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Functional near-infrared spectroscopy (fNIRS) has attracted increasing attention in

the field of brain–computer interfaces (BCIs) owing to their advantages such as

non-invasiveness, user safety, affordability, and portability. However, fNIRS signals are

highly subject-specific and have low test-retest reliability. Therefore, individual calibration

sessions need to be employed before each use of fNIRS-based BCI to achieve a

sufficiently high performance for practical BCI applications. In this study, we propose

a novel deep convolutional neural network (CNN)-based approach for implementing

a subject-independent fNIRS-based BCI. A total of 18 participants performed the

fNIRS-based BCI experiments, where themain goal of the experiments was to distinguish

a mental arithmetic task from an idle state task. Leave-one-subject-out cross-validation

was employed to evaluate the average classification accuracy of the proposed

subject-independent fNIRS-based BCI. As a result, the average classification accuracy

of the proposed method was reported to be 71.20 ± 8.74%, which was higher than

the threshold accuracy for effective BCI communication (70%) as well as that obtained

using conventional shrinkage linear discriminant analysis (65.74 ± 7.68%). To achieve

a classification accuracy comparable to that of the proposed subject-independent

fNIRS-based BCI, 24 training trials (of approximately 12min) were necessary for the

traditional subject-dependent fNIRS-based BCI. It is expected that our CNN-based

approachwould reduce the necessity of long-term individual calibration sessions, thereby

enhancing the practicality of fNIRS-based BCIs significantly.

Keywords: brain–computer interface, functional near-infrared spectroscopy, deep learning, convolutional neural

network, binary communication

INTRODUCTION

Brain–computer interfaces (BCIs) have been developed to decode a user’s intention from their
neural signals with the ultimate goal of providing non-muscular communication channels to
those who experience difficulties communicating with the external environment (Wolpaw et al.,
2002; Daly and Wolpaw, 2008). Various neuroimaging modalities such as electroencephalography
(EEG), magnetoencephalography, and functional magnetic resonance imaging have been employed
to implement BCIs (Mellinger et al., 2007; Sitaram et al., 2007; Hwang et al., 2013).
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Recently, functional near-infrared spectroscopy (fNIRS), which
is also one of the representative brain-imaging modalities,
has attracted increasing attention owing to its advantages,
including non-invasiveness, affordability, low susceptibility to
noise, and portability (Naseer and Hong, 2015; Shin et al.,
2017a). fNIRS is an optical brain-imaging technology used
to record hemodynamic responses of the brain using near-
infrared-range light of wavelength 600–1,000 nm. fNIRS can
measure oxy- and deoxy-hemoglobin concentration changes
(1HbO and1HbR) while an individual performs specificmental
tasks such as mental arithmetic (MA), motor imagery (MI),
mental singing, and imagining of object rotation. During these
mental tasks, increased cerebral blood flow caused by neural
activities leads to an increase and decrease in 1HbO and 1HbR,
respectively, which have been utilized to implement fNIRS-based
BCIs (Ferrari and Quaresima, 2012; Schudlo and Chau, 2015).
Previous studies (Coyle et al., 2007; Naseer and Hong, 2013;
Hong et al., 2020) have reported that the performance of fNIRS-
based BCI is high enough to be applied to practical binary
communication systems that require a threshold classification
accuracy of at least 70% (Vidaurre and Blankertz, 2010).

