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Growing evidences indicate that age plays an important role in the

development of mental disorders, but few studies focus on the neuro

mechanisms of generalized anxiety disorder (GAD) in different age groups.

Therefore, this study attempts to reveal the neurodynamics of Young_GAD

(patients with GAD under the age of 50) and Old_GAD (patients with

GAD over 50 years old) through statistical analysis of multidimensional

electroencephalogram (EEG) features and machine learning models. In this

study, 10-min resting-state EEG data were collected from 45 Old_GAD

and 33 Young_GAD. And multidimensional EEG features were extracted,

including absolute power (AP), fuzzy entropy (FE), and phase-lag-index (PLI),

on which comparison and analyses were performed later. The results showed

that Old_GAD exhibited higher power spectral density (PSD) value and FE

value in beta rhythm compared to theta, alpha1, and alpha2 rhythms, and

functional connectivity (FC) also demonstrated significant reorganization of

brain function in beta rhythm. In addition, the accuracy of machine learning

classification between Old_GAD and Young_GAD was 99.67%, further proving

the feasibility of classifying GAD patients by age. The above findings provide an

objective basis in the field of EEG for the age-specific diagnosis and treatment

of GAD.
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Introduction

Generalized anxiety disorder (GAD) is usually described
as frequent/persistent, accompanied by persistent significant
nervousness, characterized by autonomic nervous function
excitement and excessive vigilance (Bebbington and Jacoby,
1986; Tyrer and Baldwin, 2006; Mah et al., 2016; Buff et al.,
2018; Santomauro et al., 2021). According to the Lancet report
on anxiety disorders in 2021, the number of anxiety patients has
increased by 25.6% from the estimated 298 million in 2020 to
the actual 374 million in 2021 (Santomauro et al., 2021). As a
subtype of anxiety disorder (Buff et al., 2018; Xu et al., 2021),
GAD had a prevalence rate in adults between 4 and 7% (Huang
et al., 2018), seriously affecting the normal life of individuals
and families. Moreover, studies have reported that Old_GAD
patients were quite different from Young_GAD patients in
clinical presentations (Skoog, 2011; Altunoz et al., 2018),
severity (Flint, 2005, 2009), and treatment responses (Wetherell
et al., 2003; Lenze et al., 2009; Thorp et al., 2009). When the
same diagnostic and therapeutic criteria are used for Young
and Old_GAD patients, there is a high probability of clinical
misdiagnosis and mistreatment. Therefore, the classification of
GAD patients by age has important clinical value. Although
some progress has been made in the psychophysiology of GAD
in recent years (Grillon and Buchsbaum, 1987; Oathes et al.,
2008; Smith et al., 2016; Wang et al., 2016; Pang et al., 2019),
there is little research on the electrophysiological mechanism of
GAD in different age groups.

Recently, a great variety of neuroimaging technologies
have been used to reveal the neural activity of mental
disorders, including functional Magnetic Resonance Imaging
(fMRI) (Wang et al., 2016), electromagnetic tomography (ETA)
(Clancy et al., 2020), and electroencephalogram (EEG) (Newson
and Thiagarajan, 2019; Fusina et al., 2022). Among these
neurotechnical means, EEG is a non-invasive method to
obtain electrophysiological signals, and has a high temporal
resolution, which can directly measure the neural activity of the
participant’s brain, describe the functional changes during its
dynamic activities, and reflect the mental state of the participant.
Therefore, EEG has been widely used in the study of neural
mechanisms and clinical diagnosis of mental diseases [e.g.,
depression (Feng et al., 2012; Jesulola et al., 2015; Steiger
and Pawlowski, 2019), anxiety disorder (Tyrer and Baldwin,
2006; Olatunji et al., 2010; Hilbert et al., 2014), sleep disorder
(Papadimitriou et al., 1988; Huang et al., 2019), and epilepsy
(Mporas et al., 2015)]. Common EEG analysis methods include
power spectral density (PSD) analysis (Fenton et al., 1980;
Pradhan and Dutt, 1994) [e.g., absolute power (AP), relative
power, and power ratio], non-linear dynamics analysis (Nikias
and Petropulu, 1993; Alotaibi et al., 2022) [e.g., approximate
entropy, fuzzy entropy (FE), and sample entropy], and brain
functional connectivity (FC) analysis (Stam et al., 2007; Piho and
Tjahjadi, 2020; Li et al., 2022) [e.g., Partial directed coherence
(PDC), mutual information (MI), and phase-lag-index (PLI)]. In

this study, the PSD, FE, and PLI were used as the main methods
to analyze EEG data and to reveal the electrophysiological
differences of GAD in different age groups.

