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Many visual attention models have been presented to obtain the saliency

of a scene, i.e., the visually significant parts of a scene. However, some

mechanisms are still not taken into account in these models, and the models

do not fit the human data accurately. These mechanisms include which visual

features are informative enough to be incorporated into the model, how the

conspicuity of di�erent features and scales of an imagemay integrate to obtain

the saliency map of the image, and how the structure of an image a�ects

the strategy of our attention system. We integrate such mechanisms in the

presented model more e�ciently compared to previous models. First, besides

low-level features commonly employed in state-of-the-art models, we also

apply medium-level features as the combination of orientations and colors

based on the visual system behavior. Second, we use a variable number of

center-surround di�erencemaps instead of the fixed number used in the other

models, suggesting that human visual attention operates di�erently for diverse

imageswith di�erent structures. Third, we integrate the information of di�erent

scales and di�erent features based on their weighted sum, defining theweights

according to each component’s contribution, and presenting both the local

and global saliency of the image. To test the model’s performance in fitting

human data, we compared it to other models using the CAT2000 dataset and

the Area Under Curve (AUC) metric. Our results show that the model has high

performance compared to the othermodels (AUC= 0.79 and sAUC= 0.58) and

suggest that the proposed mechanisms can be applied to the existing models

to improve them.

KEYWORDS

visual attention, saliency model, medium-level features, center-surround di�erence

map, eye fixations

Introduction

The brain uses attention mechanisms to process a massive amount

of visual information, selecting the significant items while ignoring the

unimportant ones (Carrasco, 2011). Human visual attention acts based on two

mechanisms of bottom-up and top-down interacting through various brain areas
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(Doricchi et al., 2010; Dehghani et al., 2020). Bottom-up

attention functions in an involuntary and fast way based on

the psychophysical properties of the scene, while top-down

attention functions in a voluntary and slow way based on pre-

defined goals (Connor et al., 2004).

Many computational models have been presented for visual

attention. Few have modeled top-down visual attention (Deco

and Zihl, 2001; Denison et al., 2021; Novin et al., 2021), while

most of them have modeled bottom-up visual attention, as its

mechanisms are better understood (Zhang et al., 2008). Visual

attention models that aim to obtain the saliency of a scene are

called saliency models. Saliency refers to how some parts of a

scene stand out compared to their surroundings in our visual

perception (Borji and Itti, 2013). Saliency models are typically

evaluated based on how well they can predict human attentional

gaze while viewing different images (Krasovskaya andMacInnes,

2019; Ullah et al., 2020).

Many different approaches have been proposed for saliency

detection. Some of them operate based on objects’ information

in the image (Liu et al., 2010). The Bayesian-based models

combine the prior constraints with scene information in a

probabilistic way to find the rare features (Zhang et al., 2008).

Some models determine the most informative parts of the

scene as salient (Bruce and Tsotsos, 2005). The frequency-based

models determine the image regions with unique frequencies as

salient (Hou and Zhang, 2007). The other category is learning-

based models that train the model with human data (Judd et al.,

2009).

Recently, many saliency models have focused on using

learning algorithms. Although learning algorithms have

significantly improved the performance of saliency models

(Kummerer et al., 2017), they operate as a black box rather

than including particular mechanisms to address the behavior

of visual attention. In addition, they usually require many

data to train the model. Here, we present a saliency model to

investigate some of the mechanisms of bottom-up attention

behavior. The missing understanding of the mechanisms of

bottom-up attention and decreasing focus on investigating these

mechanisms motivated us to do this study.

There are still open problems in the bottom-up aspect of the

saliencymodels, addressed in recent studies (Zhang and Sclaroff,

2016; Ayoub et al., 2018; Wang et al., 2018; Molin et al., 2021).

These problems include determining the appropriate features

to apply (Kummerer et al., 2017; Narayanaswamy et al., 2020),

establishing center-surround differences in the image (Zhang

and Sclaroff, 2016; Ayoub et al., 2018), and integrating multiple

features and scales (Jian et al., 2019; Narayanaswamy et al., 2020)

to obtain salient areas in the image.

Here, we make some improvements based on the existing

knowledge about the visual system. (1) We investigate some

missing features to be considered. (2) How can we integrate the

image information better for creating the saliency map. (3) How

can we improve the mechanism of calculating center-surround

differences in an image by adapting it to the image structure. In

the following, we review previous studies in line with our focus

on these improvements.

The rest of our paper is structured as follows. In Section

Related study, we review the related studies and end with the

contributions of our model. Afterward, in Section Methods,

we explain our model. In Section Results, we show the results

and compare the model’s performance with other models. In

Section Discussion, we discuss the results. Finally, in Section

Conclusion, we make conclusions.

Related study

Itti’s base model of visual attention

The base model of saliency was presented by Itti et al.

(1998), commonly known as the Itti model. It was known as

a pioneer and benchmark model because it is based mainly on

the behavior of the human early visual system. The Itti model

predicts the saliencymap by applying the center-surround (C–S)

mechanism to three features of intensity, color, and orientation

that are known to be critical low-level features in bottom-up

attention (Wolfe and Horowitz, 2004; Frintrop et al., 2015). The

C–S difference maps between different scales are calculated for

each feature map to simulate visual system behavior, which is

attracted by areas that are more distinct from their surroundings

(Casagrande and Norton, 1991). Then, the C–S difference maps

are combined across various scales and features to obtain the

saliency map, which is a topographic representation of saliency

for each pixel in an image.

Later, manymodels made improvements to different steps of

the base model of Itti (Borji and Itti, 2013). In the following, we

review some of these studies.

Decomposing images into multi scales
using wavelets

In most models, the image is decomposed to multiple scales

using the classic Gaussian filter, while here, we apply wavelet-

based decomposition. Recently, using the wavelet transform

(WT) in saliency models has been shown to be beneficial

(Murray et al., 2011; Imamoglu et al., 2013; Ma et al., 2015).

WT has the advantage of simultaneously providing spatial and

frequency information at each image scale (Murray et al., 2011).

Also, it extracts oriented details of the image in horizontal,

vertical, and diagonal dimensions at each scale (Imamoglu et al.,

2013). WT is a powerful tool for spatial-frequency (Antonini

et al., 1992) and time-frequency analysis (Sadjadi et al., 2021).

In a spatial-frequency analysis, WT decomposes the image

into multiple levels by iteratively performing horizontal and,
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subsequently, vertical sub-sampling on it through a set of filters

(Antonini et al., 1992).