Recently, many researchers have proposed new approaches
to improve the performance of fNIRS-based BCIs. For example,
recent studies have reported significant improvements in the
classification accuracy of fNIRS-based BCIs by employing
high-density multi-distance fNIRS devices (Shin et al., 2017a)
and using ensemble classifiers based on bootstrap aggregation
Shin and Im (2020). von Lühmann et al. (2020) proposed a
general linear model-based preprocessing method to improve the
classification accuracy of fNIRS-based BCI. The combination of
fNIRS with other brain-imaging modalities also demonstrated
a potential to improve the classification accuracy of the BCI
system (Fazli et al., 2012; Shin et al., 2018b). Recently, Kwon and
Im (2020) demonstrated that photobiomodulation before a BCI
experiment could enhance the overall classification accuracy of
fNIRS-based BCIs. Besides, a number of studies have attempted
to improve the information transfer rate (ITR) of fNIRS-based
BCI by increasing the number of commands (i.e., mental tasks)
(Khan et al., 2014; Hong and Khan, 2017; Shin et al., 2018a). In
addition, researchers have also been interested in implementing
portable BCI systems with a small number of sensors while
preserving the overall BCI performance to elevate their practical
applicability (Kazuki and Tsunashima, 2014; Shin et al., 2017b;
Kwon et al., 2020a).

Although fNIRS-based BCI technology has advanced
considerably, it is still challenging to use fNIRS-based BCIs in
real-world applications because neural signals generally exhibit
high inter-subject variability and non-stationarity. Moreover,
because fNIRS signals are readily affected by a user’s mental
state, such as cognitive load and fatigue, they can change during
the course of same-day experiments (Holper et al., 2012; Hu
et al., 2013). Therefore, individual training sessions need to
be performed before each usage of the BCI system to acquire
high-performance BCI systems. However, such relatively long
calibration sessions to obtain enough training data degrade their
practicality and sometimes cause user fatigue even before using
the BCI system. Various strategies have been proposed to reduce

the necessity of such long-term calibration sessions in the field of
EEG-based BCIs (Fazli et al., 2009; Wang et al., 2015; Yuan et al.,
2015; Jayaram et al., 2016; Waytowich et al., 2016; Joadder et al.,
2019; Xu et al., 2020). Recently, Kwon et al. (2020b) proposed
a subject-independent EEG-based BCI framework based on
deep convolutional neural networks (CNNs), which does not
require any calibration sessions, with a fairly high classification
accuracy. However, to the best of our knowledge, no previous
study has successfully implemented a deep CNN-based subject-
independent fNIRS-based BCI that outperforms conventional
machine-learning-based subject-independent fNIRS-based BCIs.

In this study, we proposed a novel CNN-based deep-learning
approach for subject-independent fNIRS-based BCIs. fNIRS
signals were recorded using a portable fNIRS recording system
that covers the prefrontal cortex while the participants were
performing MA and idle state (IS) tasks. The leave-one-subject-
out cross-validation (LOSO-CV) strategy was employed to
evaluate the performance of the proposed method. The resultant
classification accuracy was then compared with the threshold
accuracy for effective binary BCIs (70%) and the classification
accuracy was achieved using the conventional machine learning
method, which has been widely employed for fNIRS-based BCIs.
To the best of our knowledge, this is the first study that has
applied a deep learning approach to subject-independent fNIRS-
based mental imagery BCIs.

MATERIALS AND METHODS

Dataset
In this study, a part of an fNIRS dataset collected in our previous
study (Shin et al., 2018b) was used to evaluate the proposed
method. The original dataset consisted of 21-channel EEG data
and 16-channel fNIRS data, which were recorded from 18 healthy
adult participants (10 males and 8 females, 23.8 ± 2.5 years).
From the original dataset, only the fNIRS data measured during
the MA and IS tasks at all 16 prefrontal NIRS channels were
selectively used in this study. A commercial NIRS recording
system (LIGHTNIRS; Shimadzu Corp.; Kyoto, Japan) was used
to record fNIRS signals at a sampling rate of 13.3Hz. The
arrangement of the fNIRS channels is shown in Figure 1.

