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Studies comparing individuals with autism spectrum disorder (ASD) to

typically developing (TD) individuals have yielded inconsistent results. These

inconsistencies reflect, in part, atypical trajectories of development in children

and young adults with ASD compared to TD peers. These different trajectories

alter group differences between children with and without ASD as they age.

This paper first summarizes the disparate trajectories evident in our studies

and, upon further investigation, laboratories using the same recruiting source.

These studies indicated that cognition improves into adulthood typically, and

is associated with the maturation of striatal, frontal, and temporal lobes, but

these age-related improvements did not emerge in the young adults with ASD.

This pattern – of improvement into adulthood in the TD group but not in the

group with ASD – occurred in both social and non-social tasks. However, the

difference between TD and ASD trajectories was most robust on a social task,

face recognition. While tempting to ascribe this uneven deficit to the social

differences in ASD, it may also reflect the prolonged typical development of

social cognitive tasks such as face recognition into adulthood. This paper

then reviews the evidence on age-related and developmental changes from

other studies on ASD. The broader literature also suggests that individuals

with ASD do not exhibit the typical improvements during adolescence on

skills important for navigating the transition to adulthood. These skills include

execution function, social cognition and communication, and emotional

recognition and self-awareness. Relatedly, neuroimaging studies indicate

arrested or atypical brain maturation in striatal, frontal, and temporal regions

during adolescence in ASD. This review not only highlights the importance of

a developmental framework and explicit consideration of age and/or stage

when studying ASD, but also the potential importance of adolescence on

outcomes in ASD.
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Introduction

Samples with autism spectrum disorder (ASD) display
different developmental trajectories when compared to typically
developing (TD) samples. These distinct trajectories lead to
group differences between ASD and TD samples that change
with age, and these age-related changes are evident in behavior,
brain function, and brain structure. Thus, collapsing across a
large range of ages or controlling age as a nuisance factor when
examining ASD can be misleading, leading to inconsistencies
in the literature even when groups are well-matched. On the
other hand, assuming that the developmental trajectories are
likely to be altered in ASD provides insight into developmental
mechanisms that work differently in ASD, including the
systematically different environments and experiences that
people with ASD encounter.

This paper reviews how the interconnected factors of
age/developmental stage/cohort (simply referred to as “age”
throughout the paper) impact behavior and brain function and
structure—and alter research results—in ASD. We first assess
age-related changes in our local studies and then report analyses
from other studies that also assess age-related or longitudinal
changes in those with ASD and TD peers. Differential
development between older children with and without ASD
may be particularly evident with social cognition and skills.
Research on ASD focuses on these skills because impaired social
skills are diagnostic of ASD. However, social cognition and
skills may also be unique in that, typically, their development
continues well into adulthood, and to a high level of expertise
which is relatively consistent across TD individuals (Gauthier
and Nelson, 2001). The deficits in ASD and this prolonged
development may interact to make social development proceed
atypically in ASD. Thus, we argue that age should be considered
as a factor of interest in studies of ASD, with few exceptions.
Of course, this level of detail may not always be possible, as
it requires larger samples and adds complexity to analyses.
However, with increased data sharing, more studies may
be able to examine age directly. In addition to age-related
variability, samples with ASD also exhibit increased individual
variability in behavior and in brain function, compared to TD
samples (Magnuson et al., 2020; Heller Murray et al., 2022).
This individual variability undermines our power to detect
developmental change, adding to the difficulty in understanding
differential development in ASD.

This paper has several important limitations. While puberty
is critical for adolescent development, and gender differences are
striking in those with ASD, these topics are beyond the scope of
this paper (see Corbett et al., 2020; Geier and Geier, 2021; Wood-
Downie et al., 2021). Another limitation of this review is that—
for simplicity’s sake—we do not include studies that assess how
performance on one task predicts performance on another task
(Lai et al., 2017; Gardiner and Iarocci, 2018; Fong and Iarocci,
2020), including a study with longitudinal methods (Pugliese

et al., 2016). Finally, we focus on individuals with IQs in the
typical range or higher in this review, as these samples are most
often included in studies of cognition and neurophysiology.

Adolescence and adulthood in autism
spectrum disorder (ASD)

Risks and stressors during adolescence
The subjective “adolescent experience” is likely to

systematically differ for children with ASD. Adolescence is
an unique stage of development, with distinct social demands
and mental health concerns (Pfeifer and Blakemore, 2012;
Galván, 2017), and these issues are likely to be amplified in
individuals with ASD. Having an ASD appears to increase a
number of adolescent risks and stressors that an individual
experiences, undermining development into adulthood (Carter
et al., 1998; Kanne et al., 2011; Bal et al., 2015). Adolescents
with ASD are at a higher risk for problems with social health
(fewer, less intimate friends; Orsmond et al., 2013; Magiati et al.,
2014) and mental health (anxiety, depression, schizophrenia,
substance use; Taurines et al., 2012; Lever and Geurts, 2016;
Park et al., 2018; Hossain et al., 2020; Schwartzman and
Corbett, 2020; Oakley et al., 2021; Sun et al., 2021), compared
to TD adolescents. These heightened risks are often specific to
adolescence, and may make adolescence particularly difficult
to navigate for those with ASD. Adolescents with ASD are also
more likely than TD adolescents to experience stressors, such
as bullying (Maïano et al., 2016), social isolation (Orsmond
and Kuo, 2011; Orsmond et al., 2013), and health-related risky
behaviors (Sun et al., 2021), including suicide attempts (Zahid
and Upthegrove, 2017; Kirby et al., 2019; Hirvikoski et al., 2020).
These stressors disrupt mental health and brain maturation
in TD samples (Page and Coutellier, 2018; Shaw et al., 2020).
Thus, a better understanding of this transition—from school
age children to young adults—in those with ASD is critical
to our goal of transforming this transition from a time of
increasing problems to a time that sets the stage for improved
adult outcomes (Gillberg and Schaumann, 1989; Hendricks and
Wehman, 2009; Newman et al., 2011; Shogren and Plotner,
2012; Wei et al., 2013, 2015; Anderson et al., 2018).