Although researchers are increasingly interested in the brain
pathogenesis of mental diseases, few studies have focused on
the brain electrophysiological mechanism of different ages with
GAD. Research have shown that the structure and function
of the brain change with aging (Choi et al., 2020; Seoane
et al., 2022), at the same time, senescence causes a decline
in cognitive level (Tian et al., 2018) and cortical coordination
(Blackmon et al., 2011). Mohlman et al. (2017) verified that
the slow-down EEG markers can be reliably extracted from
prefrontal EEG in the elderly. Despite a lack of research on EEG
in patients with GAD at different ages, relevant psychological
studies have revealed that Old_GAD patients are significantly
different from Young_GAD patients in terms of symptom
expression (Miloyan et al., 2014), and the anxiety symptoms
are related to the changes in the beta rhythm of PSD value
(Grin-Yatsenko et al., 2009). Meanwhile, anxiety disorder also
changes the brain structure and function (Sylvers et al., 2011;
Imperatori et al., 2019), which was related to several neural
abnormalities [e.g., EEG desynchronization, abnormal resting
state (Knyazev et al., 2004; Aftanas and Pavlov, 2005), and
emotional stimulation]. Previous research on the brain FC of
anxiety disorder has demonstrated that the prefrontal limbic
connectivity of Old_GAD patients is enhanced during anxiety
(Mohlman et al., 2017), the connectivity patterns of GAD
patients at different ages are different (Massullo et al., 2020),
and the correlation between age and anxiety is highlighted in
the frontal region of the brain (Mohlman et al., 2017). Based on
former findings, this study attempts to reinforce the studies on
Young_GAD and Old_GAD through multi-channel EEG.

In this study, multidimensional EEG features (including AP,
FE, and PLI) were used to expand the early research on the
neural mechanism of anxiety disorders through a single linear
or non-linear feature. Furthermore, machine learning models
were used to further verify GAD by age. The purpose of the
present study is to enhance the understanding of the underlying
differential neural mechanisms of Old_GAD and Young_GAD
in multidimensional EEG features. Specifically, this study used
multidimensional EEG features, combined with traditional one-
way analysis of variance (ANOVA), to investigate the significant
differences between Old_GAD and Young_GAD in the PSD,
FE, and PLI features. It is intended to reveal the neurodynamic
mechanism of Old_GAD and Young_GAD, so as to contribute
to the clinical triage of GAD patients by age.

Materials and methods

Participants

Seventy-eight GAD patients were recruited from the local
Hospital, and their age ranges from 22 to 68 years old. All
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patients met the diagnostic criteria for GAD in the fourth
revision of The Diagnostic and Statistical Manual of Mental
Disorders (DSM-IV) (Pull, 1995). The Hamilton Anxiety Scale
(HAMA) was used to evaluate anxiety symptoms, and the scores
of patients were ≥17. Meanwhile, the inclusion criteria which
all subjects need to meet were as follows, (1) Right-handed.
(2) No other mental disorders except GAD (e.g., dementia,
schizophrenia, epilepsy, delusional disorder, bipolar disorder,
and depression disorder) and physical disorders (e.g., severe
cardiopulmonary, hepatorenal insufficiency, malignant tumor,
and autoimmune diseases). (3) No history of substance and
alcohol abuse. (4) No history of brain damage. (5) Enough sleep
the day before data collection and no smoking, no coffee, or
strong tea for 8 h.