Experiment Paradigm
The timing sequence of a single trial is shown in Figure 2.
Each task trial consisted of an instruction (2 s), task (10 s),
and inter-trial rest (a randomized interval of 16–18 s). During
the instruction period, a specific task to be performed during
the task period was displayed at the center of the monitor.
The participants were provided with either a mathematical
expression showing a “random three-digit number minus a one-
digit number between 6 and 9 (e.g., 123–9)” for the MA task
or a fixation cross for the IS task. During the task period,
the participants were asked to perform either MA or IS tasks
as instructed. During the MA task, the participants had to
repetitively subtract the designated one-digit number from the
result of the former calculation as quickly as possible (e.g., 123–9
= 114, 114–9 = 105, 105–9 = 96, . . . ), until the stop sign was
presented. During the IS task, the participants stayed relaxed
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FIGURE 1 | The arrangement of six light emitters (red) and six light detectors (blue) on the forehead over the prefrontal area. A total of 16 fNIRS channels (green) were

formed by the pairs of neighboring light emitters and detectors with a distance of 3 cm between them.

FIGURE 2 | Timing sequence of a single trial. Each trial consisted of an introduction period of 2 s, a task period of 10 s, and an inter-trial rest period of 16–18 s. During

the introduction period, the task to be performed was displayed at the center of the monitor. After a short beep, the participants were asked to perform the designated

task while looking at a fixation cross. When a STOP sign was displayed with a second short beep, the participants stopped performing the task and relaxed during the

inter-trial rest period.

without performing any mental imagery task. The MA and IS
tasks were performed 30 times each.

Preprocessing
MATLAB 2018b (MathWorks; Natick, MA, USA) was used to
analyze the recorded fNIRS data, when functions implemented
in the BBCI toolbox1 were employed. The raw optical densities
(ODs) were converted to 1HbR and 1HbO using the following
formula (Matcher et al., 1995):

(

1HbR

1HbO

)

=

(

1.8545 −0.2394 −1.0947

−1.4887 0.5970 1.4847

)





1OD780

1OD805

1OD830



 (mM · cm),

where 1OD represents the optical density changes at
wavelengths of 780, 805, and 830 nm. The converted 1HbR and
1HbO values were band-pass filtered at 0.01–0.09Hz using a
6th-order Butterworth zero-phase filter to remove physiological
noise. fNIRS data were then segmented into epochs from 0 to
15 s considering the hemodynamic delay of the order of several
seconds (Naseer and Hong, 2013). Baseline correction was
performed by subtracting the temporal mean value within the
(−1 s, 0 s) interval from each fNIRS epoch.

1https://github.com/bbci/bbci_public

Performance Evaluation
Shrinkage Linear Discriminant Analysis
A shrinkage linear discriminant analysis (sLDA), which is
a combination of linear discriminant analysis (LDA) and a
shrinkage tool, was employed as the representative conventional
classification method as it has been widely employed in
recent fNIRS-based BCI studies owing to its high classification
performance (Shin et al., 2017a, 2018b). This method is known to
be particularly useful for improving the estimation of covariance
matrices in situations where the number of training samples is
small compared to the number of features. The feature vectors
to train the sLDA were constructed using the temporal mean
amplitudes of fNIRS data within multiple windows of 0–5, 5–10,
and 10–15 s for each epoch. As a result, the dimension of fNIRS
feature vectors was 96 (= 16 channels × 2 fNIRS chromophores
× 3 intervals).

Proposed Deep Learning Approach
We proposed a one-dimensional CNN-based deep-learning
approach for subject-independent fNIRS-based BCI. The detailed
network architecture is listed in Table 1. The proposed model
consisted of an input layer, two 1-dimensional convolutional
layers, and a single fully connected layer. The input layer had
a dimension of 201 (time samples) × 32 (= 16 channels × 2
chromophores), followed by two convolutional layers with 32
filters. The kernel sizes of the two layers were set to 13 and 6,
and the stride sizes of the two layers were set to 9 and 4. The
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TABLE 1 | The architecture of the deep-learning model based on 1-dimensional CNN.

Layer Number of filters Kernel size Normalization, dropout,

activation layer

Output shape Options

Input EvoNorm Dropout (p = 0.5) (201, 32)

1D Conv 32 13 EvoNorm Dropout (p = 0.5) (21, 32) Stride = 9

Padding = Valid

1D Conv 32 6 EvoNorm Dropout (p = 0.5) (4, 32) Stride = 4

Padding = Valid

Flatten (128)

Dense 128 × 2 Softmax (2)

TABLE 2 | The architecture of EEGNet.