Adolescent development in ASD
Adolescence is a time when many individuals become

independent. However, the transition to independence can be
difficult for those with ASD, because daily living skills (i.e.,
adaptive behaviors) are particularly problematic in ASD. Daily
living skills may improve from childhood to adolescence in
ASD (Bal et al., 2015), but seem to plateau during adolescence
and early adulthood in ASD (Clarke et al., 2021; Auld
et al., 2022; but see Smith et al., 2012 for later plateau in
adulthood). Daily living skills and executive function (EF) in
ASD are worse than expected on the basis of IQ, and the
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gap between these skills and IQ increases from adolescence
into adulthood (Rosenthal et al., 2013; Pugliese et al., 2015;
Kraper et al., 2017; Tillmann et al., 2019). Individuals with
ASD appear to use additional resources (e.g., EF skills like
attention, planning) for everyday tasks, compared to TD peers,
as reflected by significant correlations between EF and daily
living skills in a group with ASD but not the TD group
(Pugliese et al., 2015). Adults with ASD continue to struggle
with independent living throughout the lifespan (Howlin and
Moss, 2012; Shattuck et al., 2012; Duncan and Bishop, 2015;
Anderson et al., 2021).

Adult outcomes in ASD
Adult outcomes tend to be poor in individuals with ASD.

Poor physical health outcomes include premature morbidity
(Vohra et al., 2017) and mortality (Hirvikoski et al., 2016).
Not surprisingly, social and mental health also tend to be
negatively impacted by ASD. Adults with ASD are less likely
to be employed or to engage in social activities compared
to individuals with other developmental disorders (Shattuck
et al., 2012; Orsmond et al., 2013). Children and adults
with ASD are also at increased risk for mental health
problems. In one study, about 72% of adults over 40 with
ASD had at least one other psychiatric diagnosis (Bishop-
Fitzpatrick and Rubenstein, 2019; see also Lugo-Marín et al.,
2019; Hossain et al., 2020). These mental health issues
can interact with autistic traits, escalating problems. For
instance, ASD may contribute to the etiology of depression,
which often emerges during adolescence (Rai et al., 2018;
Shephard et al., 2019); in turn, depression undermines social
motivation and social cognition, amplifying autistic traits
and increasing the social isolation that characterizes ASD
(Donohoe et al., 2012; Samamé, 2013). Thus, problems
that emerge during the adolescent transition are likely to
contribute to poor outcomes throughout the lifespan in ASD
(Henninger and Taylor, 2013; Ratto and Mesibov, 2015;
Skaletski et al., 2021).

Social and non-social cognition in ASD

The most widely recognized characteristic of ASD is the
deficits in social cognition and resulting difficulties in social
interactions (Sasson et al., 2013; Patriquin et al., 2016). Thus,
it is often assumed that deficits in ASD will effect social
cognition (i.e., memory for, attention to, interpretation of social
stimuli) but not “non-social” cognition. However, there are also
cognitive differences with non-social tasks and stimuli in ASD.
These differences are often characterized as general deficits in
executive function (EF), decision making, cognitive control,
and/or memory (Hill, 2004; O’Hearn et al., 2008; Rosenthal
et al., 2013). Such deficits should impact both social and non-
social tasks. Despite extensive study, the overlap across social

and non-social cognitive differences in ASD has proven difficult
to characterize, often leading to contradictory conclusions
(Dakin and Frith, 2005; Behrmann et al., 2006; Parish-Morris
et al., 2013; Weigelt et al., 2013). Understanding and comparing
the typical and atypical developmental trajectories provides
insight into why social cognition is sometimes impaired while
non-social cognition is not. Possibilities include: 1. cognitive
differences in ASD impact social stimuli more – or differently
– than non-social stimuli; 2. social stimuli are more complex
or require increased global processing compared to non-social
stimuli, and this difference affects those with ASD more than
TD individuals; and/or 3. processing of social stimuli improves
over a longer period of time (from earlier to later), or to
a greater level of expertise across TD individuals, compared
to processing of non-social stimuli, and these maturational
processes are impacted by ASD. These possibilities are likely to
overlap. More detail on age, development and other causes of
heterogeneity is needed to clarify which differences in ASD are
specific to social tasks, and which generalize to cognitive tasks
in general.

Our studies and studies using the
same recruiting source

TD individuals displayed prolonged improvements on face
recognition, into adulthood, while individuals with ASD did not.
This resulted in group differences between those with ASD and
TD peers by adulthood.