Based on the literature research (Le Roux et al., 2005;
Vogelzangs et al., 2013; Gayete et al., 2020), we divided GAD
patients into Old_GAD and Young_GAD according to the
standard of a 50-year-old. Table 1 shows the demographic
and clinical characteristics of the two groups. Wherein the
Young_GAD included 33 participants, with ages ranging from
22 to 48 years old (37.36 ± 7.46), including 8 males and 25
females, and the score of HAMA was 24.39 ± 8.81. And the
Old_GAD included 45 participants, with ages ranging from
50 to 68 years old (56.09 ± 4.60), including 13 males and 22
females, and the score of HAMA was 25.16 ± 7.43. There was
no significant difference in age and HAMA scores between the
two groups.

Electroencephalogram data acquisition
and preprocessing

Each subject was required to collect 10 min of resting-state
EEG data and was asked to remain awake, eyes closed, and
in a relaxed state during the collection. Data acquisition was
performed in the professional EEG room of the hospital. The
EEG model was Nicolet EEG TS215605, and its parameters were
set as follows. (1) According to the international standard 10–20
electrode arrangement system, 16 electrodes were selected,
including FP1, FP2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3,
T4, T5, and T6 (The grounding electrode position is Fpz). (2)
Left and right mastoid as reference electrodes. (3) Sampling rate
was set to 250 Hz. (4) The electrode impedance should be less
than 5 K� .

TABLE 1 Demographic and clinical characteristics of the participants.

Characteristics Young_GAD Old_GAD P-value

Number 33 45 –

Gender: male/female 8/25 13/32 –

Age (year) 22–48
(37.36± 7.46)

50–68
(56.09± 4.60)

7.4e× 10−28

HAMA 24.39± 8.81 25.16± 7.43 0.68

The collected EEG data was preprocessed according to the
following steps. (1) Down-sampled the EEG data to 125 Hz,
and used the fourth-order Butterworth bandpass filter from 4 to
30 Hz. (2) Used fast independent component analysis (ICA) to
remove EEG artifacts, such as eyes blinking, electrocardiogram
(EKG), electromyography (EMG), and so on. (3) Took 4 s of
continuous EEG data (50% overlap) for EEG segmentation to
obtain 7,991 Young_GAD data samples and 9,725 Old_GAD
data samples. (4) Extracted the EEG rhythms of θ (4–8 Hz), α1
(8–10 Hz), α2 (10–13 Hz), and β (13–30 Hz) of each EEG sample
through the same bandpass filter.

Multi-dimensional
electroencephalogram characteristics
extraction

The PSD, FE, and PLI have been demonstrated to
be effective and feasible for detecting anxiety disorders
(Shen et al., 2022). These three methods decode EEG
information from three different dimensions, which portrayed
the neurophysiological implications of EEG signals from three
different perspectives. In this study, these features were applied
to reveal the electrophysiological differences between Old_GAD
and Young_GAD. For each sample of the EEG data, the
calculated EEG features was shown in Table 2.

Absolute power extraction
In this study, the AP of each sample was calculated using

the periodogram method. For the given EEG signal X (n), its
frequency spectrum XN

(
f
)

can be estimated by Fast Fourier
Transform (FFT). Then, the power spectrum Px(f) is obtained
from the modulo square of the spectrum, as in Eq. 1. The EEG
power of each rhythm can be derived from Eq. 2. E(h) is the
power value of the h rhythm and the fh and fl are the upper and
lower frequency limits of the h rhythm, respectively.

For the N observations of the EEG signals x(n) of each
channel using FFT to obtain the spectrum XN(f), the power
spectrum Px(f) can be defined as Eq. 1.

Px
(
f
)
=

1
N
|XN

(
f
)
|
2 (1)

TABLE 2 The electroencephalogram (EEG) features were calculated
in this study.

AP FE PLI

Numbers 4 16 4 16 4 16 (16-1)/2

We used 16 EEG channels and four frequency bands. The absolute power (AP) and fuzzy
entropy (FE) were calculated based on a single channel, and phase-lag-index (PLI) was
computed between two EEG channels.

Frontiers in Human Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1074587
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-1074587 November 18, 2022 Time: 15:23 # 4

Wang et al. 10.3389/fnhum.2022.1074587

The power E
(
h
)

of each rhythm h of EEG is defined as Eq. 2.