Layer Number of filters Kernel size Normalization, Dropout,

activation layer

Output shape Options

Input (32, 201, 1)

2D Conv F1 (1, 6) BatchNorm (32, 201, F1) Padding = same

2D Depthwise Conv D ×F1 (32, 1) BatchNorm ELU (1, 201, D ×F1) Padding = valid

Depth = D

Max norm = 1

2D Average Pooling (1, 4) Dropout (p = 0.25) (1, 50, D ×F1)

2D Separable Conv F2 (1, 2) BatchNorm ELU (1, 50, F2) Padding = same

2D Average Pooling (1, 8) Dropout (p = 0.25) (1, 6, F2)

Flatten 1 × 6 ×F2

Dense (6 ×F2) × 2 Softmax 2

F1, F2, and D were set to 8, 16, and 2, respectively.

flattened output of the last convolutional layer, which had the
dimension of 128, was fed into the fully connected layer, followed
by the Softmax activation function. Consequently, the output of
the proposed method had a dimension of two, corresponding
to the number of tasks to be classified. The normalization and
dropout layers were added after the input layer and the two
convolutional layers to improve the generalization performance
and training speed of the networks (Ravi et al., 2020). An evolving
normalization-activation layer (EvoNorm) (Liu et al., 2020) was
employed as the normalization layer, and the dropout probability
was set to 0.5. The weights of the layers were initialized using a
He-Normal initializer.

Ensemble of Regularized LDA
Recently, Shin and Im (2020) demonstrated that ensemble of
weak classifiers resulted in a better classification accuracy than
that of a single strong classifier. Based on this work, the ensemble
of regularized LDA based on bootstrap aggregating (Bagging)
algorithm was employed to validate the performance of subject-
independent fNIRS-based BCI. The Bagging algorithm creates
multiple training sets by sampling with replacement, then builds
weak classifiers using each training set. The final classification
result is decided by a majority vote of results from weak
classifiers. In this study, the ensemble classifier was implemented
using the MATLAB “fitcensemble” function. According to the
previous study (Shin and Im, 2020), the number of weak
classifiers, fraction of training set to resample, and gamma value
for regularized LDA were set to 50, 100%, and 0.1, respectively.

The feature vectors of training sets were set to be the same as
those used to train sLDA.

EEGNet
Lawhern et al. (2018) introduced a compact CNN-based
deep-learning architecture (EEGNet) that contains a small
number of training parameters but showed robust classification
performance in various EEG-based BCI paradigms such as P300,
error-related negativity, movement-related cortical potential, and
sensory-motor rhythm during MI. In this study EEGNet was
employed as a conventional CNN-based classification method
to verify the performance of the proposed method. EEGNet
consists of an input layer, three 2-dimensional convolutional
layers of temporal, spatial, and separable layers, and a single
fully connected layer as listed in Table 2. The input layer had
a dimension of 32 (= 16 channels × 2 chromophores) × 201
(time samples) × 1, followed by a 2-dimenssional temporal
convolutional layer with F1 filters. The kernel size of the temporal
convolutional layer was set to (1, 6), chosen to be half the
sampling rate of the data. The spatial convolutional layer had
D × F1 filters with the kernel size of (32, 1), and the separable
convolutional layer had F2 filters with the kernel size of (2, 1).
Each convolutional layer was followed by a Batch Normalization
layer (BatchNorm) and a linear or exponential linear unit
activation layer (ELU). Two average pooling layers were located
after spatial and separable layers to reduce the size of feature
maps, with the kernel sizes of (1, 4) and (1, 8), respectively. In
this study, all the hyper parameters were determined based on the
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previous studies (Lawhern et al., 2018). F1, F1, andDwere set to 8,
16, and 2, respectively, and the kernel sizes of each convolutional
layer were set considering the sampling rate of the fNIRS device.