Murray et al. (2011) model the center-surround effect based

on contrast energy ratios at the central and surrounding regions

using WT. Then they weigh the scales of the wavelet pyramid

by a contrast sensitivity function (CSF). Finally, they obtain the

saliency map by combining the inverse WT of the weighted

maps. In Murray et al. (2011), the computation of the saliency

map is mainly based on local contrasts in the image. Imamoglu

et al. (2013) obtained the feature maps by applying WT until the

coarsest possible level. Their model obtains the general saliency

map by modulating the locations’ local saliency with their global

saliency. Abkenar and Ahmad (2016) proposed a saliency model

according to the wavelet coefficients calculated for superpixels to

make the model applicable to more complex images.

Using multi-scale features to create C–S
di�erence maps

The experiment of Bonnar et al. (2002) indicates that the

perceived information of an image can be present at different

scales. Hence, integration of the information of different scales

is needed to obtain the final saliency. The question is how many

different scales of C–S difference maps we need to integrate.

Previous models have used different numbers, and no evaluation

has been done on what can be a proper number to choose.

The base model of Itti et al. (1998) employs 6 C–S difference

maps created for low-level features. Zhao and Koch (2011) use

a similar model to Itti’s, adding the face feature. In Zhang et al.

(2008), Goferman et al. (2012), and Ma et al. (2013), four scales

of feature maps are used. The authors Kruthiventi et al. (2017)

and Qi et al. (2019) proposed a multi-scale convolutional neural

network (CNN), where each CNN is trained to obtain the salient

locations at a particular scale. Vig et al. (2014) combine various

models to take advantage of each one. The authors discuss that

one of the factors that makes the models different is the scale on

which they perform.

In contrast to the common strategy of using a fixed number

of scales, we discuss that images with different structures may

require a different number of scales to present the saliency of

objects in the image.

Integration of information to create the
saliency map

Conventionally, in many models, the saliency map is

obtained by linearly combining different scales and features

(like Itti et al., 1998; Borji, 2012; Goferman et al., 2012;

Imamoglu et al., 2013; Wei and Luo, 2015; Zeng et al., 2015).

The objects produce different amounts of saliency at different

scales, depending on their size, details, etc. Similarly, different

features are not equally relevant to describe an object’s saliency.

Therefore, a linear combination of different scales and features

may not produce results fitting to human data.

Some models made improvements by applying different

methods than linear combinations. Itti and Koch (2001)

compared four different methods for normalizing the feature

maps based on their distributions. Murray et al. (2011) weigh the

scales using the contrast sensitivity function proposed by Otazu

et al. (2010) and fitting it to psychophysical data. They obtain the

final saliencymap by combining the Euclidean norm of themaps

of different channels. Narayanaswamy et al. (2020) prioritize the

feature maps at multiple levels based on the 2D entropy of the

maps. Then they calculate the model score for several channel

combinations to find the informative channels. Zhao and Koch

(2011) set the weights of featuremaps based on learning different

datasets using the least square method. Borji et al. (2011) use

an evolutionary optimization method to set the weights of the

scales and feature maps so that they lead to maximum scores

and minimum processing costs. Singh et al. (2020), in their

optimization method, define an objective to increase the activity

in the saliencymap at the location of a salient object and decrease

the activity in the background.

Here, we make some improvements to previous models

to consider some missing mechanisms. Our contributions are

listed below:

- We propose that in addition to the commonly used low-level

and high-level features, the medium-level features based on

the combination of orientations and colors play a role in

bottom-up attention.

- We apply a weighting method for across-scale and across-

feature integration, presenting the image’s local and global

saliency. Furthermore, we compare the weighting method for

integrating features’ conspicuity maps with the method of

calculating their maximum.

- We propose using a variable number of center-surround

difference maps depending on the structure of the images.

This is an important part of our contributions.

Methods

The block diagram of the proposed model is shown in

Figure 1. The input of the model is an RGB image. The model

consists of five layers, where each layer’s output is shown for a

sample image in the figure. In the first layer, the visual features

of the image are extracted. In the second layer, the scale pyramids

are acquired for each feature using wavelet transform. In the

third layer, the difference between the high and low-resolution

pyramid levels is calculated for each feature in the specified levels

to make the center-surround difference maps. In the fourth

layer, C–S difference maps are integrated for each feature to

create the feature’s conspicuity map. Finally, in the fifth layer,
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the conspicuity maps of different features are combined to make

the final saliency map. In the following, the computations within

the layers are described in detail.

Layer I–Extracting the features

First, the input RGB images are converted to CIELab color

space. Compared to RGB used in Itti’s base model and many

other models, CIELab is a perceptually uniform color space

(Frintrop, 2006; Borji, 2012). The CIELab color space consists

of L, a, and b channels, representing luminance, the green-red

opponent colors, and the blue-yellow opponent colors, similar to

human color perception (Frintrop, 2006; Borji, 2012; Ma et al.,

2013). The intensity, color, and orientation features are extracted

from the CIELab image.

The intensity feature is computed by Equation (1), where R,

G, and B, respectively, stand for the red, green, and blue channels

of the RGB image.

Intensity = 0.2989× R+ 0.5870× G+ 0.1140× B (1)

Since a and b channels in CIElab space are based on the

opponent color model of human visual cells (Frintrop, 2006),

we use a and b channels, respectively, as green-red and blue-

yellow color opponency features to account for this behavior of

visual cells.

A set of 8 orientation features is obtained by

convolving the intensity map in (1) with a set of eight

Gabor filters at the wavelength of 10 and orientations of
{

0, 1π8 , 2π
8 , 3π

8 , 4π
8 , 5π

8 , 6π
8 , 7π

8

}

.

Previous models have used various low-level and high-

level features, and it is still under debate how much and

in which image areas each of these two kinds of features

contribute to predicting the human gaze data (Kummerer et al.,

2017). Here, in addition to the low-level features mentioned

above, we consider the role of medium-level features. The

neurophysiological findings of Ts’o and Gilbert (1988) and the

study of Koene and Zhaoping (2007) provide evidence for the

existence of primary visual cells driven by saliency according

to the conjunction of color and orientation. Based on these

studies, we suggest that medium-level features based on the

combination of orientations and colors also play a role in

bottom-up visual attention. A set of eight medium-level features

is obtained by convolving the red-green channel with a set of

eight Gabor filters at the wavelength of 10 and orientations

of
{

0, 1π8 , 2π
8 , 3π

8 , 4π
8 , 5π

8 , 6π
8 , 7π

8

}

. Similarly, a set of eight

medium-level features is obtained by convolving the blue-yellow

channel with the same Gabor filters.

