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Introduction: Parkinson’s disease (PD) is a movement disorder characterized by the

pathological beta band (15–30 Hz) neural oscillations within the basal ganglia (BG).

It is shown that the suppression of abnormal beta oscillations is correlated with

the improvement of PD motor symptoms, which is a goal of standard therapies

including deep brain stimulation (DBS). To overcome the stimulation-induced side

e�ects and ine�ciencies of conventional DBS (cDBS) and to reduce the administered

stimulation current, closed-loop adaptive DBS (aDBS) techniques were developed. In

this method, the frequency and/or amplitude of stimulation are modulated based on

various disease biomarkers.

Methods: Here, by computational modeling of a cortico-BG-thalamic network in

normal and PD conditions, we show that closed-loop aDBS of the subthalamic

nucleus (STN) with amplitude modulation leads to a more e�ective suppression of

pathological beta oscillations within the parkinsonian BG.

Results: Our results show that beta band neural oscillations are restored to their

normal range and the reliability of the response of the thalamic neurons to motor

cortex commands is retained due to aDBS with amplitude modulation. Furthermore,

notably less stimulation current is administered during aDBS compared with cDBS

due to a closed-loop control of stimulation amplitude based on the STN local field

potential (LFP) beta activity.

Discussion: E�cient models of closed-loop stimulation may contribute to the

clinical development of optimized aDBS techniques designed to reduce potential

stimulation-induced side e�ects of cDBS in PD patients while leading to a better

therapeutic outcome.

KEYWORDS

beta oscillation, Parkinson’s disease, closed-loop deep brain stimulation, amplitude

modulation, synchronization

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative movement disorder characterized by
abnormal neural oscillations in the beta band (15–30 Hz) frequency within the basal
ganglia (BG) (Brown et al., 2001; Hammond et al., 2007; Mallet et al., 2008; Asadi
et al., 2022). The BG circuitry is massively modulated by dopamine (DA) released from
dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). Significant
degeneration of DAergic neurons triggers a cascade of maladaptive or compensatory
changes within the BG (Blandini et al., 2000; Madadi Asl et al., 2022b), ultimately
resulting in the emergence of pathological patterns of activity and connectivity observed
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in experimental PD models (Galvan et al., 2015; Madadi Asl et al.,
2022b). Particularly, striatal inhibition in the direct pathway is
suppressed following DA loss, whereas it is enhanced in the indirect
pathway (Lemos et al., 2016). As a result, the inhibitory control
of globus pallidus externus (GPe) over subthalamic nucleus (STN)
reduced (Fan et al., 2012; Madadi Asl et al., 2022a) and excessive
beta oscillations emerged (Brown et al., 2001; Hammond et al.,
2007; Mallet et al., 2008; Asadi et al., 2022). Finally, globus pallidus
internus (GPi) receives more excitatory drive leading to an enhanced
inhibition of the thalamo-cortical circuits, which contributes to
motor dysfunction in PD (DeLong, 1990; Graybiel et al., 1994).

It is shown that the reduction of pathological beta oscillations
is correlated with improved motor performance in PD (Meissner
et al., 2005; Kühn et al., 2006, 2008). High-frequency (>100 Hz)
deep brain stimulation (HF-DBS) is the standard clinical therapy
for medically refractory PD (Benabid, 2003; Benabid et al., 2009).
In a conventional DBS (cDBS) protocol, a train of electrical pulses
is continuously administered to the target structure, for example,
the STN using chronically implanted depth electrodes (Benabid,
2003; Benabid et al., 2009). HF-DBS may cause side effects, such
as dysarthria, dysesthesia, and cerebellar ataxia (Volkmann, 2004;
Baizabal-Carvallo and Jankovic, 2016). On the other hand, some
patients with PD may show unsatisfactory outcomes despite proper
electrode placement (Limousin et al., 1999). This led to the pre-
clinical and clinical testing of closed-loop and on-demand adaptive
DBS (aDBS) (Little et al., 2013, 2016; Priori et al., 2013; Rosa et al.,
2015, 2017; Johnson et al., 2016; Piña-Fuentes et al., 2017; Tinkhauser
et al., 2017; Guidetti et al., 2021) for a more effective control of
pathological beta band oscillatory activity.

In a closed-loop aDBS configuration, the patient’s clinical state
is assessed and utilized to adjust stimulation parameters, that is, to
modify the frequency and/or amplitude of stimulation in a state-
dependent manner (Daneshzand et al., 2018; Popovych and Tass,
2019; Fleming et al., 2020b). This can ultimately reduce possible
side effects by reducing the amount of administered stimulation
current (Pyragas et al., 2020). The modulation of stimulation
parameters in closed-loop approaches is realized based on specific
biomarkers that are used to estimate the symptom severity. One of
the appealing biomarkers for closed-loop DBS in PD is the power
of beta band oscillatory activity in the STN local field potential
(LFP) that has been utilized in several variations of aDBS protocols
addressed both in computational (Tukhlina et al., 2007; Popovych
et al., 2017b; Popovych and Tass, 2019; Fleming et al., 2020a,b) and
experimental (Little et al., 2013; Rosa et al., 2015; Arlotti et al., 2018;
Velisar et al., 2019) studies.

One of the first closed-loop strategies tested in patients with
PD was the on–off stimulation strategy where stimulation is turned
on and off depending on whether the biomarker exceeded a
predefined threshold (Little et al., 2013, 2016). More specifically,
aDBS of the STN in patients with advanced PD improved motor
symptoms by 66%, which were 29% better than cDBS, despite
delivering . 50% less current than cDBS. These improvements
were achieved with a 56% reduction in stimulation time compared
with cDBS (Little et al., 2013). In comparison with the open-
loop stimulation, the on–off stimulation strategy can be more
effective in suppressing abnormal oscillations in patients with PD;
however, its effectiveness is limited by the fixed choice of stimulation
parameters (Little et al., 2013, 2016), as in open-loop cDBS.

Later, a dual threshold strategy was introduced that modifies the
amplitude of stimulation to confine the biomarker within the desired
range (Velisar et al., 2019). Alternatively, stimulation strategies
employing proportional amplitude modulation, in which the DBS
amplitude is proportional to the measured biomarker (e.g., LFP beta
band activity), can be, in principle, more beneficiary as demonstrated
both computationally (Tukhlina et al., 2007; Popovych and Tass,
2019) and clinically (Rosa et al., 2015; Arlotti et al., 2018). Indeed,
the adjustment of stimulation amplitude based on slowly varying beta
activity is not only well-tolerated by patients but also can effectively
reduce pathological beta oscillations to improve PD symptoms (Rosa
et al., 2015; Arlotti et al., 2018).

In the context of amplitude modulation stimulation strategies,
control theory incorporates a variety of schemes that may be more
efficient in suppressing PD symptoms, while reducing the amount
of delivered current. Development and testing of effective control
schemes for DBS in a clinical situation are challenging due to
the invasive nature of DBS surgery. Alternatively, computational
modeling offers a suitable framework for designing and testing
different versions of closed-loop DBS control (Goldobin et al.,
2003; Rosenblum and Pikovsky, 2004; Gorzelic et al., 2013;
Popovych et al., 2017a; Popovych and Tass, 2019; Su et al., 2019;
Fleming et al., 2020a,b). For example, adaptive pulsatile linear
delayed feedback stimulation (apLDF) with on–off delivery can
induce desynchronization in pathologically synchronized network
models (Popovych and Tass, 2019). Interestingly, introducing
interphase gap between the stimulation pulses can significantly
improve the stimulation-induced desynchronization (Popovych
et al., 2017b). Recent computational studies employed clinically
viable control schemes for amplitude and frequency modulation, for
example, proportional (P) and proportional–integral (PI) closed-loop
controllers to suppress PD-related pathological beta activity with a
reduced amount of delivered stimulation current in simple network
models (Fleming et al., 2020a,b; Weerasinghe et al., 2021). Other
closed-loop computational approaches such as phase-specific aDBS,
whereby the stimulation is locked to a particular phase of tremor, have
been shown to improve therapeutic efficacy (Toth andWilson, 2022).
Specifically, near-periodic phase-specific aDBS can effectively disrupt
excessive synchronization in large populations of oscillatory neurons
caused by strong coupling.

