and type [actual: 1.30 ± 0.03 s; 
mental: 1.25 ± 0.03 s; F (1,136) = 10.30, p < 0.01].

Moreover, we found a significant interaction between group and 
type [F (1,136) = 6.85, p < 0.01]. Post hoc analysis revealed that the fifth 
cycle in both actual and mental trials was significantly longer in PwMS 
than in HS (PwMS actual: 1.57 ±  0.04 s, mental: 1.48 ±  0.04 s; HS 
actual: 1.05 ± 0.03 s, mental: 1.04 ± 0.02 s; p < 0.001); only in PwMS, the 
fifth cycle in actual trials was significantly longer than the fifth cycle 
in mental trials (p < 0.001). A significant interaction between arm and 
type was present [F (1,136) = 9.13, p < 0.01]. Post hoc analysis revealed 
that the fifth cycle was significantly longer in actual trials performed 

with the left arm than in mental trials with both right (p < 0.05) and 
left (p < 0.001) arms (right actual: 1.24 ± 0.04 s, mental: 1.24 ± 0.04 s; 
left actual: 1.35 ± 0.05 s, mental: 1.23 ± 0.04 s).

There was a significant interaction between group, type, and arm 
[F (1,136) = 5.45, p < 0.05]. Post hoc analysis revealed a significant 
difference between groups for all conditions considered (always 
p < 0.001); furthermore, significant differences were found only for 
PwMS between actual and mental durations with the left arm 
(p < 0.001) and between actual durations with the left arm and both 
actual and mental durations with the right arm (p < 0.05), suggesting 
a priming effect of MI on actual execution in the non-dominant arm 
(PwMS actual right: 1.48 ± 0.04 s, actual left: 1.66 ± 0.05 s, mental right: 
1.48 ± 0.06 s, mental left: 1.48 ± 0.06 s; HS actual right: 1.03 ± 0.04 s, 
actual left: 1.08 ± 0.04 s, mental right: 1.03 ± 0.03 s, mental left: 
1.05 ± 0.03 s) (Figure 2B).

Statistical analysis of IP5 confirmed these results (Figure  3B). 
ANOVA revealed a main effect of group [PwMS: 1.08 ± 0.02; HS: 
1.01 ± 0.02; F (1,136) = 8.71, p < 0.01] and arm [right: 1.01 ± 0.02; left: 
1.08 ± 0.02; F (1,136) = 7.79, p < 0.01] and a significant interaction 
between group and arm [F (1,136) = 5.35, p < 0.05]. Post hoc analysis 
showed that IP5 was significantly higher in the left arm in PwMS 
(1.15 ± 0.04) than in the right arm in PwMS (1.02 ± 0.02) (p < 0.001) 
and in both the right and left arms in HS (1.00 ± 0.02 and 1.02 ± 0.02, 
respectively, for both p < 0.001).

Discussion

To the best of our knowledge, this is the first study to investigate 
the potential role of MI as a motor priming method in 
MS. We employed a modified version of the task used in Tacchino 
et  al. (2013); here, an actual movement follows the first four 
movements in both actual and mental tasks.

As expected, the analysis of the temporal characteristics of the first 
four movements in actual and mental trials confirmed previous results 
(Tacchino et al., 2013). Indeed, we found that PwMS executed both 
actual and mental arm movements significantly slower than HS, as a 
consequence of the general motor and cognitive slowing due to MS 
and task complexity, both of which influence action representation 
and actual execution (Guillot and Collet, 2005; Bonzano et al., 2013; 
Giovannoni et al., 2016; Di Giovanni et al., 2021).