E
(
h
)
=

1
fh − fl

∫ fh

fl
Px
(
f
)

df (2)

where fh and fl are the upper limit and lower limit of the
frequency of h rhythm, respectively.

Fuzzy entropy calculation
Given an EEG signal x(i)(i = 1, 2,, N) with length N and

reconstructed the signal into m-dimensional space Rm as Eq. 3.

Rm
i = {x (i) , x (i+ 1) , . . . , x (i+m− 1)} − x0 (i)

(i = 1,, N −m+ 1) (3)

where {x (i) , x (i+ 1) , . . . , x (i+m1)} represents m
consecutive sampling points starting from the i-th sampling
point, and x0(i) represents the average of the m sampling point
as Eq. 4.

x0 (i) =
1
m

m−1∑
j=0

x
(
i+ j

)
(4)

The maximum distance dm
ij between the m-dimensional

reconstruction vectors Rm
i and Rm

j is defined as Eq. 5.

dm
ij = d

[
Rm

i , Rm
j

]
= max

{
|x
(
i+ k

)
− x0 (i)− x

(
j+ k

)
− x0

(
j
)
|
}

k ∈ (0, m− 1) , i 6= j (5)

Given n and r, the similarity degree Dm
ij between Rm

i and Rm
j

is calculated by using the fuzzy function µ
(

dm
ij , n, r

)
as Eq. 6.

Dm
ij = µ

(
dm

ij , n, r
)
= exp

−
(

dm
ij

)n

r

 (6)

where n and r are the gradient and width of the boundary
of the exponential function, respectively. Thus, define function
ϕm(n, r) as the average of all similarity degree of all adjacent
vectors Rm

j for each vector Rm
i (j 6= i) as Eq. 7.

ϕm (n, r) =
1

N −m

N−m∑
i=1

 1
N −m− 1

N−m∑
j=1,j6=i

Dm
ij

 (7)

repeating the calculation process from Eqs 3–7, a vector
ϕm+1(n, r) of m + 1 dimension is obtained. Finally, the FE is
evaluated as Eq. 8.

FuzzyEn (m, n, r) = lim
N→∞

[
ln ϕm (n, r)− ln ϕm+1 (n, r)

]
(8)

when the EEG signal is of finite length N, the FE can be defined
as Eq. 9.

FuzzyEn(m, n, r, N) =
[
ln ϕm (n, r)− ln ϕm+1 (n, r)

]
(9)

Four parameters need to be fixed when calculating FE. They
are signal length N, embedding dimension m and the gradient
n and width r of the exponential function boundary. In this
study, the length N of our EEG signal x(i) was 1,000, and the
selected embedding dimension m is 2, which is a typical value.
In addition, when gradient n tends to infinity, the information
near the boundary point is seriously lost (Chen et al., 2007).
Therefore, n should be a small positive integer such as 2 and
3. The smaller r value is susceptible to noise, while the larger r
value may lead to the loss of useful information. The r is set to
k times of the standard deviation of the EEG signal x(i), and the
common range of k is 0.1 ≤ k ≤ 0.25 (Shen et al., 2022). In this
study, the n and k were set to 2 and 0.2, respectively.

Phase-lag-index calculation
The PLI is an index of the asymmetry in the distribution of

relative phase calculated from an instantaneous phase of two-
time series (the signals of a pair of EEG electrodes). Given the
paired time series x1(t) and x2(t) that have passed the band-
pass filtering, and the Hilbert transform used to calculate the
instantaneous phase zi(t) (Moezzi et al., 2019) as Eq. 10.

zi (t) = xi (t)+ j
1
π

P.V.

∫
∞

∞

xi (t)
t − τ

dτ (10)

where, P.V. represents Cauchy principal value. The relative
phase of the paired signals is calculated as Eq. 11.

1ϕ (t) = arg
(

z1 (t) z∗2 (t)
|z1 (t) ||z2 (t) |

)
(11)

Then, PLI can be defined as Eq. 12.