In this study, our aim was to present a simple, yet comprehensive
bio-inspired model of the cortico-BG-thalamic network comprising
cortex, striatal D1 and D2 medium spiny neurons (MSNs), GPe,
globus pallidus internus (GPi), STN, and thalamus. A more
complete set of the BG nuclei used here improves the model
predictions and its accuracy. Specifically, we set themodel parameters
in a way that the dynamics of the network were similar to
those reported experimentally for normal and PD states (Holgado
et al., 2010; Pavlides et al., 2015). Then, we administered high-
frequency stimulation to the parkinsonian STN in our model and
investigated its effect on the pathological beta oscillations within
the BG. First, we used a cDBS protocol where stimulation pulses
were continuously delivered to the STN with a fixed frequency
and amplitude. To improve the beta suppression efficiency while
consuming less stimulation current, we then used an aDBS protocol
that employed the same stimulation frequency but with a closed-loop
feedback control of stimulation amplitude based on the STN beta
activity.
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Our results show that aDBS protocol can effectively suppress
abnormal beta oscillations within the BG and preserve thalamus
reliability while a notably low level of stimulation current is
administered in comparison with the cDBS protocol. Particularly,
the beta band peaks in the power spectrum density (PSD) of
the parkinsonian STN, GPe, and GPi activities were robustly
suppressed and shifted to their normal range by aDBS. Comparison
between aDBS and cDBS shows that the aDBS protocol with
amplitude modulation can be more efficient at different stimulation
frequencies, that is, abnormal beta oscillations were effectively
suppressed while the administered stimulation current was
reduced. Developing such closed-loop models of aDBS may
contribute to the pre-clinical testing and clinical optimization
of more efficient aDBS techniques by reducing stimulation
current to reduce potential side effects in patients with PD
undergoing treatment.

2. Methods

2.1. Network model

We considered a bio-inspired and comprehensive cortico-BG-
thalamic network model implemented in MATLAB comprising
cortex (simulated as 500 external inputs), striatal D1 MSNs (85
neurons) and D2 MSNs (85 neurons), GPe (17 neurons), GPi
(17 neurons), STN (137 neurons), and thalamus (140 neurons),
as schematically shown in Figure 1A1. The ratio of cells was
estimated based on the experimentally reported number of neurons
per volume, that is, neuronal density in rats (Oorschot, 1996).
Connection probability and the strength of synaptic connections
between different pathways used in our simulations are shown
in Table 1, which are chosen in accordance with experimental
observations in rats (Kita and Kita, 1994; Mink, 1996; Baufreton et al.,
2009). Specifically, in the PD state, D2 −→ GPe synaptic strength was
increased, whereas D1 −→ GPi andGPe −→ GPe synaptic strengths
were decreased with respect to the normal state (see Figures 1A1, A2).
Furthermore, an external current mimicking the input from other
brain regions was applied to STN, GPe, and GPi, that is, Iapp(STN) =
18 pA/µm2, Iapp(GPe) = 12 pA/µm2, and Iapp(GPi) = 4.0 pA/µm2

in normal condition, and Iapp(STN) = 15.5 pA/µm2, Iapp(GPe) =

0.4 pA/µm2, and Iapp(GPi) = 0.0 pA/µm2 in the PD state. Other
parameters in the PD state were similar to those used in the
normal state.

In the cortico-BG-thalamic circuitry shown in Figure 1A1, the
striatum receives excitatory inputs from the cortex and relays them
toward GPi using two competing pathways: the direct pathway
comprising striatal D1 receptor expressing MSNs and the indirect
pathway governed by D2 receptor expressing MSNs. Cortical inputs
in the indirect pathway are then mediated by the inhibitory GPe
neurons, which are bidirectionally connected to STN neurons. The
output of STN is then transmitted to the GPi, which inhibits the
thalamus. The thalamus sends excitatory input to the cortex and
receives excitatory feedback. The STN also receives direct excitatory
input from the cortex using the hyperdirect pathway. Altered synaptic
transmission in the PD condition with respect to normal condition is
schematically presented in Figures 1A1, A2, by changing the relative
thickness of arrows in different pathways.

2.2. Neuron model

2.2.1. STN neurons
The membrane potential dynamics of STN neurons are described

by a single-compartment conductance-based model introduced by
Terman et al. (2002), as follows:

Cm
dVi

dt
=−IL−IK−INa−IT−ICa−IAHP−IGPe→STN+ISM+Iapp+IDBS,

(1)
where Cm = 1 pF/µm2 is the membrane capacitance. IGPe→STN

is the synaptic current, ISM is the cortical sensorimotor input to
the thalamus, Iapp is the external applied current, and IDBS is the
stimulation current (see below). The leak current (IL), potassium
current (IK), sodium current (INa), high-threshold calcium current
(ICa), and calcium-dependent afterhyperpolarization (AHP) (IAHP)
are described by Hodgkin–Huxley type equations as follows:

IL(V) = gL(V − VL),
IK(V) = gKn

4(V − VK),
INa(V) = gNam

3
∞(V)h(V − VNa),

ICa(V) = gCas
2
∞(V)(V − VCa),

IT(V) = gTa
3
∞(V)b2∞(r)(V − VCa),

IAHP(V) = gAHP(V − VK)([Ca]/([Ca]+ k1)).

(2)

The slowly operating gating variables (X = n, h, r) are treated
as functions of both time and voltage and have first-order kinetics
governed by differential equations of the form:

dX/dt = φX((X∞(V)− X)/τX(V)),
τX(V) = τ 0X + τ 1X/(1+ exp(−(V − θ τ

X)/σ
τ
X )),

(3)

where activation (and inactivation) time constants have a sigmoidal
dependence on voltage, such that the voltage at which the time
constant is midway between its maximum and minimum values is
θ τ , and σ τ is the slope factor for the voltage dependence of the time
constant (see Table 3).

Activation gating for the rapidly activating channels (m, a, and
s) was treated as instantaneous. For all gating variables (X =

n,m, h, a, r, s), the steady-state voltage dependence was determined
using:

X∞(V) = [1+ exp(−V−VX
kX

)]−1,

IT : b∞(r) = [1+ exp((r − θb)/σb)]
−1 − [1+ exp(−θb/σb)]

−1.
(4)

The intracellular concentration of Ca2+ ions ([Ca]) is governed
by the differential equation d[Ca]/dt = ε(−ICa − IT − kCa[Ca]).
The constant ε combines the effects of buffers, cell volume, and
the molar charge of calcium in units of mole-s/coulombs-liter. The
constant k1 is the dissociation constant of the calcium-dependent
AHP current. The constant kCa is the calcium pump rate constant
in units of coulombs-liter/mole-s. Relevant kinetic parameters used
in simulations are presented in Tables 2, 3.

2.2.2. GPe/GPi neurons
The membrane potential dynamics of GPe neurons are described

as follows Terman et al. (2002) and Rubin and Terman (2004):

Cm
dVi

dt
= −IL − IK − INa − IT − ICa − IAHP

− ISTN→GPe − IGPe→GPe − ID2→GPe + Iapp.
(5)
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FIGURE 1

Schematic illustration of the cortico-BG-thalamic network model and closed-loop stimulator. (A1, A2) The cortico-BG-thalamic circuitry in the normal

(A1) and PD (A2) conditions. Excitatory (green) and inhibitory (red) pathways are marked by arrows where their relative thickness indicates the strength of

the input. STN was the target of DBS in the PD condition. (B) Schematic representation of the closed-loop stimulator utilizing STN beta band activity. The

raw LFP recorded from STN is beta band (15–30 Hz) filtered, rectified, and averaged to calculate the average rectified value (ARV) of the LFP beta band

activity. The beta ARV is then fed to the controller, which updates the amplitude of the stimulation current. (C) Time trace of the cortical sensorimotor

input (ISM) to the thalamus given by Equation (17) below.
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The ionic currents are similar to STN neurons, as described in
Equation (2) except for the low-threshold T-type calcium current (IT)
that is defined differently:

IT(V) = gTa
3
∞(V)r(V − VCa), (6)

TABLE 1 Connection probability and the strength of synaptic connections

between di�erent pathways used in our simulations in normal and PD

conditions (Mink, 1996; Leblois et al., 2006; Corbit et al., 2016).

Pathway Connection probability g (nS/µm2)

Normal PD

STN −→ GPe 40% 0.82 0.82

STN −→ GPi 40% 0.15 0.15

GPe −→ STN 7% 0.14 0.14

GPe −→ GPi 6% 1.39 1.39

GPe −→ GPe 45% 0.61 0.25

D1 −→ GPi 37.5% 0.225 0.08

D2 −→ GPe 37.5% 0.221 0.66

GPi −→ Th 70% 0.03 0.03

where the dynamics of gating variable a are similar to
Equation (4) and the dynamics of variable r are the same as
Equation (3). GPe parameters used in simulations are presented in
Tables 2, 3.

The dynamics of GPi neurons were modeled similar to the
dynamics of GPe neurons. We used the following current balance
equation to calculate the GPi membrane potential:

Cm
dVi

dt
= −IL − IK − INa − IT − ICa − IAHP

−ISTN→GPi − IGPe→GPi − ID1→GPi + Iapp.
(7)

The corresponding numerical values for parameters are shown in
Tables 2, 3.

2.2.3. Thalamic neurons
The membrane potential dynamics of thalamic cells are modeled

as follows Rubin and Terman (2004):

Cm
dVTh

dt
= −IL − IK − INa − IT − IGPi→Th + ISM. (8)

The ionic currents INa and IL are similar to those defined for the
STN neurons, as described in Equation (2), whereas IT and IK are

TABLE 2 Kinetic parameters for STN, GP (GPe/GPi), and thalamus.