Moreover, consistent with the literature, we  confirmed the 
presence of isochrony in HS (Decety et al., 1989; Skoura et al., 2008) 
and anisochrony in PwMS (Tacchino et al., 2013, 2018; Podda et al., 
2020). As shown by the statistical analysis of the duration of the first 
4 cycles, the results confirm previous findings showing that 
anisochrony in PwMS is mostly due to actual execution with the 
non-dominant arm being significantly slower than actual execution 
with the dominant arm and mental simulation with both arms 
(Tacchino et al., 2013). Indeed, even the actual performance of a 
simple task with the non-dominant arm would be challenging for 
PwMS due to decreased coordination and accuracy compared to the 
dominant arm (Lamers et  al., 2013). However, this increased 
difficulty would have no impact on mental execution with the 
non-dominant arm; PwMS would be  able to mentally represent 
movement and action context as with the dominant arm, resulting in 
a temporal uncoupling in the non-dominant arm (Guillot and 
Collet, 2005).

FIGURE 2

Duration of the actual and mental trials. (A) Shows the average values 
and standard deviation of the duration of the first four actual and 
mental movements. Significant differences between the HS and 
PwMS, between the right and left arms, and between actual and 
mental trials can be observed for the patient group (stars; p  <  0.01). 
(B) Shows the average values and standard deviation of the duration 
of the fifth actual movement of the actual and mental trials. 
Significant differences can be observed between HS and PwMS, 
between the right and left arms, and between actual and mental 
trials (stars; p  <  0.01) for the patient group.
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Most importantly and novelly, four mental movements with the 
non-dominant arm were able to speed up a subsequent actual 
movement when compared with the actual trials. Thus, it could 
be argued that MI has a priming effect on actual execution.

Interpretation of the MI priming effect

The acceleration of the fifth movement after mental simulation 
with the non-dominant (i.e., left) arm could be  interpreted as a 
priming effect exerted by MI on the actual execution. The presence 
and functioning of the inverse and forward internal models would 
explain this result (Wolpert and Kawato, 1998; Hesslow, 2002).

Briefly (Figure  4), the inverse internal model uses sensory 
information - somatosensory input regarding the arm position and 
visuospatial input regarding the action context - in order to estimate 

the motor command needed to control the arm and bring it into the 
position required by the task (i.e., motor plant). Contextually, an 
efferent copy of the motor command is sent to the forward internal 
model for predicting the arm position.

During actual movements, the output of the forward model - the 
predicted arm position (i.e., the sensory consequences of the 
movement) - is compared with the achieved arm position. Differences 
between them provide feedback to improve the movement for the next 
iteration of the internal models (Figure 4A).

During mental movements, although the inverse model correctly 
prepares the motor command, these are blocked and the motor plant 
is not activated; nevertheless, the efferent copy is available and, 
consequently, the forward model is still able to predict the arm 
position (Figure 4B).

In HS, the correct functioning of the inverse and forward internal 
models and the motor plant would guarantee similar temporal 
estimations between actual and mental movements with both arms.

As expected, MS would slow down the functioning of the internal 
models and the motor plant, and, consequently, longer durations of 
actual and mental movements would be similarly observable in both 
arms. However, lower motor coordination and accuracy when the task 
is performed with the non-dominant arm would be responsible for the 
even longer durations observed during the actual movements. In 
addition, the comparison between the achieved and predicted arm 
positions would generate an increased error and incorrect feedback 
that would weaken the inverse model’s functioning and further would 
slow down the actual movement execution.

On the contrary, during MI with the non-dominant arm, the 
motor plant is not activated, and mental movements are generated 
with durations similar to those observed during actual and mental 
movements with the dominant arm. Thus, after the four mental cycles, 
the inverse model has more reliable inputs available, and the motor 
commands generated would allow actual movements to be performed 
as long as they can be observed with the dominant arm.

The priming effect could be due to the more efficient functioning 
of both internal models during mental movements with the 
non-dominant arm. This finding suggests that a few mental repetitions 
of an action are sufficient to exert a priming effect on the actual 
execution of the same action. However, we  could interpret this 
phenomenon in two different ways.