PLI = |
〈
sign1ϕ (t)

〉
| (12)

where sign stands for signum function, | • | denotes the mean
data and 〈•〉 indicate the absolute value. PLI ranges between
0 and 1. The larger the PLI value, the stronger the phase
synchronization of the two EEG channels.

Machine learning for classification

Three different machine learning models, support vector
machine (SVM) (Chen et al., 2021), random forest (RF)
(Murugappan et al., 2020), and K-nearest-neighbor (KNN)
(Cover and Hart, 1967), were used to distinguish the differences
between Old_GAD and Young_GAD in different rhythms.

(1) Support vector machine is a very common generalized
linear classifier, which is mainly used for the classification
of small sample data. Its ultimate goal is to find an optimal
hyperplane to segment the samples. For linear inseparable
problems, non-linear models need to be used to achieve
accurate classification. The original data can be projected
into a higher dimensional space by non-linear projection
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algorithm, so that the samples are linearly separable in
the new space, and this process is achieved by defining
an appropriate inner product kernel function. Common
kernel functions include four kinds: linear kernel function,
polynomial kernel function, Sigmoid kernel function and
radial basis kernel function (RBF).

(2) Random forest is an ensemble algorithm based on a
decision tree, which uses multiple trees to train and predict
samples. The RF uses the Bagging method to generate
an independent identically distributed training sample set
for each decision tree, and the final classification result
depends on the voting of all decision trees. Specifically, the
idea of RF algorithm is that extracting N times from the
original sample by bootstrap method, and m classification
features are randomly selected from the total feature M
each time (m ≤ M) to obtain N training sets. For each
training set, a decision tree is used for training. For the
test samples, the categories of new samples are determined
by majority voting based on the classification results of
N decision trees.

(3) K-nearest-neighbor algorithm is a supervised lazy machine
learning algorithm. For the given test sample, the nearest
k training samples in the training set are found based on
some distance measurement, and then the prediction is
made based on the information of these k “neighbors.”
Usually, the category label that appears most in the k
samples is selected as the prediction result.

In this study, a fivefold cross validation (fourfold samples
for training and onefold sample for testing) with 10 repetitions
was used to verify the generalization ability of the model,
and the final evaluation result is the average of all test
results. Moreover, the hyperparameters need to be set before
the machine learning model is trained. In this study, SVM
used the RBF kernel function to project samples into a
high dimensional space, RF adopted 500 decision trees for
ensemble classification, and KNN selected five nearest neighbors
in training samples to test each sample and used euclidean
distance measurement.

Statistical analysis

In this study, One-way ANOVA was used to
determine whether there were statistical differences in
the EEG features between Young_GAD and Old_GAD.
Specifically, if the final result p is less than 0.05, it could
be regarded as having a significant statistical difference.
All statistical analyses were implemented using MATLAB
2021b software (The MathWorks Inc., Natick, MA,
USA).

Results

Figures 1, 2 pointed out the results of the Old_GAD
and Young_GAD regarding the AP and FE characteristics. In
general, the results of AP and FE consistently depicted that the
beta rhythm had significant differences compared with other
rhythms (theta, alpha1, and alpha2). Specifically, the Old_GAD
had higher AP and FE values on the beta rhythm than the
Young_GAD, and it is most notably in the forehead, central and
parietal regions, which were shown in the red electrode position.

Figure 3 and Table 3 showed the results of the PLI
analysis. In theta and alpha2 rhythms, Young_GAD had more
FCs with high values than the Old_GAD. But in the beta
rhythm, Old_GAD had more FCs with high values than the
Young_GAD. The number of FCs existing in the brain networks
for lower rhythms (theta, alpha1, and alpha2) is much lower
than that for higher rhythm (beta). The ratios were 13, 5, 24,
and 58% for theta, alpha1, alpha2, and beta rhythms, which
suggested that the beta band had the most difference between
Young_GAD and Old_GAD. In addition, the distribution of
these key FCs of beta rhythm was almost existed among all brain
regions.