Variable Nucleus θx σx τ0x τ1x θτ
x σ τ

x Qx

m STN –30 15 — — — — —

GP –37 10 — — — — —

Th –37 7 — — — — —

h STN –39 –3.1 1 500 –57 –3 0.75

GP –58 –12 0.05 0.27 –40 -12 0.05

Th –41 4 — — — — —

n STN –32 8 1 100 –80 –26 0.75

GP –50 14 0.05 0.27 -40 –12 0.1

r STN –67 –2 7.1 17.5 68 –2.2 0.5

GP –70 –2 30 0 — — 1

Th –84 4 — — — — —

a STN –63 7.8 — — — — —

GP –57 2 — — — — —

s STN –39 8 — — — — —

GP –35 2 — — — — —

b STN 0.4 –0.1 — — — — —

p Th –60 6.2 — — — — —

TABLE 3 Maximal conductances (gx), calcium dynamic parameters, and reversal potentials (Ex) of the membrane currents for STN, GP (GPe/GPi), and

thalamus.

g (mS/cm2) E (mV)

L K Na T Ca AHP εCa kCa k1 L K Na Ca

STN 2.25 45 37.5 0.5 0.5 9 3.75×10−5 22.5 15 –60 –80 55 140

GP 0.1 30 120 0.5 0.1 30 1.00×10−4 20 30 –55 –80 55 120

Th 0.05 5 3 5 — — — — — –70 –90 50 0
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defined as follows:

IK(V) = gK[0.75(1− hTh)]
4(V − VK),

IT(V) = gT p2∞(V)r(V − VT).
(9)

The gating variables are of the form:

dh(t)/dt = (h∞(VTh)− hTh)/τh(VTh),
dr(t)/dt = (r∞(VTh)− rTh)/τr(VTh),
τh(V) = 1/(ah + bh),
ah = 0.128 exp(−(V + 46)/18),
bh(V) = 4/[1+ exp(−(V + 23)/5)],
τr(V) = 0.4[28+ exp(−(V + 25)/10.5)].

(10)

Relevant kinetic parameters used in simulations are presented in
Table 2.

2.2.4. Striatum: D1 and D2 MSNs
Two subpopulations of neurons representing D1 and D2

receptor-expressing MSNs were considered to model the striatum.
The membrane potential dynamics for MSNs are of the form (Mahon
et al., 2000):

Cm
dVi

dt
= −IL− IK− INa− IKir− IAf− IAs− IKrp− INaP− INaS. (11)

The ionic currents (INa, IK, and IL) are similar to those used for
modeling the STN neurons, as described in Equation (2), but gating
variables were taken from the study ofWang and Buzsáki (1996). The
gating variablem was approximated bym∞ = αm/(αm+βm), where
αm(V) = −0.1(V + 35)/(exp(−0.1(V + 35)) − 1) and βm(V) =

4 exp(−(V + 60)/18). Other gating variables (X = h, n) obey the
following first-order kinetics:

dX/dt = φ (αX(1− X)− βXX) (12)

where φ is constant, αh(V) = 0.07 exp(−(V + 58)/20), βh(V) =
1/(exp(−0.1(V+ 28))+ 1), αn(V) = −0.01(V+ 34)/(exp(−0.1(V+

34))− 1), and βn(V) = 0.125 exp(−(V + 44)/80).
Fast (IAf) and slow (IAs) A-type potassium currents, inward

rectifier potassium current (IKir), persistent potassium current (IKrp),
and persistent (INaP) and slowly inactivating (INaS) sodium currents
are defined as follows (Wood et al., 2004):

IX(V) = gXm
k
∞(V)h(V − EX), (13)

where X ∈
{

Kir, Af, As, Krp, NaS, NaP
}

. Gating variables obey
differential equations defined in Equations (3), (4). Other parameters
are defined as follows:

τ (V) = τ0[exp(−
V−Vτ

kτ
)+ exp(V−Vτ

kτ
)]−1, (14)

except for the inactivation of slow A-type potassium current for
which the kinetics were defined by τhAs(V) = 1790 + 2930 ·

exp(−(V+38.2
28 )2) · (V+38.2

28 ). The numerical values of parameters used
in our simulations are listed in Table 4.

2.2.5. Synaptic currents
The synaptic current Iα→β from the presynaptic nucleus (α) to

the postsynaptic nucleus (β), with α ∈ {STN,GPe, GPi, D1, D2}, and
β ∈

{

STN,GPe, GPi, Th
}

, is given by (Rubin and Terman, 2004):

Iα→β = gα→β (Vα − Eα→β )
∑

α

sα(t), (15)

where gα→β is the maximal synaptic conductance presented in
Table 1, and Eα→β is the synaptic reversal potential presented in
Table 3. sα(t) represents the synaptic gating variable that obeys the
following differential Equation (Rubin and Terman, 2004):

dsα

dt
= Aα(1− sα) · H∞(Vα − θα)− Bαsα , (16)

where H∞(Vα) = 1/(1 + exp[−(Vα − θHα )/σH
α ]) is a

smooth approximation of the Heaviside step function (relevant
parameters are given in Table 5), and Aα and Bα control the synaptic
time courses.

2.2.6. Cortical current
The cortical sensorimotor input to the thalamus is approximated

as a train of rectangular depolarizing current pulses (ISM), which is
shown in Figure 1C, based on Equation (17) (Rubin and Terman,
2004):

ISM = iSM H(sin(2π t/ρSM)) ·

[

1− sin

(

2π(t + δSM)

ρSM

)]

, (17)

Where iSM = 8 pA/µm2 is the amplitude of the current, ρSM =

166ms denotes the period of the current signal, and δSM = 5ms
represents the duration of each individual pulse.

2.3. Stimulation protocol

The stimulation was administered to the STN as schematically
shown in Figure 1A2. The stimulation current was modeled by the
following protocol (Rubin and Terman, 2004):

IDBS = iDBS H(sin(2π t/ρDBS)) ·

[

1− sin

(

2π(t + δDBS)

ρDBS

)]

, (18)

Where iDBS = 2mA/µm2 is the amplitude of the stimulation signal,
ρDBS = 1/130ms denotes the stimulation period, and δDBS = 5ms is
the duration of individual stimulation pulses (Fleming et al., 2020a).
In the cDBS protocol, the model stimulation signal was continuously
delivered to the STN with a 130-Hz frequency (Fleming et al., 2020a).
The same frequency was used for the aDBS protocol; however, the
amplitude of the signal was modulated based on a closed-loop control
scheme described later.

2.4. Data analysis

The LFP of the oscillatory neural activity was defined as LFP(t) =
N−1 ∑

α sα(t), where s(t) is the synaptic variable introduced in
Equation (16). Rigorous computational approximations showed that
a simple weighted sum of the model synaptic currents excellently
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TABLE 4 Model parameters for striatal MSNs.

X∞(V) τ (V)

Current mk, h g (mS/cm2) Vx (mV) kx (mV) E (mV) τ0 (ms) Vτ (mV) kτ (mV)

Kir mKir 0.15 –100 –10 –90 — — —

Af mAf 0.09 –33.1 7.5 –73 1 — —

hAf –70.4 –7.6 25 — —

As mAs 0.32 –25.6 13.3 –85 131.4 –37.4 27.3

hAs –78.8 —10.4 — — —

Krp mKrp 0.42 –13.4 12.1 –77.5 206 –53.9 26.5

hKrp –55 –19 — — —

NaP mNaP 0.02 –47.8 3.1 45 1 — —

NaS mNaS 0.11 –16 9.4 40 637.8 –33.5 26.3

TABLE 5 Model parameters of the smooth approximation of the Heaviside

step function for STN, GP (GPe/GPi), and D1/D2 MSN.

θHα σH
α θα

STN –39.0 8.0 30.0

GP –57.0 2.0 20.0

MSN –42.0 5.0 18.0

captures the time course of the LFP signal (Mazzoni et al., 2015). This
provides a simple formula by which the LFP signal can be estimated
directly from network activity, providing a missing quantitative
link between simplified neuronal models and LFP measures in

vivo (Mazzoni et al., 2015).
The beta band-filtered LFP of the STN was calculated by using

the bandpass filter of the simulated raw STN LFP using the bandpass
filter function implemented in MATLAB within the frequency range
of 15–30 Hz.

The power spectrum of each calculated signal was computed by
the fast Fourier transform (FFT) function implemented in MATLAB.

2.5. Closed-loop control scheme

In the closed-loop control of aDBS administered to the STN,
the stimulation current is delivered in the form of high-frequency
pulses with the same frequency used in the open-loop cDBS but with
a modified amplitude. Amplitude modulation was implemented by
the closed-loop feedback of the measured beta band LFP activity of
the STN, which is schematically shown in Figure 1B. The average
rectified value (ARV) of the STN beta band LFP was calculated by
full-wave rectifying of the filtered LFP signal. The maximum value
of beta ARV in the normal state was assumed as a target value for
the beta ARV. During controller simulations, a beta ARV above the
target value was considered as the pathological beta activity, while a
beta ARV below the target value was assumed as the fluctuations of
normal beta activity.

