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Migraine is a common disease of the nervous system that seriously affects

the quality of life of patients and constitutes a growing global health crisis.

However, many limitations and challenges exist in migraine research, including

the unclear etiology and the lack of specific biomarkers for diagnosis and

treatment. Electroencephalography (EEG) is a neurophysiological technique for

measuring brain activity. With the updating of data processing and analysis

methods in recent years, EEG offers the possibility to explore altered brain

functional patterns and brain network characteristics of migraines in depth. In

this paper, we provide an overview of the methodology that can be applied to

EEG data processing and analysis and a narrative review of EEG-based migraine-

related research. To better understand the neural changes of migraine or to

provide a new idea for the clinical diagnosis and treatment of migraine in the

future, we discussed the study of EEG and evoked potential in migraine, compared

the relevant research methods, and put forwards suggestions for future migraine

EEG studies.

KEYWORDS

migraine, EEG, spectrum power, microstates, functional connectivity, brain network,
machine learning

1. Introduction

Migraine is a complex brain disease affecting more than 1 billion people worldwide
and is the main cause of disability in the world population. In the past three decades, the
global incidence rate of migraine has increased significantly, resulting in serious disease
and economic burdens (Amiri et al., 2021; Ashina et al., 2021; Safiri et al., 2022). The
International Headache Association defines migraine as a recurrent primary headache
disorder that lasts for 4–72 h. Generally, headache is single, pulsatile, moderate or severe,
aggravated by routine physical activity, and accompanied by nausea, photophobia, and
hydrophobia (Headache Classification Committee of the International Headache Society
[IHS], 2013). Approximately one-third of migraine attacks are preceded by a precursor
(Noseda and Burstein, 2013). The most common aura symptom is visual impairment,
and other common symptoms include sensory, language and motor disorders, as well as
high-level cortical dysfunction (Eriksen et al., 2004).

The pathophysiology of migraine is complex (Dodick, 2018), and still not completely
understood. There is a lack of specific biomarkers, and the diagnosis mainly depends on
clinical manifestations. In the past 10 years, an increasing number of studies have begun
to explore the specific biomarkers of migraine and its pathogenesis. A number of studies
support that the cerebral cortex is the key layer of migraine (Barbanti et al., 2020) and
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that the biological matrix of migraine aura is a cortical electrical
activity event called cortical spreading depression (CSD), which is
related to a large number of transmembrane movements of multiple
ions (Lai and Dilli, 2020). It follows that migraine involves the most
high-level human motor–brain activity.

Electroencephalography (EEG) records the spontaneous and
rhythmic electrical activity of the brain cell population and has
become a powerful tool to explain the state of brain activity before
the era of neuroimaging. Previously reported findings in migraine
include slow activity, spike wave activity, reduced amplitude of
background activity (Sand, 2003), hyperventilation response (Tan
et al., 2007), and photic driving response (Bjork et al., 2011a).
However, these clinical electrical studies mainly rely on traditional
visual EEG analysis, and its application in the diagnosis of migraine
has been controversial (Gronseth and Greenberg, 1995).

2. EEG signal processing and
analysis methods

2.1. EEG signal preprocessing and feature
extraction

Electroencephalography is a low-cost, non-invasive, and high-
temporal resolution neuroelectrophysiological technology that has
been widely used in medical fields (Briels et al., 2020; Furbass et al.,
2021) and non-medical fields (Trejo et al., 2006; Lim et al., 2022).
However, EEG signals are complex, high-dimensional (Hasenstab
et al., 2017) and non-stationary and have the characteristics of
a low signal-to-noise ratio in the time domain. Therefore, the
application of EEG based on various methodologies requires
the preprocessing of EEG signals. At present, the commonly
used preprocessing methods include regression methods, blind
source separation methods (BSS), wavelet transform (WT), filtering
methods, etc. The three typical methods using the BSS algorithm
are principal component analysis (PCA), independent component
analysis (ICA), and canonical correlation analysis (CCA). The
filtering methods include frequency filtering, adaptive filtering, and
Wiener filtering.

After preprocessing, the original EEG signal has removed all
kinds of artifacts and noises and becomes a relatively pure EEG
signal. However, due to the large amount of EEG data and the
complexity of direct processing, feature extraction is also required
to reduce the data dimension. These extraction methods include
the time domain, frequency domain, time-frequency domain,
and spatial information in the signal. These methods decompose
the original EEG signals recorded from the scalp into activities
at different frequencies compressed in the signal spectrum and
then conduct quantitative analysis of activities in each frequency
band, either at rest or under stimulation. Commonly used feature
extraction methods are showed in Figure 1.

Each of the above methods has its advantages and
disadvantages, which can be found in the following extensive
review (Saeidi et al., 2021). Some methods run through the two
stages of EEG signal preprocessing and feature extraction. In
research, appropriate methods should be selected according to the
specific nature of the research task.