Table 4 showed the classification results of three common
machine learning classifiers for the Old_GAD and Young_GAD.
The classification accuracy for all features (including four
rhythm features) were 99.67 ± 0.15, 98.26 ± 0.36, and
98.34 ± 0.32% with SVM, RF, and KNN models. We also
calculated the accuracy of each rhythm. Every rhythm contained
152 EEG features, including 16 AP features, 16 FE features,
and 120 PLI features. The highest accuracies for theta, alpha1,
alpha2, and beta rhythms were 89.79 ± 1.03, 86.79 ± 0.71,
92.62 ± 0.35, and 99.46 ± 0.12%. In particular, the beta rhythm
achieved the highest accuracy, which was much closer to the
result of all features.

Discussion

This study investigated the EEG characteristics of the
Young_GAD and Old_GAD based on resting-state EEG data
from multiple dimensions (AP analysis, FE analysis, and
PLI analysis) to reveal the neurodynamic mechanisms of
the Young_GAD and Old_GAD. The main findings are as
follows. Firstly, based on multiple perspective analyses of AP,
FE, FC, and classification, the beta rhythm was significantly
altered between the Young_GAD and Old_GAD. Secondly, the
Old_GAD show obvious brain functional reorganization in beta
rhythm. Thirdly, the extremely high classification accuracy of
99.46 ± 0.12% further confirmed the feasibility of classifying
GAD into Young_GAD and Old_GAD. The results obtained
will be analyzed in detail below.
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FIGURE 1

Brain topography of average absolute power (AP) of four rhythms (theta, alpha1, alpha2, and beta). The average AP of Old_GAD and
Young_GAD have been normalized between 0 and 1, so they shared the same color bar. The red dots indicated the significantly differential
electroencephalogram (EEG) channels between the two groups (p < 0.05).

FIGURE 2

Brain topography of average fuzzy entropy (FE) of four rhythms (theta, alpha1, alpha2, and beta). The average FE of Old_GAD and Young_GAD
have been normalized between 0 and 1, so they shared the same color bar. The red dots indicated the significantly differential
electroencephalogram (EEG) channels between the Old_GAD and Young_GAD (p < 0.05).

Significant aberration of the beta
rhythm between Young_GAD and
Old_GAD

Electroencephalogram rhythm contains rich information
on brain neural activities, which has been widely used in
the research and clinical applications of psychiatric diseases
(Fenton et al., 1980; Grin-Yatsenko et al., 2009; Newson and
Thiagarajan, 2019). In this study, Young_GAD and Old_GAD
have significant differences in beta rhythm, and the important
role of beta rhythm will be analyzed from multiple perspectives.
(1) Compared with the Young_GAD patients, the Old_GAD
patients had higher AP and FE values in beta rhythm in most
brain regions, and there were significant statistical differences
in the forehead, central, and parietal regions. The increased
AP value of beta indicated that the brain activity is in a state
of tension and neural nervousness, and the increased FE value

indicated increased complexity (Al-Ezzi et al., 2022). Shen et al.
(2022) has revealed that GAD patients have higher PSD and FE
than healthy adults in beta rhythm. In this study, our results
further pointed out that Old_GAD has higher anxiety levels
and a more complex brain state in the beta rhythm. (2) The
number of key FCs for beta rhythm accounted for 58% of
the total number, which was much higher than theta, alpha1,
and alpha2. While the changed number of FCs represented
the alternation of regional coordination and cognitive function
(Oathes et al., 2008) of brain regions (Greicius et al., 2009), it
also reflected the reorganization of GAD in two age groups.
(3) Beta rhythm achieved the highest classification accuracy
(99.46%) compared with theta (89.79%), alpha1 (86.79%), and
alpha2 (92,62%) rhythms, which meant that machine learning
classification results could further support the specificity of beta
rhythms in GAD patients over the two age groups.
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FIGURE 3

Differential functional connectivitys (FCs) (p < 0.05) between the Old_GAD and Young_GAD for four rhythms (theta, alpha1, alpha2, and beta).
The red edge meant that the weight of the phase-lag-index (PLI) value in Old_GAD is higher than that in the Young_GAD, and the blue was the
opposite.