The controller input (e) at a given time was calculated as the
normalized error between the measured beta ARV (βmeasured) and the

target beta ARV (βtarget), which is as follows (Fleming et al., 2020a,b):

e(t) =
βmeasured(t)− βtarget

βtarget
(19)

The controller operated with a sampling interval Ts =

50ms (Fleming et al., 2020a), updating the modulated aDBS
parameter at each controller call. Other choices for the sampling time
window resulted in the same observed beta power and stimulation
performance (see Supplementary Figure S1). The P controller for
closed-loop control of the aDBS amplitude can be defined as
follows (Fleming et al., 2020a,b):

u(t) = Kp · e(t). (20)

where u(t) is the modulated aDBS parameter value, that is, the
stimulation amplitude at a given time, Kp = 5 (Fleming et al., 2020a)
is the controller proportional gain of the aDBS parameter at each
controller call, and e(t) is the controller error input signal at a given
time. The aDBS current is given as follows:

IaDBS(t) = u(t) · IDBS(t). (21)

2.6. Stimulation performance assessment

Computational results show that synchronized activity interrupts
the thalamic reliability to transmit sensorimotor inputs, which may
lead to akinesia and rigidity (Rubin and Terman, 2004). One way
to assess and compare the efficiency of different DBS protocols
in restoring sensorimotor functionality is their effectiveness in
improving the response of the thalamus to sensorimotor stimuli.
Thalamic reliability (R) is a measure that quantifies the faithfulness
of the thalamic relay defined in terms of the generation of thalamo-
cortical activity patterns that match the inputs to thalamo-cortical
cells. It is determined by the fraction of sensorimotor stimuli that
elicit a single action potential in the thalamus so that a missed spike
is recorded when no spikes are fired in response to a sensorimotor
input, whereas a bad spike is recorded when multiple spikes are
fired in response to a single sensorimotor input. The reliability
of transmitting information of the thalamus can be regarded as an
evaluation of the effectiveness of DBS. This is quantified by the error

Frontiers inHumanNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1013155
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Bahadori-Jahromi et al. 10.3389/fnhum.2022.1013155

index introduced by Rubin and Terman (2004) for the fidelity of
thalamic throughput such that the minimal error is achieved when
each sensorimotor input pulse results in a single action potential in
a thalamic neuron (also see Supplementary Figure S2 and Section 4).
The reliability of the thalamus is defined as follows (Gorzelic et al.,
2013):

R = 1−
b+m

NSM
. (22)

where b is the number of bad spikes,m is the number ofmissed spikes,
andNSM is the total number of sensorimotor inputs in the simulation.

Another way to quantify the performance of stimulation is to
calculate the energy (power) expenditure index (E), which is a
measure of the amount of administered stimulation current, defined
as the root mean square (RMS) of the stimulation current signal (Su
et al., 2018) as follows:

E =

√

1

T

∫

T
I2DBSdt. (23)

where T is the total time of the simulation.
Ultimately, the beta suppression efficiency of cDBS and aDBS

protocols was quantified as the percentage of beta suppression in the
STN per unit of the consumed energy, defined as follows (Fleming
et al., 2020a):

η =
1

E
×

(

1−
1

T

∫

T

βNoDBS(t)− βDBS(t)

βNoDBS(t)
dt

)

× 100 (24)

where E was introduced in Equation (23), T is the total time of
simulation, βNoDBS(t) is the beta ARV signal measured when DBS
is off, and βDBS(t) is the beta ARV signal measured when DBS
was administered.

3. Results

3.1. Properties of normal and PD network
model

First, we set the model parameters to mimic the normal and
PD network dynamics. The raster plots shown in Figures 2A1–C1,
top illustrate the dynamics of STN, GPe, and GPi neurons in
normal condition, respectively. The synchronized neural activity led
to pronounced rhythmic activity and large-amplitude oscillations
in the LFP of different nuclei (shown in Figures 2A1–C1, bottom).
The raster plots and LFP of STN, GPe, and GPi neurons in the PD
condition are shown in Figures 2A2–C2.

Notably, in the normal condition, STN exhibited a relatively
desynchronized neural activity (see Figure 2A1, top), characterized
by small-amplitude oscillations in the STN LFP shown in Figure 2A1,
bottom. In the PD state, however, the activity of STN neurons
became strongly synchronized (Figure 2A2, top), characterized by
large-amplitude rhythmic oscillations in the STN LFP (Figure 2A2,
bottom). The mean firing rate of STN neurons in the normal state
was 12 ± 0.6Hz, which increased to 19 ± 0.8Hz in the PD state.
The PSD of STN activity in the PD state is characterized by a sharp
peak in the beta band (approximately 20 Hz) as shown in Figure 3A
(red), whereas the normal PSD hardly showed any pronounced peak
(Figure 3A, blue).

In the normal condition, GPe neurons fired in a relatively
irregular manner, as it is shown in the raster plot (Figure 2B1, top)
and LFP activity (Figure 2B1, bottom), with a mean firing rate of
60 ± 2.4Hz. In the PD state, the mean firing rate of GPe neurons
decreased to 32 ± 1.3Hz where the firing activity of neurons was
more synchronized (Figure 2B2, top), characterized by rhythmic LFP
oscillations shown in Figure 2B2, bottom. The firing activity of GPi
neurons, however, was relatively sparse in the normal condition
(Figure 2C1), with a mean firing rate of 20 ± 0.9Hz. The activity of
GPi neurons in the PD condition is shown in Figure 2C2, where the
mean firing rate increased to 28 ± 1.3Hz. The PSD of GPe and GPi
activities in the PD state showed a sharp peak at approximately 20
Hz (Figures 3B, C, red), whereas their normal PSD did not show any
pronounced peak in the beta band (Figures 3B, C, blue). For example,
single-cell membrane voltage traces of randomly chosen STN, GPe,
and GPi neurons in normal (top) and PD (bottom) conditions are
presented in Figure 4.

3.2. Suppression of pathological oscillations
by model DBS

To suppress parkinsonian beta oscillations within the BG nuclei
(i.e., to suppress pronounced peaks in the PSD of STN, GPe, and GPi
activities in Figure 3, red), the model stimulation was administered to
the STN using two different stimulation protocols, that is, cDBS and
aDBS. In the cDBS protocol, high-frequency (130 Hz) stimulation
pulses are continuously delivered to STN with a fixed amplitude, as
described in Equation (18). In the aDBS protocol, stimulation pulses
were continuously delivered to STNwith the same frequency that was
used in cDBS; however, the stimulation amplitude is modulated by a
control signal that sets the current amplitude based on the beta band
activity of the STN, as described in Equation (21).

The closed-loop control stimulator of the model aDBS utilizing
the STN beta band activity is schematically shown in Figure 1B. In
the model, as presented in Figure 5A, the raw LFP recorded from
the STN was first filtered in the beta band (15–30 Hz) frequency
(Figure 5B, violet); also see Section 2. The beta band filtered output
of the parkinsonian STN activity, when the DBS was off (NoDBS),
is also depicted for better comparison (Figure 5B, gray). The beta
bandpass filtered was then rectified and averaged to calculate the ARV
of the LFP beta band activity (Figure 5C). The target level for the beta
ARV (i.e., βtarget = 0.005 mV) is denoted by a red dashed line in
Figure 5C, which was estimated based on the STN beta band activity
in the normal condition. To efficiently suppress the pathological beta
activity within STN (i.e., beta ARV above the target value), the beta
ARV is fed to the controller to update the amplitude of the aDBS
current, as shown in Figure 5D.

The dynamics of STN, GPe, and GPi neurons are shown
in Figure 6 when the STN was stimulated by both cDBS and
aDBS protocols. Before the stimulation onset (i.e., t < 0 s in
Figures 6A1, A2), the model parameters were set to mimic the PD
state characterized by the overly synchronized neural activity in
the STN raster plot (Figures 6A1, A2, top) and by large-amplitude
oscillations in the beta band-filtered LFP (Figures 6A1, A2, bottom).
The stimulation was then turned on at t = 0 s. When cDBS was
turned on (i.e., t > 0 s in Figure 6A1, top), the activity of STN
neurons was entrained to the stimulation frequency (i.e., 130 Hz) and

Frontiers inHumanNeuroscience 08 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1013155
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Bahadori-Jahromi et al. 10.3389/fnhum.2022.1013155

FIGURE 2

Population dynamics of the STN, GPe, and GPi in normal and PD conditions. Raster plots (top) and LFPs (bottom) of the STN, GPe, and GPi activities in

normal (A1–C1) and PD (A2–C2) conditions.

FIGURE 3

Power spectrum of the STN, GPe, and GPi LFP activities. Power spectrum density of the STN (A), GPe (B), and GPi (C) LFP activities in normal (blue) and

PD (red) conditions.

the large-amplitude oscillations in the beta band-filtered LFP were
considerably suppressed (Figure 6A1, bottom). When aDBS was used
(i.e., t > 0 s in Figure 6A2, top), the stimulation pulse train was
delivered to the STN with a variable amplitude (see Figure 5D). In
this case, the suppression of parkinsonian beta oscillations in the STN
was less than cDBS (cf. Figures 6A1, A2, bottom). However, as we
will show later, overall less stimulation current was delivered in aDBS
while resulting in a more suppression efficiency of the aDBS protocol.