Behavioral studies

Face recognition is the quintessential social cognitive task,
and begins developing in the first few hours of life (Walton
et al., 1992; Pascalis et al., 1995). We first observed differing
trajectories in adolescent development of face recognition on the
Cambridge Face Memory Test (CFMT; O’Hearn et al., 2010),
originally designed for adults with prosopagnosia (Duchaine
and Nakayama, 2006). Unexpectedly, our results indicated
that the TD group improved when recognizing faces from
adolescence (ages 13–17) to adulthood (18–28), while the
sample with ASD did not. This led to group differences between
adults with ASD and their TD peers. Similar deficits on the
CFMT in adulthood have also been reported in parents of
children with ASD (Wilson et al., 2010) and adults with
Asperger’s syndrome (Hedley et al., 2011). We later learned that
face recognition performance on the CFMT improves until age
30 typically (Germine et al., 2011). This pattern of emerging
deficits in adults with ASD compared to TD peers has since been
replicated using a modified CFMT in the MRI scanner (Lynn
et al., 2018; O’Hearn et al., 2020) and with an eye tracker (Fedor
et al., 2018) in our laboratory. Eye tracking results indicated
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that atypical developmental trajectories on face recognition in
ASD do not simply reflect an epiphenomena of eye movement
differences, such as eye movements changing with age typically
but not in ASD (Fedor et al., 2018).

Differences between the adult group
with ASD and TD adult group were not
specific to faces or social stimuli, but
instead to tasks that developed into
adulthood typically

To understand whether these differences in ASD were
specific to faces, or generalized to recognition of individuals
of other object kinds, we administered a memory task for
faces and cars to a larger sample. We used the immediate
memory (IM) task from the Let’s Face It! Battery (Wolf et al.,
2008; Tanaka et al., 2010). Using this task, children (8–12)
and adolescents (13–17) with ASD exhibited impaired face
recognition, but similar car recognition, compared to their
TD peers. Developmentally, performance on face recognition
improved from childhood to adolescence in both the ASD
and TD groups (O’Hearn et al., 2014). This pattern differed
from the CFMT, possibly reflecting that the IM task was
designed for grade school-age children. In contrast, neither
group displayed developmental improvement from childhood
to adolescence on car recognition, with no differences between
individuals with and without ASD or between children and
adolescents. Thus, face recognition improved from childhood
into adolescence, but car recognition did not, in both
groups, making development similar across groups. In contrast,
from adolescence to adulthood, development differed between
groups. Memory improved for both face and car recognition
from adolescence to adulthood in the TD group but neither
recognition task improved from adolescence to adulthood in the
group with ASD. Thus, deficits were evident by adulthood in
ASD on both face and car recognition, compared to TD adults.
However, the group difference in adulthood was more robust for
faces than it was for cars, potentially reflecting more or longer
improvement typically that did not occur during development
in ASD (O’Hearn et al., 2014).

One explanation for the late development in car recognition
is that memory for individual cars improves typically as
adolescents learn to drive, and drive more, into adulthood.
This increased car expertise may result in psychological and
neurophysiological representations for cars that are more
similar to faces than they were previously (i.e., more global,
individually recognized, with activation in the Fusiform Gyrus,
Gauthier et al., 2000; Gauthier and Nelson, 2001; Ross et al.,
2018). This increased expertise may not occur, or may occur
later, in adolescents with ASD, as individuals with ASD are
less likely to drive, and learn to drive later, compared to TD
individuals (Curry et al., 2018).

Individuals with ASD do not display
many of the improvements into
adulthood evident in TD individuals

This pattern – of late-emerging differences between groups
with and without ASD – also occurred in a dynamic change
detection task examining attention. In this task, we hypothesized
that the group with ASD would be less sensitive to changes on
socially related stimuli, but not changes on non-social stimuli,
compared to the TD group. Instead of this expected difference
in performance with social and non-social stimuli in ASD,
we again found that performance in younger individuals was
similar, regardless of whether they were diagnosed with ASD
or not. However, performance improved into adulthood in the
TD group but not the group with ASD. This led to deficits in
ASD in adulthood. The differences between adults with ASD
and TD adults were most robust on marginal object changes
(compared to conceptually or visually central objects), but there
were no group differences between social and non-social stimuli
(O’Hearn et al., 2011a). Earlier studies that recruited through
the same source (Autism Center of Excellence at the University
of Pittsburgh, Pittsburgh, PA) also suggest a lack of adolescent
development in ASD. These studies from other laboratories
use a variety of cognitive tasks, including recognition of facial
expression (Rump et al., 2009), drawing the Rey-Osterrieth
figure (Kuschner et al., 2009), and increasing reliance on global
(vs. local) processing with age in a letter recognition task
(Scherf et al., 2008).

Individuals with ASD displayed “typical”
development from adolescence to
adulthood on a WM task

There were a few exceptions to this pattern of results in
our laboratory, as described in the previous section. Adults
with ASD performed better than adults with TD when counting
concentric squares (O’Hearn et al., 2013), consistent with the
less global, perhaps “immature,” visual processing reported
previously in ASD (Happe et al., 2001; Dakin and Frith,
2005; Mottron et al., 2006). This “local processing” strength is
associated with better performance in some samples with ASD,
compared to TD samples, on tasks that require processing of
individual features or other analytical skills (e.g., embedded
figures test; Bolte and Poustka, 2004; Dakin and Frith, 2005;
Mottron et al., 2006; Ashwin et al., 2009). In addition, on a
WM task, TD groups and their peers with ASD also performed
similarly, even across age. We tested short-term memory for
rapidly presented colors and shapes using a change detection
task (Awh et al., 2006). This study did not result in group
differences at any age between the group with ASD and the
TD group. In addition, both groups (ASD and TD) displayed
developmental improvements into adulthood (Lynn et al., 2022).
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These strengths and intact skills are important to identify and
encourage, as they provide insight into how to better incorporate
and support neurodiversity. Neurodiversity contributes unique
views and innovative solutions needed to address current
problems (Austin and Gary, 2017; Karmakar and Sarkar, 2020;
Marciano et al., 2022), and may be a key construct underlying
societal growth (Chapman, 2021).