The specificity of the beta rhythm in anxiety states (Grin-
Yatsenko et al., 2009; Arsalan and Majid, 2022) and age-related
changes (Gasser et al., 1988; Marciani et al., 1994; Cragg et al.,
2011), respectively, it has received considerable attention in
academic research and clinical applications. On the one hand,
studies have been conducted to quantify the EEG characteristics
of the beta rhythm for the assessment of anxiety. The Food and
Drug Administration 4 (FDA4) approved the value of theta/beta
as a biomarker for attention deficit and hyperactivity disorder
(ADHD) (Newson and Thiagarajan, 2019). Al-Ezzi et al. (2022)
showed that the FE value of social anxiety disorder (SAD) in
beta rhythm was positively correlated with the Social Interaction
Anxiety Scale (SIAS). On the other hand, more evidence also
points to a high correlation between EEG characteristics of beta
rhythm and age change. Al Zoubi et al. (2018) pointed out that
the spectral flatness of beta is the most important predictor of
age. Marciani et al. (1994) showed that the older the group, the
greater the relative power value of the beta. In the present study,
GAD patients of different ages showed significant differences
in the EEG characteristics of beta rhythms. The Old_GAD had

TABLE 3 Functional connectivity (FC) numbers of the Old_GAD and
the Young_GAD in four rhythms.

Theta Alpha1 Alpha2 Beta

Old_GAD 1 1 3 12

Young_GAD 4 1 6 10

TABLE 4 Classification accuracies with different rhythms between
Young_GAD and Old_GAD.

Features SVM (%)
(mean ± sd)

RF (%)
(mean ± sd)

KNN (%)
(mean ± sd)

All features 99.67± 0.15 98.26± 0.36 98.34± 0.32

Theta features 89.79± 1.03 82.35± 0.74 83.97± 0.64

Alpha1 features 86.79± 0.71 81.23± 1.02 82.35± 0.64

Alpha2 features 92.62± 0.35 86.32± 0.55 87.59± 0.81

Beta features 99.46± 0.12 95.82± 0.26 97.98± 0.17

higher FE and AP values in several brain regions, with enhanced
activity in this region reflecting increased cortical excitation
(Porjesz et al., 2002) and metabolic activity (Yamada et al., 1995).
In summary, the significant changes in the EEG characteristics
of beta rhythm can help to better explain the neural mechanisms
of Young_GAD and Old_GAD and provide basic theoretical
support for subsequent studies of age-specific diagnosis and
treatment of GAD.

Previous research has seldom focused on the EEG neural
mechanism of different ages for GAD, and there is little
precedent for GAD classification at different age levels with
machine learning models. However, different age groups of
GAD have been authenticated to play different symptoms
(Javaid et al., 2022). Therefore, it is necessary to expand the
corresponding EEG studies to provide a scientific foundation
for the clinical triage of GAD patients of different ages. This
study further revealed the neural mechanism of Young_GAD
and Old_GAD.

Functional reorganization overall the
brain

Functional connectivity (FC) reflects the changes in
connectivity between brain regions (Greicius et al., 2009)
and is widely used to measure the effects of psychiatric
disorders on brain structure and function (Fingelkurts et al.,
2007; Tian et al., 2018). Pathology in the brain leads
to a more random and disorganized network structure
(Fingelkurts et al., 2007; Tian et al., 2018). Therefore, FC
is an appropriate approach to gaining a comprehensive
insight into the brain functional reorganization associated
with psychiatric disorders. Psychiatric disorders interact with
brain functional reorganization (Feinberg and Campbell, 2010).
Psychiatric disorders are caused by brain reorganization, and
brain reorganization advances psychiatric disorders. Alexander
noted that depressed patients produce high-impact brain
reorganization across multiple frequency ranges (Fingelkurts
et al., 2006). Additionally, Scheinost et al. (2013) suggested
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that using fMRI neurofeedback to continuously reorganize
brain networks in anxiety patients can non-invasively improve
brain connectivity patterns and enhance the control of anxiety.
Numerous studies have shown that different symptoms of
psychiatric disorders also show diverse abnormal FC patterns
(Meda et al., 2012). For example, GAD reduces FC in frontal
and other brain regions (Shen et al., 2022). Patients with
SAD have a limbic FC deficit, which is manifested by reduced
frontal-occipital connectivity in resting-states (Xing et al., 2017).
Patients with attention deficit show enhanced connectivity in
frontal regions (Choi et al., 2013). In this study, PLI was
used to estimate brain FC and key FC was further used to
investigate mechanistic changes in GAD (Shen et al., 2022). We
found that the key FC of Old_GAD patients showed significant
reorganization throughout the brain compared to Young_GAD
patients. Specifically, Old_GAD patients showed a significant
decrease in key FC intensity in the low-frequency range (theta,
alpha1, alpha2). It suggested that GAD patients showed a
gradual decline in cognitive function with age, conforming to
the general pattern of functional network changes in the aging
brain (Oathes et al., 2008). Moreover, there was a significant
enhancement and weakening of key FC in beta rhythm, which
accounted for 58% of all connections in all rhythms. It suggested
that Old_GAD patients had obvious whole-brain functional
reorganization in beta rhythm.