The stimulation of the STN not only directly affected the firing
activity of STN neurons but also indirectly mediated the firing activity

of GPe and GPi neurons. Particularly, cDBS of STN led to the
entrainment of GPe neurons to the stimulation frequency (i.e., t > 0
s in Figure 6B1), leading to the inhibition of the activity of GPi
neurons (i.e., t > 0 s in Figure 6C1). On the other hand, aDBS
of the STN just increased the firing activity of the GPe neurons
and did not result in the entrainment of the GPe activity to the
stimulation frequency (i.e., t > 0 s in Figure 6B2). Consequently,
the activity of GPi neurons was relatively the same before and after
stimulation (Figure 6C2). In addition, as it is shown in Figure 7,
PSD of the activity of neurons in STN, GPe, and GPi shows that
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FIGURE 4

Single-cell membrane voltage traces of STN, GPe, and GPi neurons. Time course of membrane voltages of single STN (A), GPe (B), and GPi (C) neurons

randomly chosen from the network in normal (top) and PD (bottom) conditions.

FIGURE 5

STN LFP and amplitude modulation of the aDBS current. (A–C) The simulated raw LFP of the STN (A), beta band filtered LFP (B), and beta ARV (C) for DBS

o� (NoDBS; gray) and aDBS (violet). The target level for the beta ARV (βtarget = 0.005 mV) is denoted by the red dashed line in (C). (D) Amplitude

modulation of the aDBS current by the P controller. The aDBS amplitude was restricted between 0.0 and 2.0 mA.

both cDBS and aDBS effectively suppressed beta band oscillations
(cf. Figures 3, 7). Interestingly, the suppression of parkinsonian beta
oscillations was more pronounced in cDBS of STN (cf. Figure 7A,
green and red) and in aDBS of GPe (cf. Figure 7B, green and red).
The effects of cDBS and aDBS on the GPi PSD were roughly similar
(Figure 7C).

Differential modulation of the STN, GPe, and GPi beta activities
by stimulation was directly related to the model connectivity. While
cDBS at 130 Hz effectively suppressed beta activity in the STN, aDBS
at the same frequency was less effective in the suppression of STN
beta activity, simply because less current was delivered to the STN
(Figure 7A). However, we evaluated the stimulation performance
based on the percentage of beta suppression in the STN per unit of
the consumed energy (see Figure 8). Therefore, based on Figure 8,

assuming that the energy consumption of cDBS at 130 Hz was
100%, aDBS at 130 Hz consumed approximately 50% less energy,
leading to efficiency about two times as high as the one for cDBS.
On the other hand, the STN was connected to the GPe (Table 1;
connection strength g = 0.82 nS/µm2) more stronger than GPi
(Table 1; connection strength g = 0.15 nS/µm2). Therefore, cDBS at
130 Hz entrained GPe neurons at the stimulation frequency, leading
to an enhanced inhibition among GPe cells and the STN itself,
which ultimately prevented effective beta suppression in the GPe. In
contrast, adaptive delivery of the stimulation current in the aDBS
protocol allowed stimulation to effectively suppress beta activity in
the GPe. Finally, weak connections from the STN to GPi minimized
the effect of stimulation on GPi, making no particular difference in
either case.
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FIGURE 6

Population dynamics of the STN, GPe, and GPi when the STN was the target of stimulation. Raster plot (top) and beta band filtered LFP (bottom) of the

STN, and raster plots of the GPe and GPi when cDBS (A1–C1) or aDBS (A2–C2) is administered to the STN. The model DBS was o� before time t = 0 s

and was switched on at t = 0 s.

FIGURE 7

Power spectrum of the STN, GPe, and GPi LFP activities. Power spectrum density of the STN (A), GPe (B), and GPi (C) LFP activities when cDBS (maroon)

or aDBS (green) is administered to the STN.

3.3. Stimulation performance

To evaluate the performance of cDBS vs. aDBS, we calculated
thalamic reliability given by Equation (22), the energy expenditure
index described in Equation (23) as a measure of the amount of

delivered stimulation current, and the beta suppression efficiency
of the stimulation protocol defined in Equation (24). The results
are presented in Figure 8 where the performance of the cDBS
protocol is compared with the aDBS protocol for a variety of
stimulation frequencies. The PD condition (NoDBS) was used to
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set a reference for the thalamic reliability (i.e., 0%). The reference
value for the energy expenditure (i.e., delivered stimulation current)
was set to 100%, measured when the cDBS protocol (with 130 Hz
stimulation frequency) was used for the STN model stimulation. The
administration of cDBS led to a 1.7% suppression efficiency and an
acceptable value for the thalamic reliability (i.e., 52%).

Interestingly, STN aDBS with the same stimulation frequency as
the cDBS protocol (i.e., 130 Hz) led to an increased beta suppression
efficiency (i.e., 3.6%), while the energy expenditure was 41% less
than cDBS, as shown in Figure 8. Notably, in this case, the value
of thalamic reliability was relatively unchanged (i.e., aDBS: 53%
vs. cDBS: 52%). Restoring the thalamic reliability and effective
suppression of beta oscillations by cDBS comes at the cost of
a higher administered stimulation current, resulting in a smaller
suppression efficiency than aDBS. In this way, amplitude modulation
by closed-loop aDBS (with the same stimulation frequency as the
open-loop cDBS) led to more efficient suppression of pathological
beta oscillations in the model while notably less stimulation current
was used.

As one could expect, increasing the stimulation frequency of
aDBS led to increased energy expenditure (Figure 8, gray bars)
where the thalamic reliability and suppression efficiency reached their
maximum values approximately at 130 Hz stimulation frequency.
The overall performance of the stimulation is determined by the
trade-off between the energy expenditure and beta suppression
outcome of the stimulation protocol.

3.4. Monopolar vs. bipolar stimulation

Typically, charge-balanced stimuli are used in DBS to avoid tissue
damage. We repeated our simulations to test whether the stimulation
performance is affected by charge-balanced stimulation. The biphasic
charge-balanced stimulation pulses were implemented similar to
those used by Popovych and Tass (2019), which consist of a short
cathodic pulse (first phase) followed by a longer charge-balancing
second phase with opposite polarity.We used the frequency of 130Hz
for the aDBS pulse train and the width of the short pulse (first phase)
PW = 0.5 ms (Popovych and Tass, 2019). The stimulation signal
consisting of electrical biphasic charge-balanced pulses is shown
in Figure 9A. The stimulation current can then be constructed as
follows (Popovych and Tass, 2019):

IDBS(t) =



















−10, tn ≤ t < tn + PW,
0, tn + PW ≤ t < tn + PW + GW,
1, tn + PW + GW ≤ t < tn + 11PW + GW,
0, otherwise,

(25)
For t ∈ (tn, tn+1), where tn = 1, 000n/f ms, n = 0, 1, 2, . . .

are the times of the pulse onsets, as presented in Figure 9A, and
f = 130 Hz is the frequency of the stimulation. We considered an
interphase time gap of width GW = 4.5 ms between the cathodic
and anodic phases of the biphasic pulses (Popovych and Tass, 2019).
While consistent with previous computational studies (Popovych
and Tass, 2019), the interphase gap utilized in our modeling of
biphasic stimulation pulses is a fair bit larger than in current DBS
systems, where the interphase gap is generally at the smaller time
scale of several tens ofmicroseconds (Boogers et al., 2022). Thismight

critically affect the outcome of the biphasic stimulation, for example,
shrink the corresponding therapeutic window (Boogers et al., 2022).
The amplitude modulation of the bipolar aDBS current is shown in
Figure 9B.

The power spectrum of the STN, GPe, and GPi LFP activities
is shown in Figure 10 when monopolar (red) or bipolar (blue)
aDBS is administered to the STN. In addition, the performances of
monopolar and bipolar aDBS protocols are presented in Figure 11.
Taken together, the results demonstrate that the performance of
the model aDBS is roughly the same for monopolar aDBS and
bipolar aDBS.

4. Discussion

Pre-clinical and clinical achievements of closed-loop DBS in
the treatment of PD attracted a lot of attention during the past
decade (Little et al., 2013, 2016; Priori et al., 2013; Rosa et al., 2015,
2017; Johnson et al., 2016; Piña-Fuentes et al., 2017; Tinkhauser
et al., 2017). One way for closed-loop control of pathologically
synchronized neural activity within the parkinsonian BG is to
monitor the collective activity of neurons in the target network
(e.g., the STN) and adapt the stimulation amplitude (strength) to
the level of neural synchrony (Tass, 2003; Popovych et al., 2017b;
Popovych and Tass, 2019; Fleming et al., 2020a,b). Neural synchrony
can be, for example, estimated by the large-amplitude oscillations
of collective activity in a population of interacting oscillatory
neurons. This idea was taken into account to develop a closed-
loop aDBS for the treatment of patients with PD where stimulation
delivery was modulated according to the level of STN beta band
activity (Little et al., 2013, 2016), leading to a better improvement
in motor symptoms while reducing the delivered stimulation current
compared with cDBS (Little et al., 2013, 2016).