Neuroimaging studies

Neuroimaging results from our laboratory align
with the behavioral findings

Neuroimaging studies done in our laboratory also reveal
atypical trajectories of brain maturation in those with ASD,
compared to TD individuals, and are incorporated into the
brain function sections (p. 6 to 7). Briefly, studies of functional
connectivity in our sample, one during rest and one during
the CFMT task, indicated that brain connectivity increased
from adolescence to adulthood in the group with ASD, while
it decreased in the TD group (Padmanabhan et al., 2013;
Lynn et al., 2018). This typical pattern is consistent with
extant literature suggesting that neurophysiological connections
become more specialized during adolescence. In addition, we
analyzed brain activation in the temporal lobe, and reported that
a lack of developmental change in ASD led to group differences
between adults with ASD and TD adults (O’Hearn et al., 2020).

Literature assessing longitudinal
and age-related change

This literature, collected by the first author as it emerged
from well-established sources such as the NIH intramural
program (Wallace et al., 2010), also provides evidence of atypical
adolescent development and brain maturation in adolescents
with ASD. Additional searches were done in 2022, and these
included the keyword “autism” and one or two of the following
words: “adolescence,” “longitudinal,” “development,” “age,” and
“meta-analysis.” The focus of this search was on longitudinal
studies, meta-analyses and larger samples that directly examined
age-related changes on a particular skill or function.

Behavioral studies

Executive function (EF), decision making, and
cognitive control

Deficits in EF, decision-making, and cognitive control have
long been reported in ASD (Hill, 2004; O’Hearn et al., 2008).
However, little is known about how these deficits might change
from adolescence to adulthood in ASD. Young children with
ASD exhibited deficits in memory and metacognitive skills,
compared to TD children. In addition, the impairments in ASD

increased with age when compared to TD peers (5–8; Rosenthal
et al., 2013). Consistent with this result, a longitudinal study
indicated that parent reported EF (i.e., BRIEF; Guy et al., 2004)
was not only impaired in those with ASD but also did not
improve over 2 years of development, while the TD group
exhibited improvements over the same 2 years (initial ages 7–
14; Vogan et al., 2018). In contrast, a study examining digit
span and standard EF tasks (CANTAB R©, 2019) reported that the
initial deficits in planning and task switching decreased from
childhood (8–12) to adolescence (13–18) in individuals with
ASD, compared to TD individuals, while deficits in memory
remained stable across that age range (8–18) (Chen et al., 2016).
It is unclear if this pattern would continue into adulthood.

Social cognition, communication, and
emotional sensitivity

Parent report (i.e., Social Responsiveness Scale-Second
Edition) indicates that social communication improves with
age in TD individuals from childhood to early adulthood
but declines with age in individuals with ASD (4–29; Wallace
et al., 2017). A longitudinal study also reported that verbal
working memory improved over 2 years in TD individuals
and individuals with Attention Deficit Hyperactivity Disorder
(ADHD) but not in individuals with ASD (9–16; Andersen
et al., 2015). Consistent with these studies, a test of social
cognition using a theory of mind task in which triangles behaved
intentionally (e.g., chasing) indicated that children with ASD fall
further behind with age on this task, as TD children improve
more with age than those with ASD (2–21; See Figure 3 in
Bal et al., 2013). In contrast to this result, a similar theory of
mind task indicated that social behavior did not differ between
TD individuals and their peers with ASD (6–31). However,
this study also did not show developmental improvements
from ages 13 to 25, even in the TD group. Visual inspection
of the graph suggests that performance may start to improve
typically around age 25; at this point, the group with ASD
may begin to diverge from the TD group (see Figure 1 in
The EU-AIMS Leap Group et al., 2020a).

Similar to face recognition in those with ASD (discussed
on p. 3, and perhaps also face perception; Stantiæ et al., 2022),
recognition of emotional facial expressions becomes more
impaired from adolescence to adulthood in those with ASD, as
their TD peers improve on these tasks. A meta-analysis reported
that individuals with ASD, compared to TD individuals, were
impaired at recognizing all types of emotions, although some
emotional expressions were more impacted than others (Lozier
et al., 2014). Much like our conclusions on face recognition,
Lozier and colleagues (Lozier et al., 2014) conclude: “The results
of this meta-analysis provided strong evidence that individuals
with ASDs are significantly impaired in recognizing multiple
emotional facial expressions and that these deficits increase in
magnitude over the course of development (p. 8, 9).” Their
results indicate a lack of adolescent development (“essentially
flat”) in those with ASD. These authors also suggest that age
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explains the inconsistent effect sizes in the literature on atypical
expression recognition in ASD. In addition to the lack of
development in the recognition of other people’s expressions,
another meta-analysis indicates that deficits in emotional self-
awareness in individuals with ASD emerge around adolescence.
Emotional self-awareness, generally assessed by self-reported
alexithymia measures, did not differ between children with and
without ASD before the age of 12. However, individuals with
ASD become less aware of their own emotions from adolescence
into adulthood, while TD adolescents and adults do not exhibit
age-related changes (see Figure 6 in Huggins et al., 2021). This
decrease in emotional self-awareness is likely to undermine
emotion regulation, an important skill, by adulthood in those
with ASD (Reyes et al., 2019).