Layer II–Creating feature pyramids

In most models, the pyramids are built using Gaussian

decomposition. Here, according to the advantages described in

Section Decomposing images into multi scales using wavelets,

wavelet decomposition is applied. The wavelet function is

selected based on its properties: orthogonality, symmetry,

compact support, and regularity. The Daubechies and Symlet

wavelets are more frequently used in saliency studies (Jian et al.,

2015; Zhu et al., 2019). Here, we choose the Symlet wavelet

having more symmetry, which avoids phase distortion. We use

Symlet of order 4 (sym4), which has also been used in some other

studies (Zhang et al., 2011; Ghasemi et al., 2013). Using a sym4

wavelet, a pyramid of eight scales is obtained for each feature.

Layer III—Creating center-surround
di�erence maps

In order to obtain areas with high contrast compared to

their surroundings, the difference between different scales of the

image is calculated. For each feature pyramid, we calculate the

difference between the scales of low numbers and the scales of

two and three higher numbers. The lower scales with a high

resolution and the higher scales with a low resolution can be

considered respectively as the center and surround areas to

compute the center-surround difference maps for each feature,

as described in Equation (2).

Ic,s = |Ic ⊖ Is|

RGc,s = |RGc ⊖ RGs|

BYc,s = |BYc ⊖ BYs|

OI
c,s,θ =

∣

∣

∣
OI
c,θ ⊖ OI

s,θ

∣

∣

∣
(2)

ORG
c,s,θ =

∣

∣

∣
ORG
c,θ ⊖ ORG

s,θ

∣

∣

∣

OBY
c,s,θ =

∣

∣

∣
OBY
c,θ ⊖ OBY

s,θ

∣

∣

∣

Where c refers to the center part represented by lower scales

and s refers to the surrounding region represented by higher

scales. θ denotes the orientation of the Gabor function. The

symbol ⊖ denotes the C–S difference operator, where the high-

scale image is interpolated to the size of the low-scale image, and

then the two images are subtracted.

Most saliency models use a fixed number of C–S difference

maps. Here, we discuss that the human visual system does

not attend to the contrasts in the same way for all images,

containing different amounts of detailed and coarse content.

Hence, different numbers of contrast maps are required for

different images to model visual attention. Several factors, such

as the image’s crowdedness, the size of the objects, and the variety

of each feature, may determine the amount of detailed and

coarse content in an image that can affect the required number
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FIGURE 1

The proposed model structure. The outputs of each layer are shown for a sample image. RG and BY denote red-green and blue-yellow

channels, respectively. For more details, refer to the main text.
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TABLE 1 A detailed description of the calculations in equations 2–6

for obtaining C–S di�erence maps for each feature.

Approach Difference between scale

numbers c and s, calculated

for obtaining C–S maps

Using 4 contrast maps 1⊖3, 1⊖4, 2⊖4, 2⊖5

Using 6 contrast maps 1⊖3, 1⊖4, 2⊖4, 2⊖5, 3⊖5, 3⊖6

Using 10 contrast maps 1⊖3, 1⊖4, 2⊖4, 2⊖5, 3⊖5, 3⊖6, 4⊖6,

4⊖7, 5⊖7, 5⊖8

The symbol⊖ denotes the center-surround difference operator. In each row, the numbers

written before and after⊖ refer, respectively, to parameters c and s.

of contrast maps. We investigated our hypothesis by applying 4,

6, and 10 contrast maps for each feature. The numbers 4, 6, and

10 are chosen exemplary to refer to, respectively, a low, medium,

and a high number of contrast maps. We will compare all three

groups of results with the human data in the results section. For

the final results, we will compute the model’s performance based

on the maximum value between the results for using 4, 6, and 10

contrast maps. The values of c and s in Equation (2), denoting

the scale number, are defined as described in equations (3–6).

Using 4 contrast maps : cǫ {1, 2} (3)

Using 6 contrast maps : cǫ {1, 2, 3} (4)

Using 10 contrast maps : cǫ {1, 2, 3, 4, 5} (5)

The s values are defined as s = c+ δ, δǫ {2, 3} (6)

In the case of using cǫ {1, 2}, we would obtain 4 contrast

maps for each feature. Thus, it would yield 27× 4= 108 contrast

maps in total. In the same way, in the case of using cǫ {1, 2, 3}, we

would obtain 27× 6= 162 contrast maps in total, and in the case

of using cǫ {1, 2, 3, 4, 5}, we would obtain 27× 10= 270 contrast

maps in total. The results for a sample input image are shown in

the third layer of the model in Figure 1 by applying 6 contrast

maps as an example.

In Table 1, the calculations in equations 2–6 are detailed to

show how the difference between scale numbers is calculated in

the three approaches of using 4, 6, and 10 contrast maps.

As it is seen in equations (3–6) and Table 1, using each

number of C–S maps yields the contrast between specific scales.

The lower scales (close to scale 1) contain the fine (detailed)

content of the image, and the higher scales (close to scale 8)

contain the coarse (rough) content of the image. As a result, we

can say that using 4 C–S maps yields the contrasts calculated

as very detailed scales (1, 2) minus detailed scales (3) and also

minus middle-coarse (4, 5) scales. Using 6 C–S maps yields

the same contrasts as 4 C–S maps. In addition, it yields the

contrasts computed as detailed scales (3) minus middle-coarse

(5, 6) scales. Using 10 C–S maps yields the same contrasts as

6 C–S maps. In addition, it yields the contrasts computed as

middle-coarse scales (4, 5) minus coarse scales (7, 8).

Layer IV–Obtaining conspicuity maps

In this step, the contrast maps of each feature are normalized

between [0, 1], and then they are combined using a weighted

summation to construct the conspicuity map for the related

feature. Following the behavior of the visual system, we use the

contrast sensitivity function to calculate the weight of different

spatial information. The Contrast sensitivity function shows

how much the human visual system is sensitive to contrast

changes in a scene in different spatial frequencies. We define the

weight of each contrast map dependent on the importance of its

spatial frequency information. We use the widely accepted CSF

model proposed by Mannos and Sakrison (1974), described by

Equation (7), which is also used in some other saliency models

(Buzatu, 2012; Wang et al., 2018); however, they do not apply

it for weighting contrast maps. The normalized contrast maps

are transformed to the frequency domain by Fourier transform

(Brigham and Morrow, 1967). Then, the contrast sensitivity

function C
(

f
)

is calculated by Equation (7).