Training Details
All the training and simulation processes were run on a desktop
computer with a 12-core Ryzen 9 3900x processor, 64 GB
memory, and anNVIDIA RTX 2080Ti GPU, using Keras (https://
keras.io) with a Tensorflow backend, which is an open-source
library for deep learning. Ten percent of the training data was
split as the validation set, and an early stopping technique with
a patience of 20 was used to avoid over-fitting with a batch size
of 100. The hyper-parameters were empirically determined, and
the random seed was set to 0. The pre-processed fNIRS data were
fed into the proposed network after z-score normalization over
the time axis to compensate for intrinsic amplitude differences
among participants (Erkan and Akbaba, 2018). The network was
trained to minimize the categorical cross-entropy loss function
using the Adamax optimizer (Kingma and Ba, 2014; Vani and
Rao, 2019) with a learning rate of 0.0005, decay of 5× 10−8.

Leave-One-Subject-Out Cross-Validation
A leave-one-subject-out cross-validation (LOSO-CV) strategy
was employed to evaluate the performance of subject-
independent fNIRS-based BCIs. In LOSO-CV, all the datasets
except for a test participant—that is, the dataset of 1,020 samples
(= 17 participants× 30 trials× 2 classes)—were used to train the
classifier, and then data from the test participant (30 trials × 2
classes= 60 samples) were classified to evaluate the performance
of the trained classifier. For example, when participant #1 was
a test participant, the classification model for the participant
#1 was trained using the data of the other 17 participants
(participants #2 to #18). Then, the accuracy of the trained model
was evaluated by applying the participant #1’s data that were
not used for the training to the trained model. This process was
repeated until all participants’ data were tested.

Pseudo-Online Simulation of Subject-Dependent

fNIRS-Based BCI
A pseudo-online simulation of subject-dependent fNIRS-based
BCI was performed to investigate how many training trials were
required to achieve a classification accuracy higher than that
of subject-independent fNIRS-based BCI. The dataset of each
participant was split into training data and test data. For each
task, the first N trials and the remaining (30 - N) trials were
used as the training and test datasets, respectively. sLDA was
employed as the classifier (Shin et al., 2017a) for this subject-
dependent fNIRS-based BCI, and the classification accuracy was
evaluated for different sizes (N) of training datasets to investigate
how many training trials each participant should undergo before
using the fNIRS-based BCI. It should be noted that data from
other participants were not utilized to train the classifier.

RESULTS

The binary classification accuracies of individual participants
are shown in Figure 3. The white and gray bars represent

the classification accuracies of subject-independent fNIRS-based
BCIs implemented using sLDA and the proposed CNN-based
methods, respectively. The error bars represent the standard
errors. The red dotted horizontal line denotes the threshold
accuracy for the effective binary BCI (70%). The average
classification accuracy of the proposed method was reported
to be 71.20 ± 8.74% (mean ± standard deviation), which
was higher than that obtained using the conventional sLDA
(65.74 ± 7.68%) as well as the threshold accuracy for effective
binary BCI communications (70%). The Wilcoxon signed rank
sum test was conducted to statistically compare the difference
in the classification accuracies, and statistically significant
improvement of classification accuracy was observed for the
proposed method (p < 0.05).

Figure 4 shows the results of the pseudo-online simulation
of subject-dependent fNIRS-based BCI (denoted by “sLDA-
Dependent” in the figure) with respect to different numbers
of training data per class. The two horizontal lines denoted
by “sLDA-independent” and “CNN-independent” represent the
average accuracies of subject-independent fNIRS-based BCIs
achieved using sLDA (65.74%) and CNN (71.20%), respectively.
The black dotted line represents the threshold accuracy for an
effective binary BCI (70%). It can be seen from the figure that
the overall classification accuracy of the subject-dependent BCI
increased as the number of training data increased. Notably,
at least 12 training data per class were required to realize a
subject-dependent fNIRS-based BCI with better performance
than the subject-independent fNIRS-based BCI implemented
using the proposed CNN-based method. This implies that an
approximately 12 m-long training session may not be necessary
before using the fNIRS-based BCI if the proposed subject-
independent fNIRS-based BCI is employed.