2.2. Functional connectivity

The complexity of brain function is based on the dynamic
relationship between the cortex and subcortical regions, which
enables the brain to adapt to different physiological and
pathological conditions. The functional connectivity realizes
the exploration of this dynamic relationship. Functional
connectivity is defined as the temporal correlation between
spatially distant neurophysiological events, expressed as the
statistical independence deviation of these events between
distributed neuron groups and regions (Lee et al., 2003; Fingelkurts
et al., 2005). Effective connectivity is a relatively updated concept,
defined as the direct or indirect influence exerted by one nervous
system on another (Horwitz, 2003; Lee et al., 2003), which describes
the dynamic directional interaction between brain regions. Since
functional and effective connectivity technology largely depends
on calculating the correspondence of neural signals over time,
EEG with high temporal resolution is the best way to calculate
such connectivity. The methods used to evaluate connectivity
are very different (Sakkalis, 2011), and the calculation algorithms
and concepts used to define brain connectivity values also vary
widely between studies. More examples of problems can be found
in the following review (Babiloni et al., 2020). Some conventional
functional connectivity metrics are showed in Figure 2.

2.3. Brain network

Electroencephalography data can be used to construct a
connection matrix and functional network through network
analysis. Various complex methods are used in brain network
research, such as EEG traceability analysis and graph theory
analysis (Miraglia et al., 2017). Unlike connectivity research,
which only provides information about how different brain
regions (functions) connect, brain network research analyses the
characteristics of brain networks. Complex network analysis is a
branch of graph theory that simplifies the brain into a collection
of “nodes” and “edges” and allows quantitative characterization
of these networks (Rubinov and Sporns, 2010). Various global
and local network metrics can be inferred from the networks.
The functional network is based on the strength or consistency
of functional interaction between network nodes. In a weighted
network, the strength of such interaction is considered, while in an
unweighted network, only the presence or absence of interaction is
considered.

2.4. Source localization

Electroencephalography source localization (ESL)
demonstrates the synchronously activated neuronal populations
underlying EEG activity by computing their cortical localization
from the scalp distribution of the electric field. This is called
solving the inverse problem of the EEG (Clemens et al., 2008).
The analysis of neurophysiological signals in source space cannot
completely overcome the problems of field diffusion and volume
conduction. Therefore, it is suggested that source space analysis
be combined with robust connectivity measurements to provide a
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FIGURE 1

Feature extraction methods.

variety of source space analysis methods, including low-resolution
electromagnetic tomography (LORETA). Some of today’s most
widely used inverse solution methods are in Figure 3.

2.5. Microstate analysis

Electroencephalography microstate analysis is a method to
identify quasistable functional brain states, which reflects the
transient and stable brain topology at the millisecond level. The
transition between microstates can be interpreted as representing
the sequential activation of different neural networks (Khanna
et al., 2015), and EEG microstate analysis is designed to characterize
these models using data compression or clustering techniques.
Because this technique simultaneously considers signals recorded
from all areas of the cortex, it is capable of assessing the function of
large-scale brain networks.

2.6. Machine learning and deep learning

Machine learning (ML) is a rising research hotspot in the field
of artificial intelligence. It abstracts human brain neural networks
from the perspective of information processing, establishes
corresponding models, and forms different networks according to
different connection methods. It has been widely used in medical
diagnosis, especially in the detection and analysis of biomedical
signals. Electroencephalography based machine learning studies

for diagnostic classification and tracking of therapeutic effects.
Deep learning (DL) is a new branch of ML that has received
widespread attention in EEG classification tasks (Saeidi et al., 2021).
The root of DL techniques lies in the Artificial Neural Network
(ANN). Unlike machine learning techniques, there is no need to
extract features separately in deep learning, and the architectures
support automatic feature extraction (Gautam and Sharma, 2020).
Machine learning tools have developed rapidly. The methods and
technologies of machine learning are in Figure 4.

Figure 5 illustrates the flow chart of the EEG data analysis.

3. EEG study of migraine

3.1. Analysis of EEG spectrum power

A well-established and commonly used method to analyse
EEG signals is spectral power analysis. The EEG spectrum mode
is usually within the range of 0–30 Hz, and there are five
internationally recognized frequency bands: delta (0–4 Hz), theta
(5–7 Hz), alpha (8–13 Hz), beta (14–30 Hz), and gamma(>30 Hz).
Some EEG spectral power analysis metrics are showed in Figure 6.

One study calculated the relative power of the four EEG
frequency bands (delta, theta, alpha, and beta) to compare multiple
groups of transient neurological deficit disorders, including
migraine, and found a significant increase in the alpha relative
power and a significant decrease in the beta relative power
(Vellieux et al., 2021). Similarly, EEG spectral analysis was carried
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FIGURE 2

Functional connectivity metrics.

FIGURE 3

Inverse solution methods.

out in 20 untreated migraine without aura patients. It was found
that except for F4 and C3, alpha power was higher than that
of the control group; however, statistically significant spectral
differences were found only in the right occipital region (Clemens
et al., 2008). Other studies have yielded different results. The
researchers analyzed the absolute power, relative power, and
asymmetry of the delta, theta, and alpha frequency bands in
parieto-occipital, temporal, and fronto-central areas and found
globally increased relative theta activity in migraineurs (Bjork et al.,
2009a).

Neurophysiological studies have shown fluctuating
neurological dysfunction in migraine patients. The study
analyzed alpha peak frequency, variability, peak power, and
asymmetry in 41 migraine patients and 32 controls. The
results showed that decreased peak frequency correlated with

increased duration of disease and seizures. Frequency variability
increases before onset, while peak power increases during
episodes. Small changes in alpha rhythms were observed during
the migraine cycle, indicating that the cumulative burden of
migraine led to slight physiological changes in the optic cortex
(Bjork et al., 2009b). Fluctuations in alpha oscillation (8–
14 Hz) are considered to regulate visual perception. Spectral
analysis of brain visual region alpha band oscillation (8–
12 Hz) for observation in the migraine group and control
group found that lower alpha band (8–10 Hz) power increased
in migraine patients compared to controls (O’Hare et al.,
2018).