On the one hand, MI would prevent the corruption of the 
functioning of the internal models and, consequently, would activate 
a more reliable action representation; in our case, it would allow the 
execution of the fifth actual movement after the four mental 
movements as long as it could be observed with the dominant arm.

On the other hand, we could hypothesize that the MI priming 
effect also emerges following a motor learning process attributed to 
the repetition of the covert stimulation; it would emerge only with the 
non-dominant arm, whereas in the case of the dominant arm, more 
mental repetitions would be  necessary to observe changes in the 
action representation capable of producing an effect on the actual 
execution (Hauptmann and Karni, 2002; Louis et al., 2008). After all, 
numerous reports have suggested that MI practice is an effective 
means of producing functional and stable changes within the motor 
action system by inducing motor skill learning and improving actual 
execution performance (Jackson et al., 2001; Jeannerod, 2001). MI 
practice has been shown to be more effective than no practice and less 
effective than physical practice (Driskell et al., 1994), whereas the 

FIGURE 3

Anisochrony and MI priming effect in PwMS. (A) Shows the average 
values and standard deviation of the ratio of the duration of the first 
four actual movements and the four mental movements. Significant 
differences can be observed between HS and PwMS and between 
the right and left arms for the patient group (stars; p  <  0.05); although 
not shown, significant differences were also present between the left 
arm of PwMS and the right and left arms of HS (for both p  <  0.01). 
(B) Shows the average values and standard deviation of the ratio of 
the duration of the fifth actual movement of actual and mental trials. 
Significant differences can be observed between HS and PwMS 
(stars; p  <  0.01) and between the right and left arms (stars; p  <  0.0001) 
for the patient group; although not shown, significant differences 
were also present between the left arm of PwMS and the right and 
left arms of HS (for both, p  <  0.0001).
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combination of mental and physical practice has been suggested to 
be as effective as or superior to physical practice (Jackson et al., 2001; 
Dickstein and Deutsch, 2007; Simmons et al., 2008; Malouin et al., 
2013; Frank and Schack, 2017; Hanson and Concialdi, 2019; Seebacher 
et al., 2019; Kahraman et al., 2020).

Study limitations and future perspectives

The main limitation of the study is the lack of knowledge about 
brain activations while the subjects were performing the task. For 
example, the use of MRI and fMRI could give information on brain 
areas that may be active during MI and actual movements in both actual 
and mental trials. Indeed, data from fMRI could highlight significant 
differences in brain activations during actual movements after MI in 
PwMS. Thus, further studies using tasks of higher complexity and 
advanced neurophysiological techniques (e.g., MRI, fMRI, and 
transcranial magnetic stimulation) could better clarify the behavioral 
and neural correlates of the MI-based priming effect in PwMS; indeed, 
probing the mechanisms underpinning this phenomenon could make 
known how MI primes action execution in MS.

These investigations could be crucial for the introduction of MI 
into MS clinical practice. Indeed, MI is a promising potential 
rehabilitation method for PwMS because rehabilitative training 
using MI is relatively easy and effective in improving motor 
performance, as recently shown in other clinical populations 
(primarily in stroke and Parkinson’s disease). However, for this 
purpose, it is imperative to conduct robust research (i.e., randomized 
controlled trials), for example, to investigate the effect of MI as an 
add-on to a traditional physical intervention. In addition, objective 

control measures specific to MS should be  used to quantify the 
relevance of the changes induced by MI training and the eventual 
positive impact on the trained function. Furthermore, in this 
context, MRI could be  used to evaluate the differences between 
neural networks stimulated in PwMS before and after MI training.

Conclusion

MI has already gained attention as a promising additional 
rehabilitation method for neurological disorders such as stroke, 
Parkinson’s disease, spinal cord injury, and amputation. Our findings 
shed new light on the role of MI in MS and suggest that the potential 
use of MI as a new motor-cognitive tool for the neurorehabilitation of 
PwMS should be investigated.
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