Figure 5 illustrates the average classification accuracies
of subject-independent fNIRS-based BCI evaluated using
different classification methods. The red dotted horizontal
line denotes the threshold accuracy for the effective binary
BCI (70%) and the error bars represent the standard errors.
The average classification accuracies evaluated using sLDA,
ensemble of regularized LDA (denoted by “Bagging” in the
figure), EEGNet, and proposed CNN-based methods were
reported to be 65.74 ± 7.68%, 66.39 ± 7.44%, 67.96 ± 9.35%,
and 71.20 ± 8.74%. Among all classification methods, only the
proposed CNN-based method achieved higher classification
accuracy than the threshold accuracy for effective binary
BCI communications.

DISCUSSION

In this study, we investigated the feasibility of implementing
a subject-independent fNIRS-based BCI using a deep learning-
based approach. We proposed a novel deep-learning-based
model architecture based on a CNN to effectively differentiate
the two mental tasks, MA and IS. fNIRS signals were recorded
from 16 sites covering the prefrontal cortex while participants
performed either MA or IS task. The classification accuracy
obtained using the proposed CNN-based method was reported

Frontiers in Human Neuroscience | www.frontiersin.org 5 March 2021 | Volume 15 | Article 646915

https://keras.io
https://keras.io
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Kwon and Im Subject-Independent fNIRS-Based BCI

FIGURE 3 | Individual classification accuracies of the subject-independent fNIRS-based BCI. White and gray bars indicate the classification accuracies obtained using

the shrinkage linear discriminant analysis (sLDA) classifier and the proposed method. The red horizontal dashed line indicates the effective BCI threshold level (70.0%).

Error bars represent the standard errors. The grand average classification accuracies were 65.74 ± 7.68% and 71.20 ± 8.74% (mean ± standard deviation) for the

sLDA and the proposed method, respectively. The asterisk (*) represents p < 0.05 (Wilcoxon signed rank test).

FIGURE 4 | Comparison of MA vs. IS classification accuracies of subject-independent (sLDA-independent and CNN-independent) and subject-dependent

(sLDA-dependent) scenarios as a function of the number of individual training data. Vertical lines indicate the standard errors. The black horizontal dashed line

represents the threshold accuracy of the effective BCI application (70.0%).

to be 71.20 ± 8.74%, which was not only higher than the
threshold accuracy for effective BCI communication, but also
higher than that obtained using the conventional sLDA method.
Our experimental results demonstrated that our deep-learning-
based approach has great potential to be adopted to establish a

zero-training fNIRS-based BCI that could significantly enhance
the practicality of fNIRS-based BCIs.

We believe that the improvement in the overall BCI
performance stemmed from the synergetic effect of three
factors employed to construct the proposed CNN-based
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FIGURE 5 | Comparison of average classification accuracies of sLDA,

ensemble of regularized LDA (denoted by “Bagging”), EEGNet, and the

proposed method. The red horizontal dashed line indicates the effective BCI

threshold level (70.0%) and error bars represent the standard errors. The

average classification accuracies were 65.74 ± 7.68, 66.39 ± 7.44,

67.96 ± 9.35, and 71.20 ± 8.74% for sLDA, Bagging, EEGNet, and the

proposed method, respectively.

model architecture. First of all, the CNN layer had high
automatic feature extraction ability compared to that of
the conventional feature extraction method (Shaheen et al.,
2016). Additionally, construction of an appropriate structure
of fully-connected layers is also an important factor. The
performances of subject-independent fNIRS-based BCIs using
various fully-connected layers with different structures are listed
in Supplementary Table 1. Finally, to improve the generalization
performance, we adopted EvoNorm, a recently introduced
normalization-activation layer (Liu et al., 2020), instead of a batch
normalization layer followed by the ReLU activation layer, which
is a widely-used approach in deep learning. The classification
accuracy evaluated using the EvoNorm (71.20%)was significantly
higher than that obtained using the batch normalization and
the ReLU activation layers (68.43%, p < 0.05, Wilcoxon signed
rank test).