In addition, the study divided migraine patients into episodic
and chronic migraine subgroups and measured the resting-state
EEG spectrum in different subgroups and healthy controls. Specific
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FIGURE 4

Methods and technologies of machine learning.

FIGURE 5

The flow chart of the EEG data analysis.

FIGURE 6

Spectral power analysis metrics.

frequency bands were identified to distinguish the control group
and the migraine group, as well as the migraine subgroup. The
results showed that the frequency from 11.6 to 12.8 Hz was the

overall feature of migraine, with significant differences between
the central and left parietal lobe regions. The frequency band
between 24.1 and 29.8 Hz was used to distinguish migraine
subgroups and was found to have a positive correlation between
the power of this band and time of onset in episodic migraine
patients but not in chronic migraine patients (Gomez-Pilar et al.,
2020).

Using standard EEG spectral analysis and event-related
potential (ERP) methods, Martins et al. (2020) grouped
migraineurs by different phases of the attack. The results
showed that 24 h before the onset of headache, the relative power
changes were statistically significant in the delta (decrease) and
beta (increase) frequency bands, and this study confirms that
EEG can detect neurophysiological changes before a migraine
attack, making it possible for migraineurs to promptly treat an
upcoming attack. In a retrospective analysis of EEG records of
40 patients with migraine at different periods, the power and
power asymmetry at 36 and 72 h before and after the attack were
calculated and compared with the interval value. The results
suggest that migraineurs are most susceptible to attack when
anterior quantitative electroencephalography (QEEG) delta power
and posterior alpha and theta asymmetry values are high (Bjork
and Sand, 2008). In another study, the author found slow and
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asymmetric EEG activity in migraineurs within 36 h before onset
and found that higher theta power and photoresponse inhibition
were associated with higher trigger sensitivity, the phenomenon
of photophobia, and the severity of symptoms (Bjork et al.,
2011b).

Hypersensitivity to sensory inputs is one of the core symptoms
of migraine attacks, and migraineurs are hypersensitive to
most sensory areas, such as visual, auditory, or somatosensory
processing, even during interictal periods. The migraine
brain processes sensory inputs such as auditory, olfactory,
somatosensory, visual, and nociceptive stimuli differently
than non-migraine populations (Moulton et al., 2011),
which has been discussed to be due to hyperresponsiveness
of primary sensory areas (Boulloche et al., 2010) or lack
of habitual responses to repetitive stimuli (Magis et al.,
2013).

Visual stimulation has proven to be a simple and reliable
technique with the potential to detect cortical reactivity changes
associated with migraine attacks. Quantitative EEG and steady-
state visual evoked potentials (SSVEPs) at 27 Hz stimulation
during the critical phase of migraine and in attack-free periods
were examined in 16 patients with migraine without aura, and
the main EEG abnormalities were slowing and asymmetry of
the alpha frequency. It has been confirmed that fluctuating
changes in alpha activity in migraine attacks may be associated
with dysfunction (de Tommaso et al., 1998). Takashima et al.
(2015) analyzed the EEG of migraine patients by rapid Fourier
transform (FFT), observed the response of spectral peaks and
topologies to light stimulation, and found that patients with
longer disease duration were more likely to have higher global
field power (GFP) values in driving responses. Another study
included 28 migraine patients (17 with aura/11 without) and 29
non-migraine patients and compared the power of alpha during
and before and after the visual stimulus and found that in
migraineurs before stimulus onset, alpha power was significantly
reduced relative to controls, indicating that migraine patients have
alpha defects in the prophase of visual stimulation. Given that
alpha activity is related to functional inhibition of the sensory
cortex, the present study is consistent with the notion that
migraine patients have a hyperresponsive visual cortex (Fong et al.,
2022).

Migraine is associated with alterations in sensory processing
and cortical reactivity, which may contribute to susceptibility to
seizures by altering brain network excitability dynamics. Time
frequency analysis and cross-correlation analysis by means of
complex Morlet wavelets were performed to evaluate laser-induced
changes in EEG and the most active cortical areas, and the results
showed that the predictability of the sequence induced by laser
stimulation was very different between controls and migraine
patients, indicating that the cortex of migraine patients had an
insufficient response to pain (de Tommaso et al., 2005). Studies
of the physiological response to stress in migraine patients have
shown that non-nociceptive mild stress does not produce any
QEEG changes, but nociceptive stress leads to a significant decrease
in alpha band power in all brain regions. Migraine patients exhibit
a lower physiological stress threshold, confirming previous studies
demonstrating that migraine is a disorder characterized by altered
neural excitability (Rainero et al., 2001).

3.2. EEG-based studies of
migraine-related functional connectivity
and brain networks

The application of a functional connectivity algorithm provides
support for the neural theory of migraine and opens up a
new perspective for the functional connectivity disorder of the
brain with normal structure. In recent years, various studies
have compared the functional connectivity between different
migraine groups.