The pattern of arrested development in adolescents with
ASD is, as in our studies, not evident across all tasks. A meta-
analysis examining sensitivity to biological motion indicated
that this social cognitive ability is impaired in individuals with
ASD; however, it also appears to improve more with age in
those with ASD, relative to their TD peers (Todorova et al.,
2019). Another meta-analysis indicated that there were group
differences between ASD and TD on motion processing, but
these deficits were stable across age and were not specific to
biological motion (and therefore not to social cognition). These
differences instead reflected decreased sensitivity to motion in
general (Van der Hallen et al., 2019).

Neuroimaging studies

Studies have long indicated that young children with ASD
display atypical developmental trajectories of brain maturation,
compared to TD children (Courchesne et al., 2001, 2003, 2007).
Aypical developmental mechanisms, distinct learning processes,
and unique experiences are all likely to alter the maturation of
brain function and structure in those with ASD. Even if the
endpoint is similar, the pattern of maturation has important
behavioral implications. Atypical trajectories of brain function
and structure during childhood and adolescence in ASD are
associated with clinical outcome in adulthood (Murphy et al.,
2011), and with autism symptomology (The EU-AIMS Leap
Group et al., 2020b).

Brain function
Activation during EF, decision making, and cognitive
control tasks

Several neuroimaging studies have assessed whether brain
function during EF and related tasks (with non-social stimuli)
differs between groups with ASD and TD groups. A meta-
analysis analyzed activation underlying three components
of EF, namely inhibition, updating, and switching, across
multiple neuroimaging studies. These authors used an activation
likelihood estimation (ALE) meta-analysis to examine how these

EF components overlap in individuals with ASD compared to
their peers with TD (7–57; Zhang et al., 2020). The foci of
activation underlying inhibition did not differ between children
and adolescents, with or without ASD. However, the foci did
differ between adults with ASD (who relied more on R inferior
frontal gyrus) and TD adults (who relied more on L medial
frontal gyrus). There were no reported group or age differences
in the analyses of regions underlying updating or switching.

Two cross-sectional studies examined whether activation
important for decision making differed between a group with
ASD and a matched TD group. These studies found that the
activation underlying both sustained attention (Murphy et al.,
2014) and temporal discounting (i.e., inhibition + planning;
Murphy et al., 2017) increased with age typically (Males, 11–
35). However, in both studies, the group with ASD did not
exhibit the increasing activation with age that was evident in the
TD group. The increasing activation with age in the TD group,
but not in the group with ASD, was evident in inferior and
middle frontal cortices and striato-thalamic regions during the
sustained attention task (Murphy et al., 2014) and ventromedial
frontal cortex and cerebellum during the temporal discounting
task (Murphy et al., 2017). There were also overall group
differences, with lower activation across the group with ASD—
compared to the TD group—during sustained attention in
prefrontal cortex (PFC), striato-thalamic, and lateral cerebellar
regions; and during the delay in temporal discounting in R
ventrolateral/dorsolateral PFC, ventromedial PFC, striatolimbic
regions, and cerebellum. On both tasks, the atypical maturation
of activation and the overall differences in activation in these
regions were associated with performance on the task, and with
clinical measures of symptoms related to ASD.

Activation during social cognitive tasks

Much of the neuroimaging work in ASD on social cognition
has focused on activation during face recognition and its well-
known neural substrates (Haxby et al., 2000), in particular the
fusiform face area (FFA) in ventral temporal lobe (Kanwisher
et al., 1997). FFA appears to be less active when viewing
individual faces in adults with ASD compared to TD adults,
under some circumstances (Schultz et al., 2000, 2003; Koshino
et al., 2008; Patriquin et al., 2016). However, FFA activation in
ASD may be relatively typical with familiar faces (Pierce et al.,
2004). The decreases in FFA activation in ASD may also be
mediated in part by atypical gaze patterns often described in
ASD during face perception or recognition (Hadjikhani et al.,
2004, 2007; Dalton et al., 2005). Less is known about whether
group differences between adults with and without ASD also
reflects that the maturation of FFA that occurs typically, with
activation increasing from childhood to adulthood (Scherf et al.,
2007; Golarai et al., 2007, 2010; O’Hearn et al., 2011b), does not
proceed typically in ASD. Studies suggest that the maturation
of FFA activation and connectivity that occurs typically from
adolescence to adulthood may be disrupted in individuals
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with ASD (Lynn et al., 2018; O’Hearn et al., 2020; see also
Scherf et al., 2010).