C
(

f
)

=
[

0.0499+ 0.2964× f
]

× exp
[

−
(

0.114× f
)1.1

]

(7)

Where f is the spatial frequency.

We obtain two conspicuity maps for each feature based on

its contrast maps’ global and local weighting. For the global

weighting, the weight of the normalized contrast map number

i [termed as ωi in Equation (8)] is calculated by averaging Ci(f )

over the map. Then, the weighted and normalized sum of the

contrast maps for a specific feature j is calculated to get the

conspicuity map for feature j [termed as Global conspicuityj in

Equation (9)].

ωi = mean
(

Ci
(

f
))

(8)

Global conspicuityj =

∑N
i=1

(

ωi × Contrast mapj,i

)

∑N
i=1 (ωi)

(9)

Where i refers to the index of the contrast map for a

specific feature, j refers to the index of the feature, and N =

4, 6, and 10, respectively, for the case of using 4, 6, and 10

contrast maps.

jǫ
{

I,RG,BY ,OI
θ ,O

RG
θ ,OBY

θ

}

,

θǫ

{

0,
1π

8
,
2π

8
,
3π

8
,
4π

8
,
5π

8
,
6π

8
,
7π

8

}

For the local weighting, the C
(

f
)

matrix is multiplied

pixel-wise in the associated normalized contrast map. Then

the weighted and normalized sum of the contrast maps for

Frontiers inHumanNeuroscience 06 frontiersin.org

https://doi.org/10.3389/fnhum.2022.862588
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Novin et al. 10.3389/fnhum.2022.862588

each feature is calculated to get its conspicuity map [termed as

Local conspicuityj in Equation (10)].

Local conspicuityj =

∑N
i=1

(

Ci
(

f
)

.Contrast mapj,i

)

∑N
i=1mean

(

Ci
(

f
))

(10)

The global and local conspicuity maps of each feature

are combined according to Equation (11) to yield its final

conspicuitymap. The weights α = 0.95 and β = 0.05 in Equation

(11) are set and optimized by trial and error to better fit the

results to the human data in MIT dataset provided in Judd

et al. (2009). The conspicuity maps for a sample input image are

shown in the fourth layer of the model in Figure 1 for the case of

applying six contrast maps as an example.

Conspicuityj = α × Global conspicuityj

+ β × Local conspicuityj (11)

Layer V–Obtaining saliency map

The saliency map represents the saliency degree at every

location of the image as the level of brightness in a grayscale

image. The final saliency map is obtained by combining the

conspicuity maps of different features. Here, we compare

four different methods for integrating various features to

find the best method among them. These four integration

methods that are described below were developed based on a

preliminary study testing 12 different variations of the presented

integration methods.

Four investigated methods for integrating
features

First method

In the first method, we obtain the saliency values by

calculating the maximum value among the conspicuity maps

of different features at each pixel using Equation (12). The

reasoning is that we use the values that have more potential

to make high conspicuity at each location. This strategy would

be a more pixel-wise and local strategy to predict human

attentional focus.

Sal map = Max
(

Conspicuityj
)

(12)

jǫ
{

I,RG,BY ,OI
θ ,O

RG
θ ,OBY

θ

}

,

θǫ

{

0,
1π

8
,
2π

8
,
3π

8
,
4π

8
,
5π

8
,
6π

8
,
7π

8

}

In Equation (12), the conspicuity maps of orientation

features of OI , ORG, and OBY are obtained by adding the

conspicuity maps of the associated feature for 8 orientations and

then scale normalizing between [0, 1].

Second method

In the second method, we combine the conspicuity maps

using a weighted summation. The weight of each conspicuity

map is defined based on the difference between the global

maximum and average of local maxima in the related map as

below. Thismethod is used in a similar way in some other studies

(Itti and Koch, 2001; Frintrop et al., 2007).

First, all conspicuity maps are normalized between [0, 1].

Second, we find the local maximum areas in each conspicuity

map j. Then we calculate the global maximum value (Maxj)

and the average value (meanj) among the local maxima except

Maxj. The weights of the conspicuity maps are calculated by

Equation (13).

wj =
∣

∣Maxj −meanj
∣

∣ (13)

Where wj is the weight of the conspicuity map of feature

j, and

jǫ
{

I,RG,BY ,OI
θ ,O

RG
θ ,OBY

θ

}

,

θǫ

{

0,
1π

8
,
2π

8
,
3π

8
,
4π

8
,
5π

8
,
6π

8
,
7π

8

}

The amount of difference between the global maximum

and averaged local maxima in Equation (13) represents the

amount of contrast that the related conspicuity map can make

to draw attention.

Third, the final saliency map, Sal map, is obtained by

Equation (14) as the weighted sum of the conspicuity maps of

various features.

Sal map =

∑

j

(

wj × Conspicuityj
)

∑

j

(

wj
) (14)

Third method

In the third method, we obtain the weights directly by

calculating the difference between the global maximum and the

local maxima, in contrast to the averaged local maxima used in

the secondmethod. Thus, the weights in the thirdmethod would

be as matrices and multiplied point-wise in the conspicuity

maps. The weights in the secondmethod rely more on the global

saliency that each conspicuity map can produce, and the weights

in the third method rely more on the local saliency of each

conspicuity map.

In the third method, we calculate the values of the

conspicuity map j at the location of local maxima to produce

the matrix LocalMaxj. The weights of the conspicuity maps are

calculated by Equation (15).

Wj =
∣

∣Maxj − LocalMaxj
∣

∣ (15)

WhereWj is the weight of the conspicuity map of feature j.
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The final saliency map, Sal map, is obtained by Equation

(16) as the weighted sum of the conspicuity maps of

different features.

Sal map =

∑

j

(

Wj.Conspicuityj
)

∑

j

(

Wj
) (16)

Fourth method

According to comparing the results of the second and

third methods, both methods had almost the same overall

performance for the MIT dataset. However, for different images,

one of the two methods performed slightly better than the other.