One study used a customized ultrahigh-density EEG system
to obtain the spatial coherence of each EEG band signal in
migraine patients and comprehensively evaluated the changes in
cortical coherence patterns during rest and sensory (visual and
auditory) stimulation. The analysis showed that migraine patients
showed low spatial coherence of alpha activity. In both sensory
stimulation conditions as well as in the resting state, the decrease in
consistency occurred predominantly in the frontal lobes, regardless
of stimulation frequency. The abnormal pattern considering their
EEG coherence may be associated with the cortical hyperreactivity
of abnormal sensory processing in migraine patients (Chamanzar
et al., 2021).

De Tommaso et al. investigated EEG signals by Morlet wavelets
(MWT), synchrony entropy (SE), and Granger causality (GC)
and mapped statistically validated results to corresponding scalp
locations. To design a novel analysis of the effects of EEG
synchronization and directional kinetics in patients with migraine
versus healthy volunteers without migraine under pain stimulation.
It was found that the vertex complexes of the averaged laser-
evoked response (LEP) showed reduced habituation compared to
the control group. Brain network analysis may help to understand
the subtle changes in pain processes in migraine patients under
laser stimulation (de Tommaso et al., 2015).

Using multichannel EEG recordings, transfer entropy analysis
was conducted on the brain regions of migraine patients with
aura and without aura and the control group under mode reversal
visual stimulation to evaluate the subtle differences in brain
networks between the two types of migraine. Granger causality
results confirmed that although patients with aura have a special
connection mode of the parieto-occipital cortex, the brains of
the two subtypes respond to visual stimuli in the same way.
Brain networking analysis showed that migraine without aura
(MO) patients had increased intrahemispheric global efficiency
with respect to the migraine with aura (MA), especially in frontal-
central areas. At the same time, the MA showed a larger efficiency
in sorting information from the left to the right parietal-occipital
areas (higher interhemispherical efficiency) (de Tommaso et al.,
2017). Under the same grouping mode, researchers chose a
repetitive light stimulation paradigm to analyse functional and
effective connectivity patterns. The results showed that the phase
synchronization of the alpha band in the MO increased and the
phase synchronization of the beta band in the MA decreased
compared with the control group. Granger causality showed that
compared to controls, the intensity of directional interactions in the
beta band in MA patients increased compared to the control group.
The apparent difference under visual stimulation between the two
forms of migraine may be due to increased cortical activation
in migraine with aura, as well as compensatory phenomena of
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reduced connectivity and functional network separation seen in
patients without aura symptoms (de Tommaso et al., 2013). Similar
to the above study groupings, subjects were found to exhibit
lower interhemispheric coherence values (delta band) at C3–C4
when compared to controls by coherence analysis and exhibited
lower coherence (beta band) at F3–F4 and C3–C4. Compared with
subjects without visual aura, subjects with visual aura showed lower
interhemispheric coherence (alpha band) at O1–O2 and T5–T6
(Koeda et al., 1999).

Studies have compared resting state EEG energy intensity and
effective connectivity during different migraine phases between
MO patients and healthy controls (HCs) using EEG power and
coherence analysis. EEG effective connectivity in pre-ictal patients
showed enhanced coupling of frontal-central and central-posterior
networks and decreased coupling of frontal-occipital networks.
Such brain network dynamics may contribute to the understanding
of the complex neurophysiology before migraine attacks (Cao et al.,
2016).

The variety of symptoms and neurological disorders observed
during the various phases of migraine are complex and widespread,
and the impairments in sensory, emotional, cognitive, and
autonomic functions that may be experienced suggest that
multiple neural networks are involved (Goadsby et al., 2017).
EEG-based brain network studies have revealed differences in
network properties between migraine patients and normal brains,
explaining the fluctuation of brain states in different phases of
migraine, the different phenotypes of aura perception, and the
nature of pain processing.

3.3. Migraine-related EEG source
localization analysis

Intracranial EEG source localization is commonly determined
from low-resolution brain electromagnetic tomography
(LORETA), and LORETA reveals the anatomical distribution
of the cortical sources of EEG abnormalities in migraine.

Three studies used EEG to explore the dysfunctional regions
of migraine by LORETA. The author of one study suggested that
functional disturbance of the prefrontal cortex may play a potential
role in pediatric migraine (Ouyang et al., 2020). Two other studies
separately explored the light-driven response of EEG in migraine
patients (Takashima et al., 2015) and its response to thermal stimuli
(Lev et al., 2013), with the former finding that the limbic system
may be involved in the central sensitization of the visual system.

3.4. Migraine-related EEG microstate
analysis

Electroencephalography microstates are often referred to as
global patterns of spatial configurations of electric potentials.
The quasistable period of a single configuration is a kind of
“microstate.” Although there are a large number of possible
spatial configurations, they can generally be divided into four
typical categories, labeled A–D. Microstates A–D corresponded
to resting-state networks (RSNs) previously identified as
associated with phonological processing, the visual network,

the saliency network, and attention, respectively. The key
characteristics of EEG microstates make it helpful to detect the
dynamic activities in the resting-state brain network of nervous
system diseases.

One study selected 61 MO patients (50 female) and
66 HC patients (50 female) for resting EEG to compare
microstate parameters between the two groups. The results
showed that compared with the control group, microstates B
and D in the MO group showed higher time coverage and
incidence, while microstate C showed lower time coverage
and incidence, and the average duration was significantly
shortened. Furthermore, in MO patients, the duration of
microstate C was negatively correlated with clinical measures
of headache-related disability as assessed by the six-item
Headache Impact Test (HIT-6). This study has deepened the
understanding of migraine pathophysiology by exploring the
characteristics of EEG microstates at baseline, exploring the
neurobiological mechanisms behind cortical excitatory changes
and abnormal sensory, emotional and cognitive processing (Li
et al., 2022).