A representational similarity analysis (RSA; Kriegeskorte
et al., 2008), much like a multi-voxel pattern analyses
(MVPA), was used to examine activation during face and car
recognition on the CFMT. We assessed whether the patterns
of activation (the voxels above threshold during memorization
only) for distinct but within-category exemplars overlapped
more with age. The categories included faces (American or novel
Norwegian faces, analyzed separately; McKone et al., 2012) and
cars (O’Hearn et al., 2020). Activation patterns for within-
category exemplars did become more similar, with RSA scores
increasing from adolescence to adulthood, in the TD group.
The increased RSA score occurred in both the R (functionally-
defined) FFA, and in structurally defined regions of interest in
the L inferior frontal gyrus, bilateral temporoparietal junction,
L inferior temporal lobule, and R fusiform gyrus. In contrast,
the group with ASD displayed no changes in the RSA score
in the FFA or any of these structurally defined regions from
adolescence to adulthood. This change in the TD group but
not in the group with ASD resulted in group differences by
adulthood. In addition, RSA within-category score in the FFA,
collected when memorizing exemplars, was positively correlated
with subsequent recognition performance during test trials in
both groups. This result is consistent with previous results
in memory studies, which indicated increased overlap in the
multi-voxel pattern analysis (MVPA) was associated with better
memory performance in TD adults (Xue et al., 2010).

As part of the Longitudinal European Autism Project
(LEAP), individuals with ASD and TD peers watched
shapes move in either animated or non-animated manners.
While there were robust effects of task type (animate vs.
inanimate), there were no effects of age or diagnosis on
functional activation in regions underlying social reasoning,
similar to their behavioral results (ages 6–3) (see section
“Behavioral studies of social cognition and communication,”
p. 5, The EU-AIMS Leap Group et al., 2020a).

Connectivity during social cognitive tasks

A number of studies have examined the functional
connectivity underlying face recognition in groups with ASD
compared to TD groups, across both children and adults
(Just et al., 2012; Supekar et al., 2013). These early studies
suggested that connectivity was atypical in those with ASD.
A connectivity study from our group examined task-based
functional connectivity between the functionally-defined FFA
region of interest and the rest of the brain during face and
car recognition (Lynn et al., 2018). During face recognition
only, analyses of FFA connectivity resulted in a significant
interaction between group and age, in connectivity from R FFA
to R dorsal striatum/temporoparietal junction, L dorsal anterior
cingulate cortex, and thalamus—and from L FFA to R dorsal
striatum. This interaction resulted from underconnectivity in

children with ASD becoming overconnectivity in adults with
ASD, compared to their TD peers. During face and car
recognition, analyses revealed a similar pattern of atypical age-
related changes in FFA connectivity to the amygdala in ASD,
with underconnectivity in children and overconnectivity in
adults compared to the TD group. Mamashli and colleagues
also used a face (and house) processing paradigm. They have
previously reported reduced FFA connectivity to striatal and
superior temporal regions in adolescents and young adults with
ASD (14–21), compared to their peers with TD (Khan et al.,
2013). More recently, they did the same task with younger
children with and without ASD (7–13). In this study, there were
no group differences between the TD group and the group with
ASD in FFA connectivity. This suggests that FFA connectivity
becomes more atypical with age in ASD (Mamashli et al., 2018).

Connectivity during rest

Resting state functional connectivity has become a popular
method for examining connectivity without the confounds (or
the advantages) of task-based studies, such as different levels of
performance and distinct baselines between groups. Our group
explored resting-state functional connectivity from structurally
defined striatal ROIs to the whole brain (Padmanabhan et al.,
2013). These analyses indicated that connectivity increased with
age in those with ASD and decreased with age in their TD
peers. This pattern occured in the connections between the
striatum (caudate, putamen) and posterior temporal regions
(e.g., fusiform gyrus, inferior and superior temporal gyri;
also from ventral striatum to anterior aspects of cerebellum).
Children with ASD displayed decreased connectivity compared
to TD children, but this difference was reversed by adulthood,
leading to significantly increased connectivity in adults with
ASD compared to TD adults.

Other papers have examined already established networks
that develop into adulthood, and are known to differ in
developmental disorders. The networks examined typically are
often those important for EF and cognitive control (Fair et al.,
2009, 2012; Dosenbach et al., 2010; Grayson and Fair, 2017).
To examine how age-related changes in functional connectivity
during rest differ between TD groups and those with ASD,
a selective review analyzed resting-state functional connectivity
in cross-sectional studies. This review reported that connectivity
within and between the salience, default mode, and central
executive networks develops differently in ASD compared to
TD groups, potentially affecting cognitive control in those with
ASD (Solomon et al., 2017). A longitudinal study indicated
that, while TD individuals displayed increased segregation
between these three networks over about three years (initial
age 11–14), individuals with ASD did not exhibit increased
segregation between these networks with age during this time
frame, reflecting a lack of maturation in young adolescents
with ASD (Lawrence et al., 2019). Finally, another longitudinal
study reported important correlates of functional connectivity
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measures in the salience network, default-mode network,
and frontoparietal control network (i.e., central executive).
Connectivity of these networks predicted changes in autistic
traits and adaptive behavior approximately 2 years later in those
with ASD (Plitt et al., 2015).

Brain structure
Gray matter thickness

Gray matter thickness currently provides a particularly
robust measure of adolescent development in brain structure.
Thus, this measure may be particularly sensitive to differences
between TD adolescents and adolescents with ASD (Wallace
et al., 2015; Tamnes et al., 2017). Changes in gray matter
thickness in temporal, frontal and parietal regions peak during
adolescence (Gogtay et al., 2004; Gogtay and Thompson, 2010).
For these reasons, other papers have argued that it is misleading
to collapse across a range of ages when examining group
differences (ASD vs. TD) in gray matter thickness (Greimel et al.,
2013; Lin et al., 2015).