This indicates that depending on the structure of the image,

the global or local weighting of conspicuity maps may be more

efficient. Based on this, in the fourth method, we add linearly

the saliency maps obtained by means of the second and third

methods to incorporate the properties of both methods. The

results showed a little better performance for the fourth method

compared to the second and third methods.

We use the fourth method as the final approach for

combining different features based on weighted summation. The

saliency map for a sample input image is shown in the last

layer of the model in Figure 1 based on the fourth method for

obtaining the saliency map.

Furthermore, in the results section, we will compare the

results of the first method, which is based on maximizing the

conspicuity maps, with the fourth method, which is based on the

weighted summation of the maps. The comparison results show

that the weighting method leads to better results.

Di�erent versions of the model

We define three versions of our model to investigate the

effect of each improvement that we made.

Proposed model 1 refers to the version in that we used a

fixed number (6) of C–S difference maps for each feature, and

we did not apply the medium-level features. The model was

chosen to contain six C–S maps to be in line with the base model

of Itti et al. (1998). In this model version, we investigate the

effect of applying our approaches for integrating the information

of different scales (described in Section Layer IV–obtaining

conspicuity maps) and features (described in Section Layer V–

obtaining saliency map). This model version is considered as a

baseline to be compared with proposed model 2.

Proposed model 2 refers to the version in which we

extended proposed model 1 by applying the medium-level

features (described in Section Layer I–Extracting the features)

to investigate the effect of applying them. This model version is

considered as a baseline to be compared with proposed model 3.

Proposed model 3 refers to the full version of the model

in that we extended proposed model 2 by applying different

numbers of 4, 6, and 10 for the number of C–S difference

maps (described in Section Layer III–creating center-surround

difference maps), and we calculated the maximum score among

the scores of using 4, 6, and 10 maps. In this model version,

we investigate the effect of applying variable numbers for C–S

difference maps.

Dataset overview and evaluation metrics

We evaluated our model using the CAT2000 dataset (Borji

and Itti, 2015; Bylinskii et al., 2019), which includes 24 subjects’

eye tracking data on 2,000 images classified into 20 different

categories of 100 images. The images and fixation maps in the

dataset have a size of 1,080 × 1,920. We resize the images to

450 × 800. The CAT2000 dataset contains images of different

types, including art, cartoons, black white, indoor, outdoor, low

resolution, noisy, objects, and outdoor natural. This large variety

provides a proper way to validate the model’s ability to predict

human data related to images with different structures.

The resulting saliency maps were resized to the size of

data fixation maps (1,080 × 1,920). The model’s performance

in predicting human fixations was evaluated based on AUC

(Area Under Curve) metric (Bylinskii et al., 2019), which

shows the area under ROC (Receiver Operating Characteristic)

curve. The ROC curve plots the true positive rate vs. the false

positive rate based on comparing the model’s fixations to the

dataset fixations. A higher AUC denotes a higher performance.

According to previous studies that reviewed the models using

different evaluation metrics, AUC is the most common metric

(Kummerer et al., 2018; Bylinskii et al., 2019). Our goal is to

investigate the effect of improvements we made on the model.

For this purpose, we found the location-based metric of AUC

sufficient to evaluate the results considering that wewill compare

each improvedmodel version with its lower model version based

on this metric. In addition, to compare our model to the other

models, we also used the shuffled AUC (sAUC) metric (Bylinskii

et al., 2019). The sAUC is similar to AUCwith the difference that

for AUC, the negative set is selected uniformly at random from

the fixation map of the image, while, for sAUC, the negative set

is selected from fixation maps of the other images sampled from

the dataset. The sAUC is designed to penalize the models that

explicitly apply center bias (Zhang et al., 2008). Since some of

the to-be-compared models apply center bias to their results,

we used sAUC to compare the models better. We used the

AUC-Borji and sAUC algorithms presented in Borji et al. (2013).
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Results

Visualizing the results of the model on
sample images

In Figure 2, the saliency map results and the AUC scores

of the model for sample images from various categories are

shown to show the model’s performance for different image

structures and conditions. The results are obtained using the

fourth method of combining conspicuity maps described in

Section Layer V–obtaining saliency map.

Comparing the methods for integrating
conspicuity maps

Before comparing the model results to the other models,

we first compare the first and fourth methods of obtaining the

saliency map, described in Section Layer V–obtaining saliency

map as two different investigated approaches for integrating

conspicuity maps. The first method is based on calculating the

maximum of conspicuity maps, and the fourth method is based

on the weighted summation of the maps. The mean AUC score

calculated among all the images of the dataset was higher for

the fourth method (AUC = 0.75) compared to the first method

(AUC = 0.73). However, for some images, like the example

ones shown in Figure 3, the first method performed better, as

is seen in the saliency maps and the AUC scores. This shows

that, although weighting the maps generally performs better;

however, in some images, the conspicuity maps of particular

features may dominate the other features, and thus, calculating

the maximum of conspicuity maps can make better results for

these images.

For example, in Figure 3, in the image of the first row, the

edges stand out more than the other features, and therefore,

the first method of obtaining the saliency map has resulted in

a higher AUC score than the fourth method. In the image of the

second row, in specific areas of the image, the intensity or the

red-green feature is very bold compared to the other features,

and since the first method calculates the maximum of maps

over each area, it has gained a higher AUC score. Similarly, in

the image of the third row, in the specific areas of the image,

the red-green and edge features dominate the other features. In

the image of the fourth row, the image contains specific areas

of uniform structure, wherein each area, one of the features

is bolder compared to other features, making the first method

perform better than the fourth method. In the image of the

fifth row, the image belongs to the Pattern category, and the

pattern used has specific features like edges to be bolder than

the other features.

For the rest of the results in this section, the results of the

fourth method will be used.

Comparing di�erent versions of the
model to the other models

Many saliency models have been proposed to predict human

fixations (Borji and Itti, 2013; Borji et al., 2013; Borji, 2019). We

compare our model to several models that used the CAT2000

dataset like ours, and their results are publicly available (http://

saliency.mit.edu/results_cat2000.html). We use the metric of

AUC-Borji and sAUC (Borji et al., 2013) to compare our model

to the models shown in Figure 4, with AUC scores ranging

from low to highest reported scores. We use the IttiKoch model

(Walther and Koch, 2006) as an extension of the base model

of Itti et al. (1998), the Achanta model (Achanta et al., 2009)

as one of the most cited models in the frequency domain,

and the SUN saliency model (Zhang et al., 2008) and the Fast

and Efficient Saliency (FES) model (Tavakoli et al., 2011) as

two of the Bayesian-based models. We use the Murray model

(Murray et al., 2011) that uses wavelet transform to generate

scales like our model. We also use learning-based models,

including MSI-Net (Kroner et al., 2020) and the Judd model

(Judd et al., 2009). The models of Judd et al. (2009) and Vig

et al. (2014), and Zhang and Sclaroff (2016) have the highest

AUC score reported on the mentioned website for evaluation

on the CAT2000 dataset based on the AUC-Borji metric. Their

high AUC is due to setting their parameters according to

fixations on trained images. Figure 4 shows our model’s mean

scores among 20 categories in the dataset, compared to the

mentioned models.