Evidence from the classification: Divide
generalized anxiety disorder into
Young_GAD and Old_GAD

Machine learning is widely used in medical research
(Ancillon et al., 2022) and can assist in predicting and
diagnosing psychiatric disorders by analyzing objective
indicators of psychiatric disorder mechanisms (Park et al.,
2021). In addition, studies have shown that EEG features
can achieve the best performance as classification features
compared to ECG, EDA, and RSP (Xu et al., 2015). Cai et al.
(2018) extracted a variety of EEG features and combined them
with feature selection algorithms, using KNN to obtain the
highest classification accuracy (79.27%). Additionally, Shen
et al. (2022) used an SVM model to classify healthy adults and
GAD patients by EEG features and achieved an accuracy of
97%. In this study, EEG features of GAD patients of different
ages were classified using machine learning (SVM, RF, and
KNN models). The set of all rhythm features achieved an
accuracy of 99.67%, demonstrating the effectiveness of applying
machine learning to age classification diagnosis using EEG
features. Moreover, the optimal feature set of the beta rhythm
achieved the highest recognition performance of 99.46% among
the four rhythms, which objectively reflected the specific
performance of the beta rhythm among GAD patients of
different ages.

Few studies used machine learning models to classify
different ages of GAD, but satisfying results had been obtained
from the age classification of healthy adults and GAD disease
detection. Shen et al. (2022) showed that machine learning
models can better distinguish between EEG features of GAD
and healthy adults and have obtained the classification accuracy
of 97% by SVM. Moezzi et al. (2019) have dichotomized the
age of healthy adults by functional brain connectivity features
and have obtained a classification accuracy of 93% by SVM. No
studies have been conducted to classify EEG features of different
ages of GAD by machine learning models yet. The present study
obtained a high accuracy rate for the classification of Old_GAD
and Young_GAD, which provides an objective scientific basis
for the clinical triage of GAD patients by age.

Limitations

This study inevitably has some limitations, which are listed
as follows. Firstly, there were only 33 and 45 participants
in the group of Young_GAD and Old_GAD, increasing
the sample size will make the experiment more convincing.
Secondly, the participants were limited to GAD patients
and lacked comparison with the healthy control group,
and it would be more meaningful to increase the sample
of healthy people for the age classification study. Thirdly,
this study used a 16-electrode EEG system with fewer
electrode channels. If a high-density EEG system is used
(for example, 64, 128 electrodes), richer experimental results
may be obtained.

Conclusion

In this study, we innovatively proposed to divide GAD
patients into Young_GAD and Old_GAD according to age,
and explored the similarities and differences of the neural
mechanisms of Young_GAD and Old_GAD through EEG
multidimensional features. It was found that Old_GAD and
Young_GAD differed significantly in the beta rhythm EEG
features, which could be used as neurological evidence
for the division scheme. The feasibility of this division
scheme was further validated by machine learning with a
high accuracy of 99.67%. Overall, the present study can
support the clinical field to diagnose and treat GAD patients
by age division.
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