Here, we developed a comprehensive cortico-BG-thalamic
network model to investigate the efficiency of closed-loop control
of the aDBS amplitude in comparison with the open-loop cDBS.
The parkinsonian network model was characterized by excessive
beta oscillations within STN, GPe, and GPi and reduced thalamic
reliability. Subthalamic aDBS effectively suppressed parkinsonian
beta oscillations and restored normal range of firing activity (in STN,
GPe, and GPi) and preserved thalamic reliability. STN aDBS led to
better suppression of pathological beta oscillations while notably less
stimulation current was delivered compared with cDBS. Particularly,
aDBS with the same stimulation frequency as cDBS led to a better
beta suppression efficiency (i.e., aDBS: 3.6% vs. cDBS: 1.7%), while
the energy expenditure was 41% less than cDBS (see Figure 8).
Interestingly, the value of thalamic reliability was similar for both
stimulation protocols (i.e., aDBS: 53% vs. cDBS: 52%).

In computational models of PD, response failures of thalamo-
cortical cell populations tend to coincide temporally, whereas under
DBS, these failures, when they occurr, are temporally dispersed (Guo
et al., 2008). To explore the effect of DBS frequency on the thalamic
reliability, we calculated the error index introduced by Rubin and
Terman (2004), defined as the total number of errors divided by the
total number of input stimuli (Rubin and Terman, 2004; So et al.,
2012; Alavi et al., 2022). In this context, the optimal performance
is achieved when each sensorimotor input pulse results in a single
action potential in a thalamic neuron. As shown previously, in a
model developed by Rubin and Terman (2004), DBS above 20 Hz
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FIGURE 8

Summary of the performance of cDBS and aDBS protocols. The thalamic reliability (orange), the energy expenditure index as a measure of the amount of

delivered stimulation current (gray), and the beta suppression e�ciency for the STN (green) of each stimulation protocol at a given frequency were used

to assess the performance of stimulation. Standard deviation bars are shown for 10 simulations under each condition.

FIGURE 9

Stimulation signal of electrical biphasic charge-balanced pulses. (A) Schematically depicted biphasic charge-balanced pulses without amplitude

modulation. Each pulse consists of an interphase gap between the cathodic and anodic phases of the pulse (inset). (B) The time course of the bipolar

stimulation with amplitude modulation.

was effective at restoring the accuracy of thalamic transmission. Later,
it was shown that stimulation below 40 Hz caused the rate of errors
made by the thalamic cell to remain high, while stimulation above 100
Hz restored thalamic fidelity in a computational model of the BG (So
et al., 2012). As shown in Supplementary Figure S2, our results show
that aDBS above 100 Hz is effective at restoring the thalamic fidelity
to its healthy level, with the best performance at 130 Hz.

In this study, the amplitude (strength) modulation in closed-
loop control of the STN aDBS was performed by using the P
controller scheme utilizing an LFP-derived measure of network
beta band oscillatory activity (Fleming et al., 2020a,b), similar
to that used during clinical closed-loop DBS protocols (Little
et al., 2013, 2016). However, several studies employed alternative
biomarkers for PD symptoms, such as entropy (Dorval et al.,
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FIGURE 10

Power spectrum of the LFP activity. Power spectrum density of the STN (A), GPe (B), and GPi (C) LFP activities when monopolar aDBS (red) or bipolar

aDBS (blue) is administered to the STN.

FIGURE 11

Performance of the monopolar and bipolar aDBS protocols. The thalamic reliability (orange), the energy expenditure index (green), and the beta

suppression e�ciency for the STN (gray) of each stimulation protocol at 130 Hz frequency were used to assess the performance of stimulation. Standard

deviation bars are shown for 10 simulations under each condition.

2010; Dorval and Grill, 2014; Anderson et al., 2015; Syrkin-
Nikolau et al., 2017), phase-amplitude coupling (De Hemptinne
et al., 2013, 2015), coherence (Al-Fatly, 2019), and gamma band
(30–80 Hz) activity-based measures (Swann et al., 2016, 2018).
While amplitude modulation by the P controller utilizing LFP
beta activity may not capture the neural mechanisms behind some
of the parkinsonian symptoms and their specifically developed
closed-loop DBS protocols, it may still be applicable to alternative
stimulation methods, such as phase-based (Tass, 2003; Holt et al.,
2016, 2019) linear delayed feedback (Popovych and Tass, 2019) and
optogenetic (Detorakis et al., 2015) stimulation paradigms.

Taken together, closed-loop aDBS protocols with different
stimulation frequencies led to better suppression of parkinsonian
beta oscillations than open-loop cDBS while reducing the amount
of delivered current and, thereby, may reduce potential stimulation-
induced side effects (Baizabal-Carvallo and Jankovic, 2016; Pyragas
et al., 2020). This suggests that closed-loop aDBS with amplitude
modulation can efficiently maintain the beta band activity in the
STN LFP below the target pathological level. As previously shown
in several studies (Su et al., 2019; Fleming et al., 2020a,b), the
suppression efficiency of closed-loop aDBS may depend on the
stimulation frequency, controller type, and parameters. For instance,
stimulation frequency modulation in closed-loop aDBS (instead
of stimulation amplitude modulation) can effectively suppress
abnormal beta oscillations, but it may also significantly increase the
amount of administered stimulation current (Fleming et al., 2020a).

Moreover, another limitation of our model is that we tuned
synaptic couplings and applied currents in the model to mimic
parkinsonian beta band oscillatory activity within the cortico-BG-
thalamic network, where cortical input was simplified as an external
current. However, cortical input shapes rhythmic activity in the
GPe-STN network in the PD state. Experimental findings suggest
that the beta band oscillatory activity of the cortex and STN
are significantly coherent and the beta band synchrony is notably
increased between the GPe and STN as well as between the STN
and the cortex following DA depletion (Sharott et al., 2005; Mallet
et al., 2008). Computationally, excessive beta band oscillatory activity
within the GPe-STN loop can be phase-locked to cortical beta
inputs in PD models (Koelman and Lowery, 2019). Hence, our
model may not be able to capture the complex network interactions
leading to pathological beta oscillations in PD but still can reproduce
suppression efficient characteristics of closed-loop aDBS compared
with the open-loop cDBS.

Several experimental findings suggested that DA deficiency in
PD can lead to exaggerated beta band (15–30 Hz) activity within
the BG (Brown et al., 2001; Sharott et al., 2005; Mallet et al.,
2008); however, the exact mechanisms underlying pathological
beta oscillations remain poorly understood. Experimental and
mathematical models have shown that beta oscillations can emerge
from inhibitory interactions among striatal MSNs (McCarthy et al.,
2011), increased levels of the striatal cholinergic drive (Kondabolu
et al., 2016), or GPe-STN interactions (Brown et al., 2001; Holgado
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et al., 2010; Tachibana et al., 2011). Yet, abnormal beta oscillations
may not appear until the advanced stages of PD and are supposedly
correlated with the extent of progressive degeneration of nigral
DAergic neurons (Asadi et al., 2022). The degree of neural beta
oscillatory activity is related to the magnitude of the response of
the BG to DAergic neurons rather than directly to the severity
of the patients’ symptoms (Weinberger et al., 2006). Variability
in the symptoms of patients with PD suggests that neural beta
oscillatory activity, alone, may not reflect the clinical state of the
patient, and other complex mechanisms must be involved in the
disease pathophysiology (Weinberger et al., 2006). For instance, it
has been shown that administration of some drugs increases STN
beta oscillations while decreasing tremor and rigidity (Priori et al.,
2004) and that clinical improvement after DBS is not associated
with an expected decrease in beta LFP activity in the STN (Foffani
et al., 2006). While our model did not take into account patient-
specific variability of abnormal beta oscillations, the development
of customized patient-specific models of DBS in future studies may
promote clinical improvements (Hollunder et al., 2022).