In Figure 4, the scores of the three versions of the model

described in Section Different versions of the model are

compared to other models. In Table 2, the specifications and the

scores of the compared models and our model are described.

Figure 4 and Table 2 include the models that require no learning

as well as the learning-based ones. Our model belongs to non-

learning-based models.

Proposed model 1 refers to the version in that we used

a fixed number (6) of C–S difference maps, and we did not

apply the medium-level features. The AUC results in Figure 4

show that proposed model 1 has high performance (AUC =

0.73) in its related category of non-learning-based models.

This high performance indicates that the algorithms used for

integrating the information of different scales (described in

Section Layer IV–obtaining conspicuity maps) and different

features (described in Section Layer V–obtaining saliency

map) were efficient in making acceptable results to fit

human data.

Proposed model 1 is considered as a baseline to compare

to proposed model 2, in which we add medium-level features

(described in Section Layer I–extracting the features). The

AUC score shown in Figure 4 improved by 0.02 (AUC =

0.75) compared to the proposed model 1. The AUC increase

suggests that the medium-level features play a role in bottom-up

visual attention.
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Category Input image Saliency map with fixa"ons 

of subjects 

Area under ROC curve 

(AUC) 

Ac�on 

   

 

 

Art 

   

 

 

Black White 

   

 

 

 

Low Resolu�on 

   

 

 

 

Noisy 

   

FIGURE 2

Saliency map results and the AUC scores of the model for sample images of the CAT2000 dataset from various categories of Action, Art, Black

White, Low Resolution, and Noisy.

Proposed model 2 is considered as a baseline to compare

to proposed model 3, in which we add the approach of using

variable numbers of 4, 6, and 10 C–S difference maps. We

calculate the maximum AUC and sAUC score among the

AUC and sAUC scores using 4, 6, and 10 C–S difference

maps (described in Section Layer III–creating center-surround

difference maps). As is seen in Figure 4, applying variable

numbers for C–S difference maps has a considerable effect on

improving the AUC results of the model for 0.04 (AUC = 0.79).

This suggests that the human visual system may apply different

strategies for contrast maps for different images depending on

their contents. AUC increase points to better fitting to human

gaze data, and gaze is an indicator of human visual attention.

In other words, the results indicate a better fit for human

attentional behavior.

The results of using a variable number of
contrast maps

To make our proposal about using a variable number of C–S

difference maps more visible, in Figure 5, we compare the model

results between three cases of using 4, 6, and 10 C–S difference

maps for some sample images from the dataset. Referring to

the description in Section Layer III–creating center-surround

difference maps, if an image has mainly detailed content, using
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Category Input image Saliency map with fixa"ons 

of subjects – Method 4 

Saliency map with fixa"ons 

of subjects – Method 1 

Fractal 

 

  

 

 

 

 

AUC = 0.64 

 

 

 

 

 

AUC = 0.73 
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AUC = 0.57 

 

 

 

 

 

AUC = 0.66 
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AUC = 0.75 
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AUC = 0.62 

 

 

 

 

 

AUC = 0.70 
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AUC = 0.56 

 

 

 

 

 

AUC = 0.73 

FIGURE 3

Showing some out of the common images where the first method of obtaining the saliency map is better than the fourth method described in

Section Layer V-obtaining saliency map because the conspicuity maps of particular features dominate the other features. The results are shown

for the case of applying six center-surround di�erence maps for each feature.

4 C–S maps would probably lead to better performance than

6 or 10 C–S maps. If an image has detailed and middle-coarse

content, using 6 C–S maps would be better, and if an image

has detailed, middle-coarse and coarse content, using 10 C–S

maps would be better. We may say that the more big structures

an image has, the more coarse content it would have, and a

higher number of C–S maps would probably lead to better

performance. The edge density over the images may give us

a rough estimation of the detailed and coarse content of the

images. Figure 6 shows the results for edge detection of sample

images in Figure 5 as examples for the best number of 4, 6, and

10 for C–S difference maps. However, finding a direct relation

between the best number of C–S maps and the image content

is not straightforward because the image content cannot be

described by a single factor; but rather by several factors such as

edge densities, frequency content, histogram of intensities, the

number and the size of objects in the image, and image texture.

Based on the results in Figures 4, 5, we propose that finding

a mechanism to apply in the models to get information about

the image content and producing the C–S difference maps based

on the image content can make the models more efficient.

In connection with the factors mentioned above to describe
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FIGURE 4

Comparing the performance of our model to several models evaluated on the CAT2000 dataset based on (A) mean AUC score and (B) mean

sAUC score. For more details, refer to the main text.
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TABLE 2 Specifications of the models that were compared to our model in Figure 4, including the non-learning-based models and learning-based

ones.

Model name and

references

Features Number of

scales

Method of

integrating

scales

Method of integrating

features

Learning

data

AUC sAUC

IttiKoch (Walther and

Koch, 2006)

Low-level: intensity,

color, orientations

6 Linear summation Linear summation, and then

estimating the proto-object region

based on the salient locations

No 0.53 0.52

SUN saliency (Zhang

et al., 2008)

Low-level: intensity,

color

4 Data-Driven

Bayesian approach

Linear summation Yes 0.69 0.57

Achanta model

(Achanta et al., 2009)

Low-level: color,

luminance

The model is

frequency-tuned

– The difference between arithmetic

mean pixel value and Gaussian

blurred image is calculated for

various features

No 0.55 0.52

Judd model (Judd et al.,

2009)

Low-level: intensity,

color, orientations

Mid-level: horizon line

High-level: persons, faces

3 Data-Based

learning method

Data-Based learning method Yes 0.84 0.56

Murray model (Murray

et al., 2011)