3.5. EEG-based study of migraine-related
machine learning

Different AI approaches including machine learning and
deep learning are all based on the concept of developing
prediction algorithms from large amounts of data, or big data.
In this context, there are studies in the relevant literature that
diagnose migraine using EEG signals and machine learning or
other algorithms. Aslan et al. used a well-known integrated
learning technique to classify the characteristic values obtained
in each subband of the EEG signal and tested its classification
performance for diagnosing migraine. The highest classification
performance has been achieved with the Rotation Forest classifier
for all evaluation metrics (Aslan, 2021). One study analyzed
functional connectivity extracted from EEG signals acquired during
interictal periods in 52 participants and tested using classifiers
and found that the EEG functional connectivity obtained at
rest could be used as an objective biomarker to distinguish
migraine subgroups with good specificity and sensitivity (Frid
et al., 2020). Classification models based on EEG have also
been used to identify differences between the different phases
of migraine. The complexity of the frontal EEG of migraine
was identified using entropy-based analytical methods, and this
reproducible complexity feature was applied for classification
model testing and found that the Support vector machine radial
basis function (SVM-RBF) classifier significantly outperformed
other classifiers in classification accuracy, with the potential to
provide pre-ictal alarms to patients without migraine aura (Cao
et al., 2018).

Different DL techniques have been used to diagnose different
neuropsychiatric and neurological disorders, but fewer articles have
been published on migraine (Yang et al., 2018).

The summary of Resting-state EEG studies in migraine is
shown in Table 1.

The summary of Stimulus-state EEG studies in migraine is
shown in Table 2.
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TABLE 1 Summary of Resting-state EEG studies in migraine.

References Subjects Migraine phase Main methods Main result

Clemens et al. (2008) MO: 20
HC: 17

Inter-ictal Spectral analysis
LORETA

α power (↑)in all but two derivations (F4 and C3)

Bjork et al. (2009a) MP: 33
HC: 31

Inter-ictal Spectral analysis relative θ activity (↑)

Bjork and Sand (2008) MA: 8
MO: 33

Inter-ictal
Pre-ictal
Ictal
Post-ictal

Spectral analysis Migraineurs are most susceptible to attack when anterior δ power and
posterior α and θ asymmetry values are high

Bjork et al. (2009b) MA: 5
MO: 20
HC: 18

Inter-ictal
Pre-ictal
Ictal
Post-ictal

Spectral analysis Pre-ictal: α frequency variability (↑)
Ictal: α peak power (↑)

Gomez-Pilar et al. (2020) EM: 45
CM: 42
HC: 39

Inter-ictal Spectral analysis Distinguish MP and HC:11.6–12.8 Hz
Distinguish EM and CM:24.1, 29.8 Hz

Koeda et al. (1999) MA: 5
MO: 15
HC: 20

Inter-ictal Coherence ICoh (↓) MP vs. HC
HCoh (↑) MP vs. HC
ICoh (↓) MA vs. MO

Cao et al. (2016) EM: 55
HC: 20

Inter-ictal
Pre-ictal
Ictal
Post-ictal

Coherence Inter-ictal, ictal:
EEG power and coherence (↓) EM vs. HC;
power density and EC differ between migraine phases

Ouyang et al. (2020) MP: 40
HC: 40

Inter-ictal LORETA left prefrontal cortex
FC(↑)MP vs. HC

δ, delta; θ, theta; α, alpha; β, beta; MP, migraine patients; MA, migraine with aura; MO, migraine without aura; CM, chronic migraine; EM, episodic migraine; HC, healthy controls; GFP,
global field power. ICoh, interhemispheric coherence; HCoh, intrahemispheric coherence; FC, functional connectivity.

4. Discussion

4.1. EEG features of migraine and the
subtypes

The spectral characteristics and functional connectivity
patterns of electrical brain activity in migraine are different.
Changes in EEG frequency bands have been commonly
observed. Compared with healthy controls, the main alpha
band abnormalities found were the slowing and asymmetry
of the dominant frequency (Nyrke et al., 1990; de Tommaso
et al., 1998; O’Hare et al., 2018), different brain region alpha
increases or decreases in activity (Clemens et al., 2008; Bjork
et al., 2009a; Ojha and Panda, 2022), alpha oscillatory fluctuations,
particularly on tasks relying on temporal integration (O’Hare
et al., 2018), visual stimuli (Fong et al., 2022), and noxious/non-
noxious stress (Rainero et al., 2001), etc. Some studies have shown
different changes in low-frequency power (e.g., delta and theta
frequency bands) (Bjork et al., 2009a, 2011b; Ojha and Panda,
2022) ADDIN. The relationship between various frequency bands
and clinical characteristics of migraine is also explored in the
studies (Bjork et al., 2009a,b, 2011b). The differences in specific
frequency bands in migraineurs may depend on where on the
scalp the abnormalities appear, in which phases of migraine
the EEG signals were recorded and whether the responses
were recorded at rest or were stimulus-evoked (Chamanzar
et al., 2021). Although with heterogeneous results, most found
differences are related to lower-frequency responses. Therefore, we
believe that activities with lower frequencies (delta/theta/alpha)

may be more suitable to be the characteristic frequency band
for migraine recognition. Visual evoked potentials from 20
healthy controls and 70 migraine patients were analyzed in
the frequency domain, and the author found that compared
to healthy controls, interictal migraine patients had increased
visually induced low frequency activity (Lisicki et al., 2020). The
research of Gomez-Pilar et al. also confirmed our consideration
and supports another fact that characteristic neural dynamics
in migraine are linked to specific frequency bands but are
not necessarily equal to conventional ones (Chamanzar et al.,
2021).