In TD individuals, the pattern of gray matter maturation
is altered by many factors including IQ, gender and stress
(Sowell et al., 2004; Shaw et al., 2006, 2020). In those with ASD,
the pattern of maturation is also altered by IQ and gender,
but these alterations differ from the changes in TD groups
(Misaki et al., 2012; Wallace et al., 2013; Mrc Aims Consortium
et al., 2020; Yankowitz et al., 2020). Examining developmental
differences is further complicated because the pattern of gray
matter maturation appears to be more idiosyncratic in those
with ASD than in TD peers (Zabihi et al., 2019), potentially
reflecting subtypes of ASD (Rommelse et al., 2017; van Rooij
et al., 2018; The EU-AIMS Leap Group et al., 2020c).

Group differences in the pattern of gray matter thinning
between individuals with ASD and their TD peers vary across
regions, and are most notable in the frontal and temporal
regions that undergo a prolonged typical trajectory (Boedhoe
et al., 2020; Lukito et al., 2020). These group differences can also
change direction with age, with thicker cortex in children with
ASD becoming thinner cortex in adults with ASD, relative to
each group of TD peers (Prigge et al., 2021; Yankowitz et al.,
2021; but see Riddle et al., 2017). Such results are consistent
with a cross-sectional study that revealed accelerated age-related
cortical thinning in L temporal regions in those with ASD,
compared to matched TD sample (12–24; Wallace et al., 2010).
This work was followed by a longitudinal study indicating that
cortical thinning was accelerated in both temporal and parietal
cortices during adolescence in ASD compared to TD peers (14–
24; Wallace et al., 2015). In contrast, The EU-AIMS Leap Group
et al. (2020b) found no group differences in voxel-based analyses
of gray matter thickness between groups with ASD and TD
groups. However, this analysis, did not directly examine age and
covaried or regressed out age (6–30), IQ, and a number of other
factors. In contrast, ICA analysis resulted in interesting overall
group differences in this study.

Trajectories of gray matter thinning from the large
ENIGMA dataset indicate that the group differences between
individuals with ASD and their TD peers (2–64) are greatest
during adolescence. However, these changing group differences
continue into adulthood. By adulthood, the superior frontal
cortex is thicker and the temporal pole is thinner in those
with ASD compared to TD adults (van Rooij et al., 2018).
Young adults with ASD (18–24) also exhibited accelerated gray
matter thinning, primarily in L temporal lobes, compared to
TD adults. In this study, gray matter was thicker in the frontal
regions underlying EF and higher-order cognition, and thinner
in temporal and nearby parietal regions (supramarginal gyrus)
related to social cognition and interaction in young adults with
ASD compared to TD peers (Braden and Riecken, 2019). This
result is consistent with those from a cross-disorder meta-
analysis, again from the Enigma group. This analysis reported
that, in adulthood, frontal cortices are thicker in groups with
ASD compared not only to TD group but also to groups with
attention deficit hyperactivity disorder (ADHD) or obsessive-
compulsive disorder (OCD) (Boedhoe et al., 2020).

White matter integrity

Diffusion Weighted Imaging (DWI) examines the
“integrity” of white matter tracts by assessing how water
diffuses along the axons that form the tracts. Increased integrity
is measured by increased fractional anisotropy (FA; water
diffusion along the white matter tract) and decreased radial
diffusivity (RD; water diffusion orthogonal to the white matter
tract), providing a measure of efficiency and a proxy assessment
of myelination. White matter integrity appears to increase
linearly throughout childhood and adolescence, peaking during
adulthood in a tract specific manner, and then declining later
in life in TD individuals (Westlye et al., 2010). The white
matter tracts that mature late include the uncinate fasciculus
(temporal to orbitofrontal), the superior longitudinal fasciculus
(temporal to inferior frontal), and the corpus callosum (across
hemispheres; Asato et al., 2010).

The trajectory of white matter maturation is unclear in
those with ASD. Overall, white matter integrity is most often
reported to be reduced in samples with ASD compared to TD
peers (Solomon et al., 2017). Not surprisingly, differences in
ASD are most evident in late maturing tracts (e.g., uncinate
fasciculus and superior longitudinal fasciculus, which connect
the temporal and frontal cortices). However, collapsing across
age in analyses of white matter integrity may distort the
results, as group differences again appear to change with
age (Karahanoğlu et al., 2018). While white matter integrity
may increase in a linear fashion into adulthood in TD
individuals, one study indicates the maturational trajectory of
white matter into adulthood is essentially flat in those with
ASD (Karahanoğlu et al., 2018). However, this result contradicts
results from Thompson and colleagues, who found that white
matter integrity increases with age in both those with ASD
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and their TD peers, and this relationship was significantly
stronger in those with ASD. They report that white matter
maturation is delayed in children with ASD, but then it catches
up, becoming more similar to TD children during adolescence
(Thompson et al., 2020).

Discussion

Differences between groups with and without ASD can
vary based on the age of the participants. Thus, focusing
on developmental change and brain maturation is often
critical for accurately characterizing samples with ASD.
This review describes how developmental changes are
often arrested or atypical during adolescence and early
adulthood in individuals with ASD, compared to the continued
developmental improvement often evident in their TD peers.
This pattern was reported on measures of daily living skills, EF,
social cognition and communication, emotional recognition,
and emotional self-awareness. Skill in these domains is critical
during the adolescent transition, and atypical adolescent
development is likely to undermine adult outcomes in ASD.