Low-level: intensity,

color

Largest dimension

of image

– Euclidean norm of saliency maps

of different channels, where each

map is calculated based on

weighted coefficients of WT of the

image. The weights are defined

based on CSF

Yes (for setting

parameters of

the weights

defined by

contrast

0.70 0.59

FES (Tavakoli et al.,

2011)

Low-level:

CIELab values

3 Linear summation Bayesian approach Yes (for

approximating

probability

values in

Bayesian

approach)

0.76 0.54

MSI-Net (Kroner et al.,

2020)

High-level: image’s

semantic information

The scales are

obtained through

three convolutional

layers

Encoder-Decoder

approach

The feature maps are combined

through a convolutional neural

network (CNN)

Yes 0.82 0.59

Proposed model 1 Low-level: intensity,

color, orientations

6 Weighted

summation. The

weights are defined

based on CSF,

calculated locally

and globally

Weighted summation. The weights

are defined based on the difference

between the global maximum and

local maxima, calculated locally and

globally

No 0.73 0.54

Proposed model 2 Low-level: intensity,

color, orientations

Medium-level:

combination of colors

and orientations

6 Same as proposed

model 1

Same as proposed model 1 No 0.75 0.56

Proposed model 3 (full

version of our model)

Same as proposed model

2

Variable (4, 6, and

10)

Same as proposed

model 1 and 2

Same as proposed model 1 and 2 No 0.79 0.58
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FIGURE 5

Comparing the AUC results of the model between three di�erent cases of using 4, 6, and 10 C–S di�erence maps for some sample images from

the dataset. The results show that images with di�erent contents require a di�erent number of C–S di�erence maps to result in high

performance for the model.
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the image content, some approaches like frequency analysis,

calculating image crowdedness, object detection, and edge

detection can be investigated. Another approach that may be

useful is a hierarchical segmentation of the image to determine

the number of big and small structures in the image.

In Figure 7, the AUC results of the model for the 20

categories of the dataset are shown for the three cases of applying

4, 6, and 10 C–S difference maps. The AUC score is calculated in

each category by averaging the AUC scores for the 100 images of

the associated category for each case of using 4, 6, and 10 maps.

The model has the highest performance for the Sketch category,

probably because of the simpler structure of the images in this

category, and it has the lowest performance for the Satellite

category, probably because of the very low resolution and bad

quality of the images in this category. We use approximation

information of the wavelet transform of the image, and not the

detailed information of WT, while due to the very low quality of

the images in the satellite category, more detailed information of

the image is required to make a high performance by the model.

In each category, dependent on the overall content of the

images in that category, the mean AUC score for that category

may be higher for the case of applying 4, 6, or 10 C–S difference

maps. As discussed in the results of Figure 5, relating the best

number of C–S maps and the image content requires deeper

investigation. However, the results of some categories may be

interpreted based on their image types. For example, in the

LowResolution category, because of the images’ low resolution,

the images’ detailed content is blurred; thus, the salient areas

may be obtained mostly based on the coarse content of the

images. Therefore, using 10 C–S difference maps would lead to

better performance for most of the images in this category, and

a clearer difference is visible between the AUC results of using

10 C–S maps compared to 4 and 6 C–S maps. Similarly, in the

category Noisy, because of the presence of noise in the images,

and in the category Satellite, because of the images’ low quality,

the detailed content of the images cannot be detected easily.

Therefore, similar to the category LowResolution, using 10 C–S

maps would lead to better performance in these two categories.

Discussion

Recently, the focus of saliency models on investigating

bottom-up attention has decreased, while there are still

open questions about applying bottom-up mechanisms. These

questions include what features should be applied, how to obtain

the contrasting areas, and how to integrate the information

of different scales and features of the image. Here we present

a bottom-up saliency model to address these questions and

improve previous models. We present our improvements in

different versions of the model as proposed models 1, 2, and

3 and compare their performances to show the effect of each

improvement separately.

First, in proposed model 1, we integrate the information

of different scales (described in Section Layer IV–obtaining

conspicuity maps) and features (described in Section Layer V–

obtaining saliency map) based on their weighted sum. The

weight of contrast maps of different scales for a specific feature

depends on the importance of the spatial frequency information

of that map, which we calculate it using the contrast sensitivity

function. This function of the visual system is not considered in

so many models. The authors (Murray et al., 2011; Buzatu, 2012;

Wang et al., 2018) use this function in their model; however, they

do not apply it for weighting different scales of the feature maps.

In addition, we utilize both global and local weighting on the

contrast maps of the scales.

The weights of the conspicuity maps of different features

are defined based on a preliminary study testing 12 different

variations of the integrationmethods and applying four different

methods among them. Finally, we choose the method with the

best performance among these four methods. The weights are

defined based on the difference between the global maximum

and local maxima in the related conspicuity map. This weighting

method for features is applied in a similar way in some other

models (Itti and Koch, 2001; Frintrop et al., 2007). In contrast to

them, we calculate the weights of conspicuity maps to present

both the local and global contrast of an area. Comparing our

model 1 to other models (Figure 4, Table 2) based on AUC and

sAUC metrics suggests that the integration mechanisms applied

in the model perform better than other non-learning-based

models to make the model fit human data.

Furthermore, we compare our weighting method for

integrating the conspicuity maps of different features with the

method of calculating the maximum of conspicuity maps. The

comparison results show that overall, the mean AUC score for

the dataset images is higher for the weighting method than

for calculating the maximum of conspicuity maps. However, as

shown in the results section for some sample images (Figure 3),

in some images, the maximum method performs better than

the weighting method. This shows that, although the weighting

method leads to better overall performance, in some images,

particular features may be too salient compared to other features

in various areas of the image, and this overcoming saliency

causes calculating the maximum of conspicuity maps leads to

better results.

Second, in proposed model 2, we extend proposed

model 1 so that, in addition to the low-level features

commonly used in other models, we apply medium-level

features based on the combination of color features with

orientations (described in Section Layer I–extracting the

features). The increased performance of proposed model 2

compared to proposed model 1 (Figure 4) suggests that the

medium-level features also play a role in bottom-up visual

attention behavior.