Gomez-Pilar et al. also provided an additional band between
24.1 and 29.8 Hz to discriminate between migraine subgroups
[chronic (CM) and episodic (EM)] (Chamanzar et al., 2021).
A systematic review explored potential biomarkers to differentiate
chronic and episodic migraine and proposed that future studies
based on EEG should pay special attention to brain activity
in medium and fast frequency bands, mainly the beta band
(Gomez-Pilar et al., 2022). We find that the comparative study
of migraine subtypes is more focused on migraine with aura
and migraine without aura and more on the analysis of EEG
signals under different stimulations. The different patterns of
brain connectivity and networking observed in the two forms of
migraine can be linked with the phenotypical differences in the
perception of aura symptoms. Although no consensus regarding
brain signatures for migraine and the subgroups has been reached,
lack of consideration of migraine subgroups could also hide
migraine general features due to the different behaviors of both
subgroups in specific frequency bands (Gomez-Pilar et al., 2022).
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TABLE 2 Summary of Stimulus-state EEG studies in migraine.

References Subjects State Migraine phase Main methods Main result

Bjork et al. (2011b) MA: 8
MO: 33
HC: 32

Photic
stimulation

Inter-ictal
Pre-ictal
ictal
Post-ictal

Spectral analysis SSVEP Inter-ictal: relative θ activity (↑)
Pre-ictal: δ absolute power (↑) (frontocentral)

Martins et al. (2020) MP: 24 Visual attention Migraine cycle period Spectral analysis ERP Pre-ictal : relative power in the δ (↓) and β (↑)

de Tommaso et al. (1998) MP: 16
HC: 20

Flash Stimulation
(27 Hz)

Inter-ictal
ictal

Spectral analysis SSVEP Main spontaneous EEG abnormalities: the slowing
and asymmetry of the dominant frequency in the α

range.

Takashima et al. (2015) MA: 11
MO: 17

Photic stimulation Inter-ictal GFP spectrum analysis The GFP value had a positive correlation with the
duration of illness.

de Tommaso et al. (2005) MO: 10
HC: 7

Laser stimulation Inter-ictal Power spectral density
LEP

The predictability of the series changed very
differently in controls and patients.

Rainero et al. (2001) MO: 19
HC1: 16
HC2: 14

Ischemic stress Inter-ictal Spectral analysis The non-noxious stress:α power (↓)

O’Hare et al. (2018) MP: 13
HC: 17

Visual task
Noise task

Inter-ictal
ictal

Spectral analysis Lower alpha-band (8 to 10 Hz) power (↑)

Fong et al. (2022) MA: 17
MO: 11
HC: 29

Visual attention Inter-ictal Spectral analysis Pre-stimulus period:α Power (↓)

Bassez et al. (2020) MO: 23
HC: 23

Laser stimulation Inter-ictal Spectral analysis DICS
LEP

Increases in central GBOs were not significantly
different MO vs. HC

Porcaro et al. (2017) MO: 20
HC: 20

Electrical stimulation Inter-ictal FSS spectral analysis BS and Th HFO activation
Bilaterally (↓) MO vs. HC

Chamanzar et al. (2021) MP: 14
HC: 18

Visual and auditory
stimulation

Inter-ictal Coherence spectral
analysis

Spatial coherence of α-band activity (↓)
in frontal clusters

de Tommaso et al. (2015) MO: 31
HC: 19

Laser stimulation Inter-ictal MWT, SE, GC Post-stimulus period: the same cortical areas were
more connected MO vs. HC

de Tommaso et al. (2017) MA: 19
MO: 19
HC: 11

Visual stimulation Inter-ictal GC, TE Resting-state: information flow (↓) in MO vs. MA
Inter-stimulus: a different information transfer (MO
vs. MA, MP vs. HC)

de Tommaso et al. (2013) MA: 19
MO: 19
HC: 11

Repetitive photic
stimulation

Inter-ictal Phase synchronization
GC

Phase synchronization in α band (↑) MO vs. HC;
in β band (↓) MA vs. HC;
directed interactions in β band (↑)MA vs. MO, MA
vs. HC

Bassez et al. (2020) MO: 23
HC: 20

laser stimulation Inter-ictal LEPs DCM After repetitive stimulations connection strengths:
HC (↑) vs. MO

α, alpha; β, beta; MP, migraine patients; MA, migraine with aura; MO, migraine without aura; EM, episodic migraine; HC, healthy controls; MWT, Morlet wavelet; SE, synchronization entropy;
GC, Granger causality; TE, transfer entropy; ICoh, interhemispheric coherence; HCoh, intrahemispheric coherence; EM, episodic migraine; EC, effective connectivity; DICS, Dynamic Imaging
of Coherent Sources; GBOs, Gamma-band oscillations; FSS, functional source separation; BS, lower brainstem; Th, thalamic; HFO, high- frequency oscillatory; DCM,dynamic causal modelling.