Intriguingly, a number of experiments failed to establish
a significant correlation among PD motor symptoms, such as
bradykinesia, akinesia and rigidity, and excessive beta oscillations
during parkinsonism (Weinberger et al., 2006; Stein and Bar-Gad,
2013). In fact, abnormal synchrony in patients with PD has been
observed in different frequency bands that can be related to different
disease symptoms (Kühn et al., 2006; Weinberger et al., 2006;
Steigerwald et al., 2008; Contarino et al., 2012). For instance, the
presence of tremor in patients with PD has been linked to beta band
(3–8 Hz) neural oscillations in the dorsal STN (Contarino et al.,
2012). While, in some studies, synchronized beta band (15–30 Hz)
oscillations in the STN were specifically attributed to the presence
of tremor (Levy et al., 2000), others did not find any difference
between PD patients with or without resting tremor in the frequency
distribution of oscillatory neural activity when considering the entire
frequency range of 1–100 Hz (Steigerwald et al., 2008). In the context
of the choice of frequency band used as a biomarker for closed-loop
aDBS, beta frequency oscillations in the LFP may capture variation
in bradykinesia and rigidity across patients (Little and Brown, 2012),
but this should be confirmed in each patient since it may impact
the set of symptoms that can be suppressed by the presented aDBS
approach (Little and Brown, 2012; Johnson et al., 2016). More
importantly, biomarkers that reliably reflect other impairments, such
as tremor, also need to be tested. Of note, beta band power may
not be the best biomarker for closed-loop aDBS. For instance, a
recent longitudinal study showed that although DBS significantly
suppressed beta band activity, the suppression effect appeared to
attenuate gradually during a long-term 6-month follow-up period
after surgery (Chen et al., 2020). While long-term attenuation of DBS
effects may be due to the progression of the disease or the stimulation
protocol itself (i.e., cDBS vs. aDBS), the sensitivity and reliability of
other frequency bands as potential biomarkers that are selective to
different PD symptoms need to be investigated.

The presence of beta oscillations (15–30 Hz) within the BG
may not be always pathological, and transient beta oscillations
can be related to the normal activity of the motor system, such
as the intention and initiation of movement (Little and Brown,
2014; Khanna and Carmena, 2017). However, beta oscillations
are significantly enhanced in PD, and there is strong correlative

evidence linking beta activity at rest to the changes in beta
power in response to treatment in patients with bradykinesia and
rigidity (Sharott et al., 2005; Mallet et al., 2008; Little and Brown,
2014). In our model, the stimulation has only been delivered
during periods of elevated beta activity through the closed-loop
aDBS protocol. Our model, therefore, ignores the selectivity of
the abnormal beta activity and always suppresses the beta activity
regardless of its causal or quantitative origin. It remains to be
studied in future how normal and pathological beta oscillations
can be distinguished and how stimulation delivery protocol can be
improved, accordingly.

Our aim was to present a simple, yet comprehensive model of
the BG. Therefore, we ignored the role of fast-spiking interneurons
(FSIs) in the BG circuitry since they supposedly constitute <5%
of total striatal neurons (Koós and Tepper, 1999). However, as
shown previously, the presence of FSIs may impact the emergence of
strong synchronization and propagation of beta oscillations, which
are a hallmark of parkinsonian circuit dysfunction (Corbit et al.,
2016). Particularly, when GPe spikes are synchronous, the GPe-
FSI pathway results in synchronous FSI activity pauses, allowing
for a transient window of disinhibition for MSNs (Corbit et al.,
2016). Accordingly, the inclusion of FSI into the BG circuitry in
our model may affect the presented results by indirectly modulating
the level of abnormal beta activity used as the biomarker of the
disease.

In our study, the model parameters were extracted from the
rodent models of PD. This might affect the impact of the aDBS
protocol used in this study and need to be adopted for success
in human clinical trials. Animal models may suffer from several
limitations. For instance, in rodents, interventions may precede
induction of the model and the outcomes may be less commonly
assessed at multiple time points (Zeiss et al., 2017). Therefore,
potential therapies for PD that are successful in animal studies may
fail in human trials. The translational gap for potential therapeutic
interventions in PD in part results from study designs that fail
to model the progressive nature and relatively late intervention
characteristic of PD (Zeiss et al., 2017). Yet, animal models enable the
possibility to study the pathological mechanisms and the therapeutic
principles of treating disease symptoms in humans. Once the
causative mechanisms are clarified, animal models can be helpful
in the development of therapeutic approaches and pave way for the
transition from animal models to translational application in patients
with PD.

Finally, abnormal synchronization is a hallmark of
PD (Brown et al., 2001; Hammond et al., 2007). Such abnormal
synchronization can be controlled by the administration of high-
frequency desynchronizing brain stimulation to the diseased
network (Popovych and Tass, 2014). However, the emergence
of abnormal neural synchronization during parkinsonism
cannot be solely ascribed to the pathological changes of neural
dynamics following DA loss. Other complex mechanisms may be
involved (Madadi Asl et al., 2018b, 2022b; Ziaeemehr et al., 2020).
For instance, dysfunction of DA-mediated synaptic plasticity during
parkinsonism shapes abnormal synaptic connectivity within the
BG (Fan et al., 2012; Madadi Asl et al., 2019, 2022b). This further
supports the emergence of pathological neural activity and synaptic
connectivity patterns (Madadi Asl and Ramezani Akbarabadi,
2022) within the parkinsonian BG (Madadi Asl et al., 2022b). Thus,
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an effective brain stimulation technique should in fact decouple
neurons (Madadi Asl et al., 2023), that is, desynchronize overly
synchronized neural activity and reduce pathological synaptic
connectivity to ensure long-lasting therapeutic effects that persist
after stimulation offset (Madadi Asl et al., 2023).

In this study, the synaptic connections among neurons in
the network model were assumed to be static, that is, the
synaptic strengths were fixed in time. However, beneficiary long-
lasting stimulation effects can be, in principle, achieved in
neural network models of PD with plastic synapses modified
by spike-timing-dependent plasticity (STDP) (Gerstner et al.,
1996; Markram et al., 1997; Bi and Poo, 1998), as shown by
computational studies (Tass and Majtanik, 2006; Hauptmann and
Tass, 2009; Popovych and Tass, 2012; Lourens et al., 2015;
Kromer and Tass, 2020). STDP can mold multistable neural and
synaptic network dynamics (Madadi Asl et al., 2017, 2018a,c;
Ratas et al., 2021) that can be computationally attributed to
physiological and pathological basins of attraction (Madadi Asl
et al., 2022b). In this way, appropriately tuned, STDP-targeting
stimulation protocols can shift patterns of neural activity and
synaptic connectivity in plastic networks from pathological states
(characterized by strong synchrony and strong connectivity)
to more physiologically favored states (characterized by weak
synchrony and weak connectivity) (Madadi Asl et al., 2022b,
2023).
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Pyragas, K., Fedaravičius, A. P., Pyragienė, T., and Tass, P. A. (2020). Entrainment of
a network of interacting neurons with minimum stimulating charge. Phys. Rev. E 102,
012221. doi: 10.1103/PhysRevE.102.012221

Ratas, I., Pyragas, K., and Tass, P. A. (2021). Multistability in a star
network of kuramoto-type oscillators with synaptic plasticity. Sci. Rep. 11, 1–15.
doi: 10.1038/s41598-021-89198-0

Rosa, M., Arlotti, M., Ardolino, G., Cogiamanian, F., Marceglia, S., Di Fonzo, A., et al.
(2015). Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov.
Disord. 30, 1003–1005. doi: 10.1002/mds.26241

Rosa, M., Arlotti, M., Marceglia, S., Cogiamanian, F., Ardolino, G., Fonzo, A. D., et
al. (2017). A daptive deep brain stimulation controls levodopa-induced side effects in p
arkinsonian patients.Mov. Disord. 32, 628–629. doi: 10.1002/mds.26953

Rosenblum, M., and Pikovsky, A. (2004). Delayed feedback control of collective
synchrony: an approach to suppression of pathological brain rhythms. Phys. Rev. E 70,
041904. doi: 10.1103/PhysRevE.70.041904

Rubin, J. E., and Terman, D. (2004). High frequency stimulation of the subthalamic
nucleus eliminates pathological thalamic rhythmicity in a computational model. J.
Comput. Neurosci. 16, 211–235. doi: 10.1023/B:JCNS.0000025686.47117.67

Sharott, A., Magill, P. J., Harnack, D., Kupsch, A., Meissner, W., and Brown, P.
(2005). Dopamine depletion increases the power and coherence of β-oscillations in the
cerebral cortex and subthalamic nucleus of the awake rat. Eur. J. Neurosci. 21, 1413–1422.
doi: 10.1111/j.1460-9568.2005.03973.x

So, R. Q., Kent, A. R., and Grill, W. M. (2012). Relative contributions of local cell
and passing fiber activation and silencing to changes in thalamic fidelity during deep
brain stimulation and lesioning: a computational modeling study. J. Comput. Neurosci.
32, 499–519. doi: 10.1007/s10827-011-0366-4

Steigerwald, F., Potter, M., Herzog, J., Pinsker, M., Kopper, F., Mehdorn, H., et al.
(2008). Neuronal activity of the human subthalamic nucleus in the Parkinsonian and
nonparkinsonian state. J. Neurophysiol. 100, 2515–2524. doi: 10.1152/jn.90574.2008

Stein, E., and Bar-Gad, I. (2013). Beta oscillations in the cortico-basal ganglia loop
during Parkinsonism. Exp. Neurol. 245, 52–59. doi: 10.1016/j.expneurol.2012.07.023

Su, F., Kumaravelu, K., Wang, J., and Grill, W. M. (2019). Model-based evaluation of
closed-loop deep brain stimulation controller to adapt to dynamic changes in reference
signal. Front. Neurosci. 13, 956. doi: 10.3389/fnins.2019.00956