An atypical trajectory in adolescents with ASD compared
to TD peers is also apparent in neuroimaging studies of
brain activation, connectivity, and structure. Atypical brain
maturation in those with ASD has been reported in functional
activation and connectivity during decision-making, EF, and
social cognitive tasks; functional connectivity during rest; and
brain structure, in particular gray matter thickness and white
matter integrity. Differences in these neuroimaging measures
between groups with and without ASD were most often
evident in the temporal, frontal, and striatal regions, and the
connections between these regions. The pattern of gray matter
maturation in those with ASD was distinct from the pattern
in TD individuals well into adulthood, and were also unique
compared to samples with other developmental disorders
(Boedhoe et al., 2020).

A better understanding of how and why differences that
characterize ASD change with age will clarify the developmental
mechanisms altered in ASD. In addition, information on the
association between distinct behavioral trajectories and atypical
brain maturation in those with ASD, and how those associations
differ in TD individuals, will provide insight into whether
individuals with ASD are compensating for their differences in
particular ways (e.g., using more prefrontal cortex with age to
process social scenes) as well as how behavioral development
and brain maturation interact over time and development. If
not maturing typically, do the differences in behavioral skills and
associated brain maturation become progressively more atypical
into adulthood in those with ASD?

This paper highlights the need to thoroughly understand
the interconnected trajectories of behavioral development and
brain maturation, including the “TD” trajectory, before making

conclusions about differences in developmental disorders. The
TD trajectory for most tasks is not well-delineated. It may be
longest for important social tasks, such as face and emotion
recognition (Germine et al., 2011; Lozier et al., 2014). This
prolonged typical development of social skills is consistent with
evidence that brain structure in temporal and frontal lobes is
the last to mature (Gogtay et al., 2004; Asato et al., 2010).
TD individuals may become able to rapidly interpret social
information during adolescence, as they become increasingly
reliant on global (vs. local) visual processing to interpret
complex scenes (Kovacs, 2000; Shore et al., 2006; Scherf et al.,
2009). Because of this increased reliance on global processing
with age, differences may emerge during adolescence between
TD individuals and peers with ASD, who are often characterized
as focusing on processing the “local” features within a scene
(Dakin and Frith, 2005; Mottron et al., 2006). Thus, visuospatial
abilities in ASD may be relatively typical early in childhood,
compared to TD individuals, prior to the maturation of global
processing strategies that support improved performance in
adulthood typically (Scherf et al., 2008; O’Hearn et al., 2013).
Individuals with ASD may exhibit a lack of development in
social skills during adolescence for multiple related reasons,
including a lack of global processing and/or attention to social
stimuli (Wagner et al., 2018), as well as a lack of the relevant
experiences and/or disrupted acquisition of social expertise
during adolescence.

ASD is likely to change how development itself works.
Developmentalists have long examined how innate skills
interact with experience, and how this interaction leads to the
emergence of further capabilities. Greenough et al. (1987) did
early work on experience-expectant and experience-dependent
visual plasticity. Both of these developmental mechanisms
are likely to be impacted by ASD. Experience-expectant
mechanisms are adapted for input that is experienced by almost
every individual, and thus may have a more “hard-wired” neural
architecture that is sensitive within a specific developmental
window (Andersen, 2003; McLaughlin and Gabard-Durnam,
2022). An example of this type of plasticity is evident in
children born with congenital cataracts that later have them
removed. These children acquire many visual abilities when
the cataracts are removed but still struggle with the fine-
grain discrimination needed for face recognition (Maurer et al.,
2007). It has been suggested that children with ASD may
display similar difficulties, due to a lack of attention to faces
early in development (Chevallier et al., 2012; Wagner et al.,
2018). In contrast, experience-dependent mechanisms allows
mammals to adjust to their individual experiences over time,
potentially through the generation of novel patterns of synaptic
connections. This type of plasticity may lead to differences in the
characteristics of ASD across cultures. Much like age, cultural
differences are also likely to contribute to the contradictory
results in the literature on visual differences in ASD. Koh
and Milne (2012) report cross-cultural differences between
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individuals with ASD in the UK and those in Singapore. The
often-reported focus on features or individual elements in
ASD (i.e., weak central coherence or field-independence) was
evident in the sample from the UK but not in the sample from
Singapore.

More work is needed to identify if the atypical adolescent
development in ASD reflects “sleeper effects” or experience-
expectant development that is not getting the appropriate input
at the correct time (Maurer et al., 2007); systematically different
adolescent experiences in those with ASD or experience-
dependent development (Orsmond et al., 2013); the interaction
of these two types of development (Nelson, 2001); or some other
developmental mechanism. Despite these continuing questions
focusing on age and development will provide much needed
insight into the inconsistent literature on ASD and, more
importantly, the mechanisms that result in atypical development
in individuals with ASD into adulthood. This paper underscores
the need to directly examine age and/or developmental stage
in almost all studies of ASD. We may need to understand
additional factors like culture or country and etiology before
making generalizations about differences in behavior or brain
function/structure in ASD. This is a daunting task and highlights
the need for attempted replication of results across samples,
which is clearly critical to the study of ASD but underutilized.
Further developmental research will provide insight into the
developmental mechanisms that differ in ASD, and which
mechanisms contribute to the poor outcomes evident in many
adults with ASD.
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