A previous study on the implementation of a subject-
independent EEG-based BCI (Kwon et al., 2020b) reported the
average classification accuracy of 74.15% in the two-class MI
task classification problem. Since the modalities and paradigms
of the previous study and this study are quite different with
each other, direct comparison of BCI performance may not be
meaningful; however, some important clues that can be employed
in our future studies could be found in the previous study. In
Kwon et al.’s study, EEG data were recorded from a total of 54
participants, which was almost three timesmore than the number
of participants participated in our experiments. The authors of
the previous study (Kwon et al., 2020b) demonstrated that a deep
neural network model trained with a larger number of training
data could result in a better classification accuracy and reduce
the differences in BCI performance among participants. Thus, it
may be a promising topic to investigate whether the performance

of subject-independent fNIRS-based BCI based on our proposed
CNN model could be further enhanced by increasing the size of
the fNIRS dataset through additional experiments with a larger
number of participants. The application of data augmentation
techniques (Luo and Lu, 2018) or the employment of open-access
datasets (Shin et al., 2018c) could also be promising options to
increase the training data without additional experiments. After
increasing the number of training data large enough to improve
the overall BCI performance and investigating more appropriate
deep learning structures, we will implement a real-time fNIRS-
based BCI communication system that does not require any
training session.

Current trends in BCI research are moving toward a hybrid
BCI approach that combines more than two neuroimaging
modalities to improve BCI performance. Among the various
possible hybrid BCIs, a hybrid fNIRS-EEG BCI has been widely
studied and has demonstrated the potential to increase the
overall performance of BCIs—particularly compared to that of
unimodal BCIs in terms of both classification accuracy and ITR
(Hong and Khan, 2017; Shin et al., 2018b). Because Kwon et al.
(2020b) recently demonstrated the feasibility of implementing a
subject-independent EEG-based BCI using CNN, it is expected
that a subject-independent hybrid fNIRS-EEG BCI could also
be implemented by incorporating our proposed CNN model
for fNIRS-based BCI with Kwon et al.’s CNN model for EEG-
based BCI.

In this study, the proposed CNN-based model was trained
using the data from different participants, excluding the data
from the test participant. Although this study focused only on
the feasibility of implementing subject-independent BCIs, the
classification accuracy could be further improved by adopting
a fine-tuning technique (Bengio, 2012; Anderson et al., 2016)
with a small portion of the test subject’s data. The fine-tuning
technique has shown promising results, particularly when a deep
learning model needs to be trained using only a small number
of datasets. If this “few-training” approach could dramatically
increase the classification accuracy of the fNIRS-based BCI, then
just a few minute training sessions before the use of the BCI
systemwould bemanageable. This would be one of the promising
areas we would like to investigate in our future studies.

In this study, the proposed CNN-based approach has
demonstrated its potential to be used to implement a practical
subject-independent fNIRS-based BCI; however, we believe that
there is still room for improvement in future studies. First,
the proposed deep learning approach is based on CNNs, but
there are other promising neural network models—such as
long short-term memory (LSTM)—which are known to be
particularly effective for dealing with time-series data. Asgher
et al. (2020) reported that the deep learning framework based on
LSTM outperformed conventional machine learning and CNN-
based algorithms in the assessment of cognitive and mental
workload using fNIRS. Therefore, it would be worthwhile to
compare the performance of various deep learning approaches
in the implementation of subject-independent fNIRS-based BCI.
In addition, we used raw fNIRS data without any particular
feature extraction method except for band-pass filtering and Z-
score normalization as the input tensor of the CNN model.
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Furthermore, investigating the feasibility of new forms of
input tensors (e.g., adjacency matrix of functional connectivity
network) to implement a subject-independent fNIRS-based BCI
would be an interesting research topic.
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