Su, F., Wang, J., Niu, S., Li, H., Deng, B., Liu, C., et al. (2018). Nonlinear predictive
control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-
thalamic network. Neural Netw. 98, 283–295. doi: 10.1016/j.neunet.2017.12.001

Swann, N. C., de Hemptinne, C., Miocinovic, S., Qasim, S., Wang, S. S.,
Ziman, N., et al. (2016). Gamma oscillations in the hyperkinetic state detected with
chronic human brain recordings in Parkinson’s disease. J. Neurosci. 36, 6445–6458.
doi: 10.1523/JNEUROSCI.1128-16.2016

Swann, N. C., de Hemptinne, C., Thompson, M. C., Miocinovic, S., Miller, A.
M., Ostrem, J. L., et al. (2018). Adaptive deep brain stimulation for ParkinsonŠs
disease using motor cortex sensing. J. Neural Eng. 15, 046006. doi: 10.1088/1741-2552/
aabc9b

Syrkin-Nikolau, J., Koop, M. M., Prieto, T., Anidi, C., Afzal, M. F., Velisar, A., et
al. (2017). Subthalamic neural entropy is a feature of freezing of gait in freely moving
people with Parkinson’s disease. Neurobiol. Dis. 108, 288–297. doi: 10.1016/j.nbd.2017.
09.002

Tachibana, Y., Iwamuro, H., Kita, H., Takada, M., and Nambu, A. (2011).
Subthalamo-pallidal interactions underlying Parkinsonian neuronal oscillations in the
primate basal ganglia. Eur. J. Neurosci. 34, 1470–1484. doi: 10.1111/j.1460-9568.2011.
07865.x

Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a
demand-controlled coordinated reset of neural subpopulations. Biol. Cybern. 89, 81–88.
doi: 10.1007/s00422-003-0425-7

Tass, P. A., and Majtanik, M. (2006). Long-term anti-kindling effects of
desynchronizing brain stimulation: a theoretical study. Biol. Cybern. 94, 58–66.
doi: 10.1007/s00422-005-0028-6

Terman, D., Rubin, J. E., Yew, A., and Wilson, C. (2002). Activity patterns in a
model for the subthalamopallidal network of the basal ganglia. J. Neurosci. 22, 2963–2976.
doi: 10.1523/JNEUROSCI.22-07-02963.2002

Tinkhauser, G., Pogosyan, A., Little, S., Beudel, M., Herz, D. M., Tan, H., et al. (2017).
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s
disease. Brain 140, 1053–1067. doi: 10.1093/brain/awx010

Toth, K., and Wilson, D. (2022). Control of coupled neural
oscillations using near-periodic inputs. Chaos 32, 033130. doi: 10.1063/5.
0076508

Tukhlina, N., Rosenblum, M., Pikovsky, A., and Kurths, J. (2007). Feedback
suppression of neural synchrony by vanishing stimulation. Phys. Rev. E 75, 011918.
doi: 10.1103/PhysRevE.75.011918

Velisar, A., Syrkin-Nikolau, J., Blumenfeld, Z., Trager, M., Afzal, M., Prabhakar, V., et
al. (2019). Dual threshold neural closed loop deep brain stimulation in Parkinson disease
patients. Brain Stimulat. 12, 868–876. doi: 10.1016/j.brs.2019.02.020

Volkmann, J. (2004). Deep brain stimulation for the treatment of ParkinsonŠs disease.
J. Clin. Neurophysiol. 21, 6–17. doi: 10.1097/00004691-200401000-00003

Wang, X. J., and Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition
in a hippocampal interneuronal network model. J. Neurosci. 16, 6402–6413.
doi: 10.1523/JNEUROSCI.16-20-06402.1996

Weerasinghe, G., Duchet, B., Bick, C., and Bogacz, R. (2021). Optimal closed-loop deep
brain stimulation using multiple independently controlled contacts. PLoS Comput. Biol.
17, e1009281. doi: 10.1371/journal.pcbi.1009281

Weinberger, M., Mahant, N., Hutchison, W. D., Lozano, A. M., Moro, E., Hodaie,
M., et al. (2006). Beta oscillatory activity in the subthalamic nucleus and its relation
to dopaminergic response in Parkinson’s disease. J. Neurophysiol. 96, 3248–3256.
doi: 10.1152/jn.00697.2006

Frontiers inHumanNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1013155
https://doi.org/10.3389/fphys.2018.01849
https://doi.org/10.1063/1.5037309
https://doi.org/10.1371/journal.pcbi.1010853
https://doi.org/10.1101/lm.34800
https://doi.org/10.1523/JNEUROSCI.0123-08.2008
https://doi.org/10.1126/science.275.5297.213
https://doi.org/10.1371/journal.pcbi.1004584
https://doi.org/10.1073/pnas.1107748108
https://doi.org/10.1093/brain/awh616
https://doi.org/10.1016/S0301-0082(96)00042-1
https://doi.org/10.1002/(SICI)1096-9861(19960318)366:4<580::AID-CNE3>3.0.CO;2-0
https://doi.org/10.1371/journal.pcbi.1004609
https://doi.org/10.1002/mds.26959
https://doi.org/10.1371/journal.pone.0173363
https://doi.org/10.1038/s41598-017-01067-x
https://doi.org/10.3389/fnhum.2012.00058
https://doi.org/10.3389/fneur.2014.00268
https://doi.org/10.1038/s41598-019-47036-4
https://doi.org/10.1016/j.expneurol.2004.06.001
https://doi.org/10.1016/j.expneurol.2012.09.013
https://doi.org/10.1103/PhysRevE.102.012221
https://doi.org/10.1038/s41598-021-89198-0
https://doi.org/10.1002/mds.26241
https://doi.org/10.1002/mds.26953
https://doi.org/10.1103/PhysRevE.70.041904
https://doi.org/10.1023/B:JCNS.0000025686.47117.67
https://doi.org/10.1111/j.1460-9568.2005.03973.x
https://doi.org/10.1007/s10827-011-0366-4
https://doi.org/10.1152/jn.90574.2008
https://doi.org/10.1016/j.expneurol.2012.07.023
https://doi.org/10.3389/fnins.2019.00956
https://doi.org/10.1016/j.neunet.2017.12.001
https://doi.org/10.1523/JNEUROSCI.1128-16.2016
https://doi.org/10.1088/1741-2552/aabc9b
https://doi.org/10.1016/j.nbd.2017.09.002
https://doi.org/10.1111/j.1460-9568.2011.07865.x
https://doi.org/10.1007/s00422-003-0425-7
https://doi.org/10.1007/s00422-005-0028-6
https://doi.org/10.1523/JNEUROSCI.22-07-02963.2002
https://doi.org/10.1093/brain/awx010
https://doi.org/10.1063/5.0076508
https://doi.org/10.1103/PhysRevE.75.011918
https://doi.org/10.1016/j.brs.2019.02.020
https://doi.org/10.1097/00004691-200401000-00003
https://doi.org/10.1523/JNEUROSCI.16-20-06402.1996
https://doi.org/10.1371/journal.pcbi.1009281
https://doi.org/10.1152/jn.00697.2006
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org


Bahadori-Jahromi et al. 10.3389/fnhum.2022.1013155

Wood, R., Gurney, K. N., and Wilson, C. (2004). A novel parameter optimisation
technique for compartmental models applied to a model of a striatal medium spiny
neuron. Neurocomputing 58, 1109–1116. doi: 10.1016/j.neucom.2004.01.174

Zeiss, C. J., Allore, H. G., and Beck, A. P. (2017). Established patterns
of animal study design undermine translation of disease-modifying therapies

for Parkinson’s disease. PLoS ONE 12, e0171790. doi: 10.1371/journal.pone.
0171790

Ziaeemehr, A., Zarei, M., Valizadeh, A., and Mirasso, C. R. (2020). Frequency-
dependent organization of the brainŠs functional network through delayed-interactions.
Neural Netw. 132, 155–165. doi: 10.1016/j.neunet.2020.08.003

Frontiers inHumanNeuroscience 19 frontiersin.org

https://doi.org/10.3389/fnhum.2022.1013155
https://doi.org/10.1016/j.neucom.2004.01.174
https://doi.org/10.1371/journal.pone.0171790
https://doi.org/10.1016/j.neunet.2020.08.003
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org

	Efficient suppression of parkinsonian beta oscillations in a closed-loop model of deep brain stimulation with amplitude modulation
	1. Introduction
	2. Methods
	2.1. Network model
	2.2. Neuron model
	2.2.1. STN neurons
	2.2.2. GPe/GPi neurons
	2.2.3. Thalamic neurons
	2.2.4. Striatum: D1 and D2 MSNs
	2.2.5. Synaptic currents
	2.2.6. Cortical current

	2.3. Stimulation protocol
	2.4. Data analysis
	2.5. Closed-loop control scheme
	2.6. Stimulation performance assessment

	3. Results
	3.1. Properties of normal and PD network model
	3.2. Suppression of pathological oscillations by model DBS
	3.3. Stimulation performance
	3.4. Monopolar vs. bipolar stimulation

	4. Discussion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher's note
	Supplementary material
	References