Third, in proposed model 3, we extend proposed model 2

so that we apply a variable number of C–S difference maps

Frontiers inHumanNeuroscience 15 frontiersin.org

https://doi.org/10.3389/fnhum.2022.862588
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Novin et al. 10.3389/fnhum.2022.862588

    Image             Edges of intensity Channel 

Best 

number 

 of C-S 

maps 

  

 

 

 

 

 
10 

 

 

 

 

 

 

 

 

6 

 

 

 

 

 

 

 

4 

FIGURE 6

The results for edge detection of sample images of Figure 5. The images are shown as examples for the best number of 4, 6, and 10 for C–S

di�erence maps. The edge detection shows a rough estimation of the detailed and coarse content of the images. The edges are obtained for the

intensity channel of the images.

instead of a fixed number as common in othermodels (described

in Section Layer III–creating center-surround difference maps).

We discuss that human visual attention does not act the same

for different images with different contents. To investigate this

idea, we implemented the model using 4, 6, and 10 contrast

maps for each feature. The chosen numbers refer, respectively,

to the low, medium, and a high number of contrast maps. We

calculated the AUC score by computing the maximum score

among the scores of using 4, 6, and 10 C–S difference maps. The

considerably increased performance (AUC by 0.04 and sAUC

by 0.02) of proposed model 3 compared to proposed model 2

in Figure 4 suggests that our proposal about applying a variable

number of contrast maps can make the model more fitting to

human data. This suggests that human visual attention may not

act the same for different types of images, and the proper number

of contrast maps for each image depends on the amount of

detailed and coarse content in the image, as is shown for some

sample images of the dataset in Figure 5. In addition, comparing

the results of applying different numbers of contrast maps for

all 20 categories of the CAT2000 dataset (Figure 7) confirmed

our proposal. The center-surround difference mechanism is

the base and essential mechanism of visual attention, and this

improvement was the most important improvement made in

our model.

Frontiers inHumanNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnhum.2022.862588
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Novin et al. 10.3389/fnhum.2022.862588

  

  

  

  

  

  

  

  

  

  

  

  

0. 5

0. 55

0. 6

0. 65

0. 7

0. 75

0. 8

0. 85

0. 9

c
u

A

using 4 C-S maps

using 6 C-S maps

using 10 C-S maps

 

  

 

 

 

 

 

n
oitc

A

A
ff

e
ct

iv
e

A
rt e ti

h
W

kc
al

B

C
a

rt
o

o
n

F
ra

ct
a

l

In
d

o
o

r

In
v

e
rt

e
d

Ju
m

b
le

d

L
in

e
D

ra
w

in
g

L
o

w
R

e
so

lu
ti

o
n

N
o

is
y

O
b

je
ct

O
u

td
o

o
rM

a
n

M
a

d
e

O
u

td
o

o
rN

a
tu

ra
l

P
a

tt
e

rn

R
a

n
d

o
m

S
a

te
ll

it
e

S
k

e
tc

h

S
o

ci
a

l

FIGURE 7

The mean AUC scores of the model for the 20 categories of the CAT2000 dataset for the three cases of applying 4, 6, and 10 C–S di�erence

maps in the model.

We propose to apply a mechanism in the model to get

information about the image content and adapt the number

of C–S difference maps to the image content, as discussed in

Section The results of using a variable number of contrast maps.

This adaptation mechanism can be used in the saliency models

to improve their performances. Furthermore, the adaptation

mechanism would minimize the additional computations due

to applying a variable number of C–S maps. The detailed and

coarse content of the images may be roughly estimated by the

images’ edge map, as shown in Figure 6 for some sample images.

However, further investigation is required to find the factors

that can be used to describe image content and be relative

to the best number of C–S maps. The factors such as edge

densities, the ratio of low and high frequencies in the image,

histogram of intensities, image crowdedness, and image texture

could be investigated. Moreover, hierarchical segmentation can

be applied to the image to extract the amount of big and small

structures to indicate the amount of detailed and coarse content

in the image. The analysis of image content could be improved

even further to make it more adaptive in the way that a different

number of C–S maps is applied to distinct image regions with

different structures. Finding an analyzing method to adapt the

number of C–S maps based on the image content is the scope of

future study.

We validated our model’s performance to describe human

data by applying it to the CAT2000 dataset and measuring its

performance based on the AUC and sAUC metrics. Comparing

the results of our model to the other models that used the

same dataset (Figure 4) shows that our model has a high

performance in the category of non-learning-basedmodels, with

the AUC of 0.73, 0.75, and 0.79, and sAUC of 0.54, 0.56, 0.58,

respectively, for model versions 1, 2, and full version 3. The

high performances of saliencymodels have been reportedmostly

for learning-based methods. The high performance of these

learning-based models is related to the fact that they predict the

fixations on the images by setting their parameters according to

fixations on trained images. These learning-based models look

promising; however, they usually require large human datasets

to perform well. Also, learning-based methods may not be

perfect for showing attention mechanisms. Usually, they show

us what would be attended by the visual system but not how

or why it may be attended. The advantage of our model is

that it shows high performance according to AUC and sAUC

metrics based on the applied mechanisms, and it does not have

the complexity of learning-based methods that need to learn

human data. We suggest that our proposed mechanisms can be

added to the learning-basedmodels tomake them achieve higher

performance and fit better with human data.

Conclusion

We proposed a saliency model that addresses some

mechanisms of visual attention behavior that other models do

not take into account. We defined three versions of the model
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to investigate the effect of each improvement separately. As a

first improvement, in proposed model 1, we applied a weighted

summation method for integrating the information of different

scales and different features, defining the weights according

to the contribution of each component, and presenting both

the local and global saliency of the image. The model’s high

performance compared to the other models indicates that the

integration methods were efficient. Furthermore, we compared

the weighted summation method for combining the conspicuity

maps of different features with the method of calculating the

maximum of conspicuity maps. The comparison showed that

although the weighted summation method leads by average to

better performance, however, in some images where particular

features dominate the other features, calculating the maximum

of conspicuity maps can make better results. Second, in

proposedmodel 2, in addition to the common low-level features,

we added the medium-level features to proposed model 1. The

increased AUC and sAUC of proposed model 2 compared to

model 1 suggests that medium-level features may play a role in

the behavior of visual attention. Third, and most importantly, in

proposed model 3, instead of the common approach of using a

fixed number of C–S difference maps, we added the mechanism

of variable numbers of these maps to proposed model 2,

proposing that human visual attention performs differently for

different images. The increased AUC and sAUC of proposed

model 3 compared to model 2 confirms our proposal about

the center-surround mechanism. The mechanism of a variable

number of C–S difference maps can improve further to make it

adaptive to the image content.
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