Based on the information above, we emphasize the importance of
discriminating between migraine subgroups.

4.2. EEG features of the attack-initiating
of migraine

By analyzing the EEG recorded in some phases or the whole
cycle of migraine, the researcher found that neurophysiological
changes seem to increase when a migraine attack approaches
(Nyrke et al., 1990). Such changes in brain dynamics could have
implications for understanding the complex neurophysiology of
migraine before a headache attack. However, the results are diverse,
and the findings of these studies include slow and asymmetric

EEG activity before the attack, power decrease or increase
in different frequency bands, frequency variability increased,
connectivity reduced, and functional network separation, EEG
phase coherence fluctuated across migraine phases (Cao et al.,
2016), etc. A possible reason for the discordant results may be
different timing of the recordings in relation to the migraine
attacks. Some studies compared the pre-ictal and/or post-ictal
interval with an interictal and/or ictal interval, and the studies
used relatively different intervals (24–96 h) in the definition
of the pre(post)-ictal phase. Another possible reason is the
methodological difference. Some studies compared the pre-ictal
recordings with the post-ictal ones, not with an interictal baseline
interval as other studies did. To summarize, EEG-based brain
state monitoring can identify physiological changes preceding a
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migraine attack, enabling valuable presymptom prediction and
subsequent early intervention.

4.3. Migraine sensory processing

After reviewing the relevant EEG studies of migraine, we found
that on the basis of existing EEG research, researchers used evoked
potentials combined with QEEG to study migraine brain function
changes under various stimuli, including visual stimulation,
auditory stimulation, sound stimulation, olfaction stimulation,
pain stimulation, etc. The number of studies on various EEG-
derived evoked potentials is increasing, including visual evoked
potentials (VEP), auditory evoked potentials (AEP), somatosensory
evoked potentials (SEP), and event-related potentials (ERP) related
to various tasks, for example, the “contingent negative variation”
(CNV) (Meyer et al., 2016).

These studies are based on the characteristics of the lack
of sensory habituation in migraine. However, the results of
the studies have been discrepant. In a VEP-blinded study,
the author believes that a lack of VEP habituation cannot
be considered a reliable neurophysiological hallmark in
migraine (Omland et al., 2016). Other study findings suggest
that no evidence for a lack of habituation in any of the
measures was seen between migraine patients and controls,
and migraine patients process stimuli as more salient (Vila-
Ballo et al., 2021). Ambrosini et al. (2017) found that VEP
habituation was normal in healthy volunteers (HVs) and episodic
migraine patients (EMs) during an attack but deficient in EMs
interictally.

Between attacks, migraine patients are characterized by
habituation of stimulation-evoked cortical responses. It is debated
whether this is due to increased or decreased cortical excitability.
Studies have concluded that deficient interictal pattern-reversal
visual evoked potential (PR-VEP) habituation in migraine is due
to a reduced, and not to an increased, pre-activation excitability
level of the visual cortex (Bohotin et al., 2002). Additional findings
suggest that the migraine brain displays abnormal visual evoked
responses between migraine attacks. In migraine eyes, scotopic
cone and rod responses increased. The results of this study support
the hyperexcitability of the retina and cortex in patients with
migraine (Mehnert et al., 2019). However, insufficient published
data and substantial heterogeneity between studies were observed
for all latency components of PR-VEPs, highlighting the need for
further electrophysiological experimentation and more targeted
temporal analysis of visual function in episodic migraineurs
(Sezai et al., 2022). However, abnormal cortical responsivity and
sensory processing may constitute the fingerprint of the migraine
brain.

4.4. Research methods of migraine based
on EEG

4.4.1. Spectral power analysis
Concerning multichannel EEG, the frequency component is

one of the most critical features. An EEG frequency spectrum
was obtained with fast Fourier transformation (FFT) in many

studies of migraine. Although FFT is commonly used in the data
analysis process, and it works effectively for stationary signals, it
has the problems of lower resolution and inherent “leakage” effects
(Muthuswamy and Thakor, 1998). This shortcoming has motivated
researchers to develop novel procedures and methods for spectral
estimation, such as the Fourier decomposition method (Singh et al.,
2017), variational mode decomposition (VMD) method (Liu et al.,
2018), and Hilbert-Huang transform (HHT) method (Valderrama,
2021).

A small number of studies use the wavelet transform (WT).
The wavelet has good time-frequency localized properties and
multi-resolution analysis where the transient information of an
EEG signal can be extracted efficiently (Daud and Sudirman,
2022). This method has good performance in the spectral analysis
of irregular and non-stationary signals within different size
windows (Al-Fahoum and Al-Fraihat, 2014). However, the WT
suffers from Heisenberg uncertainty, which negatively affects its
performance. Wavelet transforms offer certain advantages over
fast Fourier transform techniques for the analysis of EEG (Akin,
2002).

4.4.2. Functional connectivity and brain networks
analysis

Functional connectivity is different from the traditional
approach that analyses each brain area of EEG lead location.
Functional connectivity allows the detection of common temporal
features of two even distant neural populations due to weak
reciprocal interactions or the shared influence of a third
variable (Friston, 2011). The brain networking analysis, based
on the connectivity models, may represent a way to explain
the brain functions and neurological disorders. It can add
knowledge about the complex mechanism of migraine, as the
different brain interconnections may be an epiphenomenon
of the altered neuronal excitability affecting the migraine
brain (de Tommaso et al., 2014). Identifying connectome-
based markers for migraine is necessary for developing new
interventions or optimizing diagnosis and treatments for migraine
headaches, which may benefit from targeting brain networks
or systems rather than single structures (Maleki and Gollub,
2016).

Although many methods have been developed to investigate
the functional interactions between brain areas, most functional
connectivity analysis studies in migraine have been performed by
resting-state functional magnetic resonance imaging (fMRI) (de
Tommaso et al., 2021). Unlike functional magnetic resonance
imaging, resting-state functional connectivity analysis of
electrophysiological recordings can reveal intrinsic oscillatory
and dynamic characteristics. EEG-based studies have observed
aberrant functional connectivity in patients with migraine.
However, the general impression emerging from the studies is that
very different and incomparable recording and analysis methods
are used. The selection of EEG reference value, artifact processing
and filtering, period selection, frequency band selection, and other
methodological choices can significantly affect the final results of
functional connectivity or network research. Therefore, it is crucial
to understand the characteristics of various measurement and
analysis methods and make reasonable choices in research.
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4.4.3. Machine learning and deep learning
Machine learning approaches are promising techniques that

allow the identification of possible biomarkers that could be
used for early diagnosis, treatment planning, and monitoring of
disease. It is largely used to develop automatic predictors in
migraine classification.

Ferroni et al. explored an automated predictor to estimate
medication overuse (MO) risk in migraine. The system combines
support vector machines and random optimization (RO-MO).
Receiver operating characteristic (ROC) analysis resulted in a
c-statistic of 0.83 with a sensitivity and specificity of 0.69 and 0.87,
respectively (Ferroni et al., 2020).

A study used machine-learning techniques to develop
discriminative brain-connectivity biomarkers from resting-state
functional magnetic resonance neuroimaging (rs-fMRI) data that
distinguish between individual migraine patients and healthy
controls. The author found that migraineurs with a longer
disease burden were classified more accurately than migraineurs
with a shorter disease burden (Chong et al., 2017). Another
machine learning study based on magnetic resonance imaging
(MRI) proposed a classification approach to examine whether
the integration of multiple MRI features could improve the
classification performance between migraine patients without aura
(MWoA) and healthy controls. The final classification accuracy
obtained was 83.67% (with a sensitivity of 92.86% and a specificity
of 71.43%). It shows a promising classification capability for
migraine by integrating information from multiple MRI features
(Zhang et al., 2016).

To identify and validate the neural signatures of resting-state
oscillatory connectivity for chronic migraine (CM), a classification
model that employed a support vector machine was developed
using magnetoencephalographic data to assess the reliability and
generalizability of CM identification. The classification model
exhibited excellent performance in distinguishing patients with CM
from HCs (accuracy ≥ 86.8%, area under the curve (AUC) ≥ 0.9)
and from those with episodic migraine (EM) (accuracy: 94.5%,
AUC: 0.96). The model also achieved high performance (accuracy:
89.1%, AUC: 0.91) in classifying CM from other pain disorders
(Hsiao et al., 2022).

A voxel-based machine learning analysis used fMRI to identify
biomarkers to discriminate migraineurs as well as select patients
suitable for transcutaneous vagus nerve stimulation (tVNS)
treatment. By machine learning, two potential biomarkers were
identified with an accuracy of 79.3%, sensitivity of 78.6%, and
specificity of 80.0% (Fu et al., 2022).

These results indicate that electrophysiological and
neuroimaging recordings in combination with machine learning
can aid in individualized migraine diagnosis and prognosis. It
greatly supports the diagnosis of clinical experts. However, we
cannot exclude the possibility that the use of different data
acquisition methods and acquisition protocols to study patients
with different clinical conditions might have influenced the
performance of the classification model. New classification studies
with a larger sample size and multiple approaches should be
conducted to identify the main differences in patients. On the other
hand, the data consumed massive amount on storage media. Future
research is still needed to train and test of this momentous volume
of data, robustly evaluate algorithms and improve interpretability,

generalizability and transparency. If such challenges can be
overcome, machine learning has the potential to profoundly
change the management of patients with migraine. With the rapid
development of machine learning, various algorithms and classified
distributions have emerged. In the future, we think higher accuracy
rates might be obtained by combining electrophysiological and
neuroimaging data and integrating multiple features.

5. Conclusion, challenges, and
perspectives

Overall, existing EEG studies in migraine were heterogeneous
and limited in terms of grouping, spatial undersampling (position
and number of electrodes), data acquisition, and unstandardized
analysis methods between studies. All of the above make it
difficult to compare the results of different studies, and the
findings are sometimes difficult to understand and rarely replicated.
Nevertheless, these studies are instrumental in providing initial
evidence of complex brain dysfunction in migraine. These
electrophysiology changes provide hope to identify novel EEG
biomarkers that can be targeted for migraine diagnosis and
intervention and to understand the pathophysiology of migraine.

Future studies of migraine based on EEG should give specific
attention to brain activity in lower-frequency bands. The migraine
subtypes should be taken into account. Beyond demonstrating EEG
changes in a frequency band, knowing in which cortical regions
these changes are located is a major challenge in defining and
understanding migraine biomarkers. In addition, we propose that
future research should strictly focus on methodology and carry out
repeated verification of multiple methods.
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